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Results: We propose a double convolutional neural network (CNN) cascade for
automated detection of particles in cryo-electron micrographs. This approach, entitled
Deep Regression Picker Network or "DRPnet’, is simple but very effective in recogniz-
ing different particle sizes, shapes, distributions and grayscale patterns corresponding
to 2D views of 3D particles. Particles are detected by the first network, a fully convo-
lutional regression network (FCRN), which maps the particle image to a continuous
distance map that acts like a probability density function of particle centers. Particles
identified by FCRN are further refined to reduce false particle detections by the second
classification CNN. DRPnet’s first CNN pretrained with only a single cryoEM dataset can
be used to detect particles from different datasets without retraining. Compared to
RELION template-based autopicking, DRPnet results in better particle picking perfor-
mance with drastically reduced user interactions and processing time. DRPnet also
outperforms the state-of-the-art particle picking networks in terms of the supervised
detection evaluation metrics recall, precision, and F-measure. To further highlight
quality of the picked particle sets, we compute and present additional performance
metrics assessing the resulting 3D reconstructions such as number of 2D class aver-
ages, efficiency/angular coverage, Rosenthal-Henderson plots and local/global 3D
reconstruction resolution.

Conclusion: DRPnet shows greatly improved time-savings to generate an initial
particle dataset compared to manual picking, followed by template-based autopicking.
Compared to other networks, DRPnet has equivalent or better performance. DRPnet
excels on cryoEM datasets that have low contrast or clumped particles. Evaluating
other performance metrics, DRPnet is useful for higher resolution 3D reconstructions
with decreased particle numbers or unknown symmetry, detecting particles with bet-
ter angular orientation coverage.
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Background

Although high resolution 3D protein structure determination via single particle analysis
(also known as single particle reconstruction) using cryo-electron microscopy (cryoEM)
is becoming more widely used, it still remains to be a challenging technique because of
the resulting noisy and often low contrast micrographs [1, 2]. In these cryoEM experi-
ments, a purified, homogeneous protein is vitreously frozen in a thin film of solution
to form a glass-like ice, which is then imaged under cryogenic temperatures (— 170 °C)
in a transmission electron microscope (TEM) [3]. Many cryoEM micrographs are col-
lected, with protein “particles” imaged in different orientations in 2D. Many 2D parti-
cle views (also known as “projections”) are collected and used to reconstruct an atomic
3D reconstruction [4] by iterative alignment, classification and averaging. The resulting
micrographs are extremely noisy; the low signal is due to a number of causes—micro-
scope-related aberrations, low doses of electron exposure applied to the radiation sensi-
tive protein specimen [5], movement of the specimen upon imaging [6], and the process
of high resolution image formation in the TEM [7, 8]. Thus, the protein particles of
interest are sometimes challenging to identify in these 2D cryoEM micrographs, espe-
cially certain orientations of the particles (see Fig. 1 for examples and artifacts). Sev-
eral software solutions have been developed to reconstruct 3D protein structures. These
solutions require large numbers of particles to accurately estimate the relative angular
orientations of these protein particles in 3D, which is then used to create 3D reconstruc-
tions of averaged protein particle structures.

One solution, the widely adopted RELION software [9], employs a likelihood-based
approach and expectation maximization algorithm to determine each protein particle’s
orientation, and then classifies and averages those similarly oriented particles together
to generate a high resolution 3D reconstruction of the protein’s structure—or a map
representing the Coulombic potential [10]. RELION’s workflow allows users to manu-
ally identify and select (“picking”) particles in 2D cryoEM micrographs; these selected
particles are then aligned, classified, and averaged to produce 2D class averages. Suita-
ble 2D class averages are manually selected as templates for automated particle selection
(“autopicking”) which assesses correlation of image patches to the template particles
[11]. We further refer to this as Template Based Autopicking (TBA). After obtaining 2D
class average templates from manually picked particles, these software packages rely on
two main methods to automatically select particles: template matching by cross-corre-
lation, or pattern recognition by a simple deep neural network. Template matching is
sensitive to noise and may suffer from strong bias [11].

Recent advances in machine learning, specifically in deep learning, have led to great
improvements in automated biomedical image analysis [12—14]. For microscopic image
analysis, [15] many machine learning approaches have been utilized from support vector
machines (SVM) to convolutional neural networks (CNN). A recent study of Shin et al.
[16] has employed deep learning models to learn semantics in MRI scans, and to extract
features to detect different organs. Xie [17] proposed a novel deep neural network for
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Fig. 1 Artifacts and challenges in cryoEM images. a Low contrast image (EMPIAR-10061) b Green region:
non-vitreous ice contamination (EMPIAR-10005) ¢ Green region: non-vitreous ice contamination; Yellow
region: carbon film (EMPIAR-10017) d Green region: non-vitreous ice contamination; Overlapped particles
(EMPIAR-10017)

robust nucleus localization, where, instead of using a pixel-wise classifier or a regressor,
they combined CNN with a nonlinear voting transformation. Inspired by the success of
these examples, we sought to apply deep learning methods to cryoEM image analysis,
specifically to particle picking, which is the most tedious step in most cryoEM image
analysis workflows.

Machine learning applied to cryoEM particle picking

Numerous software solutions to date have implemented deep learning approaches
to decrease time involved in manual particle picking, however a robust solution for a
majority cryo-EM datasets is lacking due to the variety of reasons (protein shapes and
sizes, grayscale variations, particle distributions and clumping, ice thickness differences,
crystalline ice contamination, presences of support films, changes in illumination) as
observed in cryoEM datasets (see Fig. 1). We provide a brief overview of some of these
networks; however an exhaustive list and subsequent descriptions are not appropriate
here.
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DeepPicker [18] is one of the earliest fully automated particle picking tools. It slides
a window (box) across the micrographs with a default step size of four pixels to collect
candidate image patches. Extracted image patches are normalized and fed into a convo-
lutional neural network to determine whether they belong to a qualified class of particles
or not. In the fully automated mode, DeepPicker has a pretrained network to pick par-
ticles for the first time as positive training samples. The negative samples are randomly
selected far from the positive samples using a spatial distance threshold. The positive
and negative samples are then used to train a fresh convolutional network to pick the
final particles.

Recently, three particle picking packages using deep learning have gained popularity;
TOPAZ [19], WARP [20] and crYOLO [21]. Similar to DeepPicker [18], TOPAZ [19] is a
deep learning-based particle picking software. It examines micrograph patches and uses
non-maxima suppression to select the patches with highest scores as the most likely par-
ticle instances. One major difference between TOPAZ and typical deep learning pickers
is that TOPAZ can be trained with a small number of positive and unlabeled samples,
versus of positive and negative samples. WARP [20], relies on residual neural network
(ResNet) architecture [22] that uses skip connections, or shortcuts to jump over some
layers for improved performance. WARP was trained with multiple EMPIAR raw and
simulated data. As a result, it can pick properly many types of particles and can mask
out the artifact regions. WARP also supports network re-training with custom data.
crYOLO [21] utilizes a general purpose, single-stage, deep object detector YOLO [23]
to detect particles. YOLO detection is based on a fixed-grid regression method that
makes it faster compared to other detection networks [24]. crYOLO was trained with
45 datasets and is able to auto-pick particles from previously unseen datasets. Its detec-
tion performance was fast, up to five micrographs per second with image dimensions of
1024 x 1024 pixels [21] and reached higher accuracy (recall, precision, and AUC) com-
pared to the original YOLO model when working with small objects as particles.

We present below a deep learning algorithm entitled, Deep Regression Picker network
(or “DRPnet”), for greatly improving the time taken to manually select particles from
cryoEM micrographs. This solution also seeks to improve the accuracy of particle pick-
ing using a cascade of convolutional neural networks—the first uses deep regression
to identify particles, the second uses a classification network to remove false positives.
This network can be used with no training as demonstrated on multiple datasets or with
retraining the second classification network for enhanced performance.

DRPnet was trained on one dataset (EMPIAR-10005 TRPV1), which was then used
to pick particles on other datasets (EMPIAR-10061 p-galactosidase, EMPIAR-10017 S
-galactosidase). We compare these DRPnet-picked particles to a similar number of par-
ticles generated by RELION’s Template Based Autopicking (using a randomized sub-
set of particles that went into the published 3D reconstruction to simulate a “manually
picked” template). Using these DRPnet or TBA particles, we generated 3D reconstruc-
tions in RELION. We show that compared to RELION’s TBA, DRPnet-picked particles
result in consistently more 2D classes, improved orientation angle distributions, and
allows small gains in resolution, especially when symmetry is not imposed. Finally, we
compare our solution to other deep learning-based particle-picking networks (WARP,
TOPAZ, crYOLO, DeepPicker) in terms of recall, precision and F-measure using both
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the pretrained networks and after retraining their models. Experimental results with the
dataset (EMPIAR-10017, B-galactosidase) show that DRPnet achieves recall, precision,
and F-measures values of 87.7%, 71.1%, and 78.5% respectively. These values are com-
parable or better than the current state-of-the-art when using the pretrained networks,
and DRPnet outperforms the state-of-the-art methods when all the methods are trained
with the same dataset and tested on unseen data. DRPnet rivals popular deep-learning
cryoEM particle picking algorithms in terms of time and quality, especially compared to
manually picked, template-based autopicking, and is freely available on GitHub (https://
github.com/emcoregit/DRPnet).

Methods

Inspired by the recent successes of deep learning in object detection [25], we set forth to
develop a robust and flexible deep learning-based particle picking system that can han-
dle multiple types of data, various particle sizes and shapes/aspect ratios, and different
imaging technologies (i.e. direct detectors) with different defocus ranges. Below, we pre-
sent our deep learning based particle picking framework, Deep Regression Picker Net-
work (DRPnet) illustrated in Fig. 2. The proposed system works on multiple types of data
(tested on three protein datasets) from various detectors, with improved speeds (testing
time is approximately ~ 6 s/micrograph on Nvidia GTX 1080 GPU with 8 GB memory
and SSD storage) compared to manual template selection (~ 30 min to select 1000 par-
ticles) as implemented by RELION. This RELION implementation includes manually
selecting particles, then selection of 2D class averages to generate a template, and find-
ing the autopicking parameters which would provide suitable number of particles—from
here on, we will refer to this process as RELION’s template-based autopicking (TBA).

Deep regression picker network (DRPnet) particle picking pipeline

The particle picking process in DRPnet involves two steps: localization (or detection)
and classification (refinement). In classical computer vision, object detection and clas-
sification processes often rely on carefully hand-crafted image features and descriptors
such as HOG (Histogram of Oriented Gradients) [26], SIFT (Scale-Invariant Feature
Transform) [27], or SURF (Speeded-Up Robust Features) [28], etc. that are extracted
from image patches. These descriptors are then fed to unsupervised or supervised
machine learning models such as SVM (support vector machine), random forests, and
neural networks to cluster or to classify those feature vectors. The success of these sys-
tems heavily depends on the selected or engineered feature descriptors that may not
capture the complexities of the underlying visual patterns unless they can adapt to new
patterns.

On the other side, deep learning approaches rely on data itself to learn discrimina-
tive features to perform the given task. Convolutional neural networks (CNN), a class
of deep learning methods heavily used for image analysis, extract features over mul-
tiple convolutional layers with different sizes and different numbers of filters whose
coefficients are learned during training. Earlier layers of convolutional networks learn
deep features, while later fully connected layers perform the classification or regres-
sion tasks. Deep object detection approaches can be coarsely grouped as single-stage
and two-stage. Single-stage detectors such as YOLO [29] and SSD [30] rely on regular
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Fig. 2 Cascaded architecture of the Deep Regression Picker Network (DRPnet). a Overview of the DRPnet
particle picking pipeline. Processing stages from input micrographs to picked particles. b Architecture
of the Fully Convolutional Regression Network (FCRN) used for initial particle detection. ¢ Architecture of
the Convolutional Neural Network (CNN) used for filtering/refinement of the detections through binary
classification. d Evaluation metrics used in this study to assess particle picking performance

dense sampling of objects, scales, and aspect ratios, and perform detection and clas-
sification in one step. Two-stage detectors such as FasterRCNN [31] and Mask-RCNN
[32] first produce a sparse set of candidates (region proposals). These candidates are
then classified into a number of classes, foreground versus background in our case.
Faster-RCNN and Mask-RCNN have shown great performance in detection and
classification tasks on image datasets such as Pascal VOC [33] and MS COCO [34].
However, these models were originally designed to work with larger objects with rich
color, texture, and shape features. The features of the benchmark datasets used for
training these standard detection networks are quite different when compared to
features of cryo-electron micrographs . Unlike objects in these benchmark datasets,
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cryo-electron micrographs (see Fig. 1) are grayscale, low contrast (Fig. la), and
may contain noise and artifacts caused by factors such as surface ice contamination
(Fig. 1b), support-film edges (Fig. 1c), or overlapped particles (Fig. 1d).

In order to overcome the aforementioned issues, we propose the Deep Regression
Picker Network (“DRPnet’, Fig. 2), which is based on the blob detection concept [35].
To better support the ability of localization and classification, we have developed a
two-stage particle picking pipeline (Fig. 2a). The first stage consists of a fully convolu-
tional regression network (FCRN) designed for particle candidate localization/detection
(Fig. 2b); while the second stage consists of a classification convolutional neural network
(CNN) designed to refine the detections (Fig. 2c). While the second stage classification
network is a supervised model to classify true versus false positives, training data for this
task was collected in an unsupervised manner by using the first stage regression net-
work’s measure of confidence. High and low confidence levels were used as indications
for true positives and true negatives respectively. The initial network was trained using
the EMPIAR-10005 dataset [36]. This scheme allows DRPnet to operate on other data-
sets automatically from detection through classification. After the initial training with
one dataset, the proposed DRPnet system was tested with multiple particles having vari-
ous sizes, shapes, and distributions from different datasets. We tested 7 datasets from
two modalities, (cryoEM versus negative stain) with relatively different particle sizes/
pixels without the need for retraining demonstrating the robustness of DRPnet.

Data preprocessing

In order to ensure optimal performance by both networks, the proposed particle picking
pipeline also includes a micrograph preprocessing step to enhance contrast and to cor-
rect transmission/illumination artifacts. Illumination (beam centering) and/or electron
transmission (transmitted electron signal) can misguide DRPnet’s detection because
particle picking significantly relies on intensity of grayscale images. To obtain the best
DRPnet detection performance, it was necessary to reduce the influence of illumination/
transmission variations. We compute local averages of illumination by applying a low-
pass filter with a very large kernel. The corrected intensity value of each pixel is obtained
by subtracting local and adding global intensity averages, as in Eq. 1:

1
Iw =1 =15+~ (Is) (1)

where I is the original image, # is the number of pixels in the image, and I, is image
smoothed with a Gaussian filter of sigma o, set heuristically according to particle size.

Deep learning

Stage 1: Fully convolutional regression network (FCRN)

To address the challenges of automated particle picking, we have treated this task as a
blob detection problem - where each particle is assumed to be a roughly convex blob
with texture different than the background (Figs. 2b and 3a). Additionally, we assume
that the dimensions and shapes of particles are relatively similar. Given a rough size
estimate, our goal is to locate particle centers. Our proposed model is a Fully Convo-
lutional Regression Network (FCRN), trained to predict particle centers by producing
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Fig. 3 Sample training and test images for the proposed DRPnet from selected cryoEM micrographs. a
A magnified image patch of aTPRV1 particle (scale is 50 A). b Corresponding ground truth training label
obtained by applying the distance transform to the binary particle mask, with blue and yellow indicating
lower and higher distance values, respectively. ¢ Smoothed 2D particle prediction map corresponding to

the output of the fully convolutional regression network shown in Fig. 2b for a single particle (left) and its 3D
visualization (right). d Sample cryoEM micrograph input into DRPnet (scale is 885 A). Yellow box represents
the particle shown in a. e Particle prediction map from C computed by DRPnet for the entire cryoEM
micrograph (left), and its 3D visualization with circled area showing a magnified view of the local maxima
(right). f, g Positive (f, blue circles) and negative (g, yellow circles) particles used to train the classification
network shown in Fig. 2c. Positive samples represent true particles, negative samples represent false
detections. These positive and negative training samples are selected in an unsupervised way using the
prediction confidence values from the fully convolutional regression network depicted in Fig. 2b, with high or
low confidence particles corresponding to positive or negative training samples, respectively (scale is 885 A)

a likelihood map where local maxima correspond to the particle centers (Fig. 3). Given
the ground truth particle centers (as provided by the datasets in EMPIAR) along with
a particle size estimate, first, binary particle-versus-background masks are produced
for the cryo electron micrographs. Then, distance transforms of those binary masks
are used as training labels for the proposed FCRN model (Fig. 3a). The distance trans-
form of a binary image is a grayscale map where each pixel’s value represents the dis-
tance to the closest boundary. This is calculated at each pixel by the distance to the
nearest background pixel. Distance transform values for the foreground regions (or
the particles) increase from a particle’s boundary towards the particle’s center, reach-
ing the local maxima at the particle’s center (Fig. 3b), and the distance transform for
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the background pixels are set to zero (Fig. 3b, left). The distance transform of the par-
ticle mask produces an estimate of the particle center probability map (Fig. 3b, right).
This continuous regression model (FCRN), trained with the particle distance trans-
forms, is then used to localize particle centers. This approach is different than deep
regression used to estimate object coordinates (i.e. object bounding box coordinates)
that is adopted by many deep object detectors such as FasterRCNN [31] or YOLO
[29]. Unlike traditional deep object detectors that regress to a discrete set of coordi-
nates, the proposed network learns to regress to a continuous distance map that acts
like a probability density function of particle centers. This regression approach has
considerable advantages over direct regression to particle center coordinates: (1) the
continuous mapping captures information on not only particle centers, but also on
particle shapes; (2) learning to approximate distance transform implicitly regularizes
the output making the continuous representation of the particle centers more robust
to noise compared to discrete coordinates (which is very important for processing
of extremely noisy cryo-EM images). Furthermore, because of its continuous nature,
this model also enables localization of an individual particle within a dense cluster,
and ensures better scale adaptation, which allows detection of different sized particles
without need for retraining the network.

The proposed FCRN has seven layers (Fig. 2b); one input layer, five convolutional lay-
ers, and one max-pooling layer [37]. With its simple structure, our approach has smaller
computational cost and training data needs, compared to more complex deep learning
models such as Fast-RCNN. The proposed network was implemented using the Mat-
lab deep learning toolbox. The network was trained with image patches (Fig. 3a) from
raw micrographs and their associated training labels, centered and cropped on particle
regions (Fig. 3b); their prediction is shown in (Fig. 3c). These image patches are of the
same size as the FCRN input layer. The number of patches extracted from each image is
equal to the number of selected particles in those images. We used Adam optimizer [38]
to train this network. Since our network is built without fully connected layers, it does
not require fixed size input images. In the testing stage, we directly applied the trained
FCRN model to different-sized input images (for example, an entire 2D cryoEM micro-
graph, Fig. 3d) to predict associated particle center probability maps (Fig. 3e, left). Fig-
ure 3e(right) shows the associated 3D visualization.

Stage 2: Classification network

The first network (Fig. 2b) outputs candidate particle locations, but suffers from false detec-
tion. The second convolutional neural network (CNN) refines these particle candidates
using a learned keep-or-reject candidate process (Fig. 2c). We extracted two subsets from
the particles detected by the first FCRN network, and trained a second two-class classifica-
tion network using stochastic gradient descent optimization [37]. Positive training samples
were particles detected with high confidence, then further refined by removing those with
low standard deviation of intensity. Negative training samples were particles with low prob-
ability scores in the detection map, as well as particles which had a low standard deviation
of intensity. Negative particles included patches of background, carbon edges, ice contami-
nated regions, and weak patterns. Using the second convolutional network, these particles
are classified into positive particles (Fig. 3f) and negative particles (Fig. 3g). This second
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classification network learns texture patterns of true particles versus false positives caused
by various artifacts, and provides a refinement to the particle detection process in an effi-
cient, unsupervised manner. This network has four convolutional layers each followed by a
max-pooling layer [37] for feature extraction and two fully connected layers [37] to decide
whether to pick or discard a particle patch using the learned features.

DRPnet that consists of this cascade of two networks was successfully implemented and
tested using Matlab 2018b Image Processing Toolbox, Computer Vision Toolbox, and Deep
Learning Toolbox. DRPnet is freely available on GitHub at https://github.com/emcoregit/
DRPnet.

3D reconstruction pipeline

Taking cryoEM datasets available in EMPIAR [39], we utilized both DRPnet-particle pick-
ing and RELION (v3.0) TBA to generate datasets with similar numbers of particles. For
each EMPIAR dataset utilized, RELION requires generation of a manually picked particle
set, usually around 1000 particles total. Particles used in our RELION comparison results
were generated by randomly selecting a subset (~ 1000) of particles deposited in EMPIAR
that contributed to the final, refined high resolution 3D reconstructions previously pub-
lished. These randomly selected particles can be considered the “manually picked” particles.
These particles were then processed through the standard RELION pipeline (template gen-
eration by 2D classification). DRPnet particles were generated as described before. Parti-
cles that have a distance to input image edge less than the box size (as defined by the user
in DRPnet) are filtered to avoid incomplete detection of particles, Both DRPnet particles
and the RELION TBA particles were then processed through RELION 2D classification to
identify good 2D class averages (see Fig. 3 in chapter 6 of Methods in Enzymology [40]).
Then both DRPnet and RELION TBA 2D class averages were further 3D classified (allow-
ing 5 possible classes) using the corresponding deposited, low-resolution (60 A) filtered 3D
reconstruction as the initial model. All good 3D classes were selected and refined to gener-
ate the final 3D reconstruction.

Performance metrics

We used multiple metrics to measure the particle picking performance of the proposed
DRPnet pipeline (Fig. 2d). Performance metrics have been poorly defined to assess the
output provided by the aforementioned, previously-developed particle picking tools. We
sought to provide a battery of metrics which may provide insights into particle picking
performance. Most tools involve a manual/visual inspection step of the 2D class averages
computed using the picked particles and the resultant 3D reconstructed map. In addition
to manual/visual inspection, we have proposed five quantitative particle picking evalu-
ation measures:(1) recall, precision, F-measure, (2) global resolution, (3) local resolution,
(4) angular distribution, and (5) Rosenthal and Henderson B-factor plots that are described
below.

Recall, precision, F-measure

Given a dataset with ground truth particle locations, detection performance can be
quantitatively evaluated using three supervised metrics, recall, precision, and F-meas-
ure, as defined below:
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TP TP
Recall =——— Precision = ———
TP 4+ FN TP + FP

Precision x Recall
F =2 x — 3)
Precision + Recall

where TP, FP, FN refer to true positives, false positives, and false negatives, respec-
tively. These metrics are used to compare the particle detection performance of DRP-
net to other state-of-the-art deep-learning based particle picking networks. Also refer to
Table 1 for the prediction outcomes and confusion matrix.

3D reconstruction global resolution

An evaluation metric we applied to evaluate the performance of particle picking is the
final resolution of the 3D reconstruction. In cryo-electron microscopy, we rely on the
concept of signal-to-noise ratio (SNR), and measure the internal consistency of the 3D
reconstructions generated by autopicked particles (of DRPnet or RELION TBA). Taking
advantage of the Fourier transform, correlation between two 3D reconstructions can be
represented by a product in Fourier space, and then that product is split into shells by
radial frequency to compute Fourier Shell Correlation (FSC; Eq. 4) [9, 41-43].

Real (Z<k, sty FLEOF (1<)>

FSC(k, Ak) = -
(Stan BEOPIEGR)

(4)

where K represents spatial frequency vector, kK = |K]|, is the magnitude of spatial fre-
quency, AK denotes ring width or shell thickness, and F;(K), F2(K) are the Fourier
transforms of the two half set reconstructions.

In the 3D reconstruction process, a plot of FSC versus spatial frequency shows that
FSC falls off when spatial frequency increases, and the connection between FSC and
Spectral Signal to Noise Ratio (SSNR) is explained by [44] as following:

FSC SSNR

FSC= ——— (5)

SSNR = ——,
1—-FSC SSNR + 1

FSC is a biased estimate of SSNR. For a large number of images variance of SSNR is
equal to variance of FSC, and the bias is negligible. When FSC is calculated for a data set
which is split into two halves, the relationship is:

2FSC

NR = ————
55 1—-FSC

(6)
By definition, FSC indicates the consistency of the two 3D reconstructions from particle
data. As its relationship with SSNR, FSC is used to identify the resolution of 3D recon-
struction. A specific level of FSC correlates to a spatial frequency, and that frequency
has a unit of 1/Angstroms (1/A) which is the inverse of the second measured metric,
resolution [42]. To avoid overfitting, those two 3D reconstructions should be generated
independently from two halves of data. RELION’s 3D refinement uses 0.143 as a cutoft
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level between signal and noise to evaluate resolution, and this level is also referred as the
gold standard. [9]

> (S+ NS+ Ny) .
3 (S2 + 25N + N2) 7)

FSC =

where S denotes the signal and N = N; = N3 are noise in half datasets.

3D reconstruction local resolution

The resolution estimated by FSC curve is a global evaluation of the 3D single par-
ticle reconstruction. To analyze resolution variations in different 3D map regions,
Kucukelbir [45] proposed a definition of local resolution. For each voxel, the local
resolution is the wavelength of the highest local spatial frequency that is statistically
above the noise. The noise level is identified by taking two halves of gold standard
3D map as input to compute both the mean, representing the signal, and the differ-
ence between them, representing the noise, as implemented in the software pack-
age, ResMap [45]. Instead of using ResMap, we applied RELION’s implementation to
perform local resolution analysis in our experiment. RELION utilizes a soft spherical
mask moved around the entire 3D map to estimate local resolution, which we used as
another metric to evaluate 3D reconstructions using DRPnet-picked versus RELION
TBA particles.

Angular distribution

Besides the metrics above, we analyzed the angular distributions recorded in RELION
.star files of 3D refinement jobs to understand the differences in orientation of parti-
cles picked by DRPnet and RELION TBA. Those angular distributions showed the effect
of orientation on resolution and clarified the resolution difference in maps obtained by
DRPnet and RELION TBA. We visualized the angular distribution by 2D Hammer pro-
jection scatter plots of angular coverage [46]. These scatter plots are equivalent to the
bild files of RELION’s 3D refinement jobs, and they include the same scale color bars
to compare between DRPnet and RELION TBA. Furthermore, we employed efficiency
number E,q [47] to confirm the angular distributions’ effect on structure’s resolution.
By using corresponding point spread function, Naydenova and Russo [47] computed E,q
to assess how the angular distribution contributes to the reconstruction results. An Eyq
value of 0.8 to 1 indicates a good orientation distribution and uniform Fourier space cov-
erage. If the E.q is lower than 0.5, the lack of particles in angular distribution will cause
elongation artifacts in the 3D reconstruction (for example, elongation in an axis that is
missing the views).

Rosenthal and Henderson B-factor plots

As originally proposed by Rosenthal and Henderson [48], plotting of the inverse-
squared resolution as a function of the number of particles allows us to compare num-
bers of particles picked with DRPnet or RELION and the effect of particle numbers on
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Table 1 Prediction outcomes and confusion matrix

Actual positive Actual
negative
Positive prediction TP FP
Negative prediction TN FN

Table 2 Experimental datasets from EMPIAR used for DRPnet testing

Dataset Voltage (kV) Camera Defocus #Totalimages #Testimages # Picked
range (u particles
m)

EMPIAR-10005 300 Gatan K2 15-35 871 661 60,000

(TRPV1) (subset)

EMPIAR-10017 300 FEl Falcon 2 1.0-3.0 84 84 50,000

(B-gal) (full set)

EMPIAR-10061 300 Gatan K2 0.6-3.0 1538 661 60,000

(B-gal) Summit GIF K2 (subset)

3D reconstruction resolution [49]. We used Rosenthal & Henderson B-factor plots as
another metric to evaluate the convergence of the 3D reconstructions using DRPnet-
picked versus RELION TBA.

Results

Datasets

To demonstrate our network’s ability to pick multiple types of particles, we prepared a
pretrained DRPnet model from one cryoEM dataset (TRPV1, EMPIAR-10005 [36]) and
tested it on other datasets (S-galactosidase, EMPIAR-10017 [11], and B-galactosidase,
EMPIAR-10061 [50]). These cryoEM datasets were selected because of the instrumen-
tation used to collect the data and the existence of a ground truth. They were acquired
on a cryo-transmission electron microscope at 300 kV accelerating voltage using either
a FEI Titan Krios (EMPIAR-10005 and EMPIAR-10061) or on a FEI Tecnai F30 Polara
(EMPIAR-10017). The direct detector, or camera, differed for each dataset. Please see
Table 2 for a summary of the experimental differences between these cryoEM datasets.
The particles picked from these datasets were taken through the RELION 3D recon-
struction pipeline and results presented in Figs. 3, 4, 5 and 6. Additional experiments
were also performed to show the effectiveness of DRPnet picking on particles of vari-
ous size, shapes, and embedded in different medias and are shown in the supplementary
materials. DRPnet particle picking was performed on in house negatively stained small
particles including the apo-form of aldehyde dehydrogenase 7A1 [51] (Additional file 1:
Figure S3 A-B) and a self-associating Fab fragment, OKT3 (Additional file 1: Figure S3
C-D). Also included is DRPnet particle picking results (Additional file 1: Figure S4 A-D)
of the larger T20S proteasome (EMPIAR-10025 [52]) having different particle top and
side view shapes.
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Fig. 4 Particle picking results on EMPIAR-10005 (TRPV1) dataset. A representative cryoEM micrograph and
picked particles (yellow circles) by DRPnet (a) and RELION TBA (b) (scale is 500 A). All picked particles were
classified using RELION to select quality 2D class averages as displayed for DRPnet (c) and RELION (d). The
angular distributions were determined during 3D reconstruction and are displayed in angular coverage plots
for DRPnet (e) and RELION (f). The range of the color bar is from 1 view (blue) to 600 views (yellow). Note,
better angular coverage is delineated by increased views for DRPnet-picked particles. (g) Rosenthal and
Henderson B-factor plot shows the relationship between number of particles and the global resolution of the
3D reconstruction
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Network training on the EMPIAR-10005 (TRPV1) dataset

The first network of the proposed DRPnet cascade is FCRN (Fig. 2b) that is responsible
for particle candidate detection. We have trained the FCRN network with a subset of
the TRPV1 dataset (EMPIAR-10005), using 50 TRPV1 micrographs and 9751 ground
truth particles extracted from the deposited coordinates used for the high resolution 3D
reconstruction [36]. Image dimensions for these cryoEM micrographs were 3710 x 3710
pixels, pixel size was 1.2156 A and the TRPV1 particles are 100 A x 110 A x 110 A. We
scaled down the images by 3x and used a box size of 64 x 64 pixels to extract particle
patches. Using the deposited particle coordinates, first binary particle masks were gener-
ated, then distance transform of those masks were calculated (Fig. 3b) and used to train
the FCRN network. The second network of the proposed DRPnet cascade, a classifica-
tion CNN (Fig. 2c), was trained to detect positive or negative training samples (Fig. 3g,
h) using the output of the first FCRN network.

Network testing on EMPIAR-deposited datasets

EMPIAR-10005 (TRPV1) testing

In order to validate the pretrained DRPnet model described above, we tested it on a
set of 661 TRPV1 micrographs collected on a Gatan K2 direct detector. TRPV1 micro-
graphs have low contrast, and some micrographs do not contain any particles. To detect
the particle candidates, we set the first network (FCRN) parameters at normal detec-
tion levels (sigma = 9, threshold = 2 x 5). Positive and negatives training samples for
the second network were selected using the parameter sets sigma = 9, threshold = 3 x 5
and sigma = 9, threshold = 1 x 5respectively. As a result of this process, DRPnet picked
61,282 particles. In order to pick similar numbers of particles, we set the parameters of
the RELION TBA to sigma = 1 and threshold = 0.475.

Picking similar particle quantities ensures a fair comparison between DRPnet and
RELION TBA. As has been seen from the Rosenthal-Henderson plots [48] particle
quantity effects final 3D reconstruction resolution, but limited by the Nyquist frequency
of the data or the flexibility of the protein particle. For each image, the number of true
particles is fixed while the number of picked particles varies depending on the threshold.
If the set threshold is high, the picking program is likely not to detect all true particles.
Conversely, if the set threshold is low, the picking program will pick more false posi-
tives (noisy artifacts such as ice contamination, carbon edges, or overlapped particles see
Fig. 3). These two cases degrade the quality of 2D image patches thus consequently the
resolution of 3D reconstruction. It is necessary to clarify the definition of threshold as
used by RELION and how it differs in DRPnet. RELION’s thresholding uses cross-cor-
relation to compare image patches to a set of particle templates. This threshold is used
to judge similarity of image patches to the particle template set. DRPnet uses distance
transform map as a probability density function of particle centers. In DRPnet, threshold
is used to determine if there is enough evidence for a particle at a particular location uti-
lizing the distance transform map.

The template-matching based particle picking function in RELION requires man-
ual picking of about a thousand particles by expert users. The process is not only
time consuming but also potentially subjective and biased. Our goal is not to improve
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performance against expert selected template-based picking, rather to achieve compara-
ble results in a fully automated fashion that is faster and unbiased.

Given these parameters, RELION TBA picked 61,599 particles To perform the sub-
sequent jobs, we extracted particles with box size 200 x 200 pixels without image scal-
ing. Taking both sets of picked particles forward through the RELION 3.0 pipeline, we
selected 23,147 good particles picked by DRPnet and 22,830 good particles picked by
RELION TBA to generate the 3D reconstruction.

Figure 4 presents detailed evaluation of particle picking performance by the proposed
DRPnet network versus the RELION TBA on the EMPIAR-10005 (TRPV1) dataset. Fig-
ure 4a, b shows picked particles on a sample micrograph. As discussed in the “Meth-
ods” section, it is observed that DRPnet can successfully pick particles in dense groups,
within close proximity of each other. When fed to the RELION processing pipeline,
particles picked by DRPnet result in more “good” 2D class averages classes, (49 classes,
Fig. 4c) compared to particles picked by RELION (32 classes, Fig. 4d). We also studied
the angular distribution of the picked particles using angular coverage plots (Fig. 4e,
f). In these plots, appearing views are indicated by dots on the 2D Hammer projection
surface. The number of each view is proportional with size and color of corresponding
dot. The angular coverage plots show that the distribution of DRPnet particle orienta-
tions (Fig. 4e, see also “Number of Views” in Table 3) were more distributed and numer-
ous compared to those picked with RELION TBA (Fig. 4f). This result also agreed with
the efficiency number E.q [47] reported in Table 3, with DRPnet having a E.q of 0.57
while RELION had Eyq of 0.51. Without imposing symmetry on the TRPV1 3D recon-
structions (Table 3, indicated with parentheses), we note that DRPnet’s picked particles
had improvements in angular coverage, which was further corroborated with improved
Eoq, as well as improved 3D reconstruction resolution generated with decreasing num-
bers of particles (Fig. 4g, solid lines) when comparing to the same measurements from
RELION TBA. Upon imposing symmetry (C4) for the final TRPV1 3D reconstructions
using approximately 20,000 particles (Fig. 4a, b), the resolution of 3D reconstructions
from both DRPnet & RELION TBA particles were 3.9 A (Table 3, and Fig. 4g). The C4
symmetrized 3D reconstructions also didn’t show noticeable differences (Fig. 7a, b) nor

Table 3 Summary table of results using DRPnet and RELION TBA (values in parentheses
were obtained without imposing symmetry)

Dataset EMPIAR-10005 EMPIAR-10061 EMPIAR-10017
Program DRPnet RELION DRPnet RELION DRPnet RELION
# Picked particles 61,282 61,599 60,267 61,597 49,604 49,855
# Selected particles 23,147 22,830 49,582 49,570 41914 40,669
# Angular views (in total 12,288) 2105 1907 3092 3000 3103 3034
(4481) (3697) (8269) (7968) (10,038) (9876)
Efficiency Eog 057 0.51 0.82 0.80 0.69 0.69
047) (032 (0.76) 0.74) (0.70) (0.70)
Resolution (A) 39 39 28 28 42 43
6.6) 6.8) (3.0 (3.1 4.7) (5.1
Local resolution (A) 36 37 28 28 39 40

6.7) 6.9 (3.5 (3.7) (5.8) (6.0)




Nguyen et al. BMC Bioinformatics (2021) 22:55 Page 17 of 28

did their Fourier Shell Correlations (Fig. 7c). The particles picked by the fully automated
DRPnet pipeline were able to generate similar resolutions in symmetrized 3D recon-
structions compared to interactive RELION TBA but at much faster speeds. DRPnet
testing time was approximately ~ 6 s/micrograph onNvidia GTX 1080 GPU with 8GB
memory and SSD storage. Whereas manual template selection in RELION took approxi-
mately ~ 30 mins for 1000 particles. DRPnet also increased angular coverage (Fig. 4e)
and increased good 2D class averages (Fig. 4c), resulting in improved efficiency (Table 3)
and improved resolution without symmetry, even with low particle numbers (500)
(Fig. 4g). These features are particularly helpful in structure determination when a data-
set is lacking particle numbers or has an unknown symmetry.

Next, we performed testing with two other datasets to verify that the proposed DRP-
net particle picking network trained with TRPV1/EMPIAR-10005 could not only select
particles with diversified shapes quickly, but also select particles with improved angular
coverage correlating with a resulting higher resolution 3D reconstruction.

EMPIAR-10061 (8-galactosidase) testing

In the second test, we picked particles from 661 selected micrographs from the
EMPIAR-10061 dataset of -galactosidase. -galactosidase has a less compact more elon-
gated shape (dimensions 180 A x 140 A x 87 A) as compared to TRPV1/EMPIAR-10005
used for training. This high resolution dataset was collected with minimal defocus and
at high magnification (pixel size of 0.3185A) on an Gatan K2 energy-filtered direct
detector (size of 7676 x 7420 pixels), which resulted in extremely low particle con-
trast (see Fig. 1a). To pick particles from this dataset using DRPnet, the detection levels
(sigma = 1, threshold = 1 x 0.01) and scale factor of 1/8 were set as input parameters.
DRPnet second classification CNN (Fig. 2c) was retrained with positive samples com-
posed of subset of detected particles by the DRPnet FCRN network having high stand-
ard deviations (s > 0.25) and negative samples as a subset of detected particles having
low standard deviation (s < 0.25). Note that the first CNN (FCRN detection network)
was not retrained. Only the second CNN (refinement network) was retrained. Labeled
training data for the second CNN was generated in an unsupervised manner, without
need for any external annotation, by thresholding the output of the first CNN. DRP-
net picked 60,267 particles from the EMPIAR-10061 micrographs (Table 3 and Fig. 5a).
To obtain similar number of particles, for RELION TBA, we selected sigma = 1.2 and
threshold = 0.15 and picked 61,597 particles (Table 3 and Fig. 5b). All subsequent jobs
were performed in RELION 3.0, including extraction, classification and refinement.
We used a binning factor of 2, a box size of 384 x 384 pixels and a pixel size of 0.637
A. During the 3D structure refinement step, we kept 49,592 and 49,570 good particles
from DRPnet and RELION TBA, respectively (Table 3), and once again noted more 2D
classes for DRPnet (Fig. 5¢c) versus RELION TBA (Fig. 5d). The reported resolution of
the resulting 3D reconstructions were 2.8 A for DRPnet and RELION (Table 3) using D2
symmetry. Although the 3D reconstruction FSC global resolutions were similar, Fig. 5e, {
illustrate the angular distribution of particles picked from the EMPIAR-10061 dataset (5
-galactosidase). The plots of angular coverage show that the particles of DRPnet (Fig. 5e,
f) represented more views than particles of RELION TBA (Table 3). This result also
agreed with an improved efficiency factor (E,q in Table 3). To visualize all views picked
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Fig.5 Particle picking results on EMPIAR-10061 (B-galactosidase): A representative cryoEM micrograph

and picked particles (yellow circles) by DRPnet (a) and RELION (b) (scale is 300 A). All picked particles were
classified using RELION to select quality 2D class averages as displayed for DRPnet (c) and RELION (d). The
angular distributions were determined during 3D reconstruction and are displayed in angular coverage plots
for DRPnet (e) and RELION (f). The range of the color bar is from 1 view (blue) to 700 views (yellow). Note,
better angular coverage is delineated by increased views for DRPnet-picked particles. (g) Rosenthal and
Henderson B-factor plot shows the relationship between number of particles and the global resolution of the
3D reconstruction
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by either DRPnet or RELION TBA, no symmetry (C1) was imposed and the correspond-
ing C1 values are listed in parentheses in Table 3. DRPnet shows that more views were
picked in C1, having improved E,q and resolution than RELION TBA. Looking at the
resolution imposing two-fold (D2) symmetry, DRPnet had E,q of 0.82 while RELION
had E,q of 0.80. Finally, a Rosenthal and Henderson B-factor plot (Fig. 5g) shows that
when the number of EMPIAR-10061 particles increase from 1200 to 38,000 particles,
the 3D reconstruction from DRPnet’s particles yield higher resolutions compared to
RELION TBA's—both with and without symmetry.

EMPIAR-10017 (B-galactosidase) testing
After testing DRPnet particle picking on the EMPIAR-10005 (TRPV1) and
EMPIAR-10061 (B-galactosidase) datasets, we conducted the third test on the all micro-
graphs in the deposited EMPIAR-10017 (B-galactosidase) dataset. Note, these S-galac-
tosidase protein particles are the same as the previous test, however with different data
collection conditions. This dataset was collected on an older generation cryo-transmis-
sion electron microscope (FEI F30 Tecnai Polara) and a different direct detector (FEI
Falcon II), having an image size of 4096 x 4096 pixels and a pixel size of 1.77 A. We set
DRPnet to detect particles at picking level (sigma = 7, threshold = 2 x 7), and selected
training samples for classification at positive level (sigma = 16, threshold = 3 x 7.5) and
negative level (sigma = 12.5, threshold = 2 x 5) to pick 49,604 particles (Table 3 and
Fig. 6a). RELION TBA parameters were set to pick 49,855 particles (Table 3 and Fig. 6b).
Those particles were extracted with a box size of 200 x 200 pixels at original scale for
3D map reconstruction. Unlike the EMPIAR-10005 and EMPIAR-10061 datasets, whose
ground truth particle sets consist of only selected good particles, the ground truth pro-
vided for the EMPIAR-10017 dataset consists of particles manually picked by an expert
[11] and covers almost all the particles in the associated micrographs. Because of this
fact, for the EMPIAR-10017 dataset, we were able to evaluate the reconstruction out-
come of the picked particles, and directly evaluate their detection performance using
Recall, Precision, and F-measure metrics. Table 4 shows that while RELION TBA results
achieved recall, precision, and F-measure values of 73.4 %, 59.9 %, and 65.9 % respec-
tively, the proposed DRPnet system achieved recall, precision, and F-measure values of
87.7 %, 71.1 %, and 78.5 %; a considerable improvement of more than 10% in each metric.
With the total number of picked particles around 50,000 particles from each algo-
rithm, using RELION’s 3D reconstruction pipeline, we performed 2D classification to
identify particles sorting into well-defined 2D class averages. Visually, we selected only
good 2D class averages for further 3D classification, selecting the best for 3D refinement
and reconstruction. The number of good particles sorting into defined 2D class averages
corresponding to either DRPnet’s pick or RELION TBA are 41,914 or 40,669, respec-
tively (Table 3). Again we note the increased number of 2D classes output for DRPnet
(Fig. 6¢) versus RELION TBA (Fig. 6d). Our experiment shows that map generated from
DRPnet-identified particles had a resolution of 4.2 A while RELION structure had a
resolution of 4.3 A. Figure 6e, f illustrate the angular coverage of particles picked from
dataset EMPIAR-10017 (B-galactosidase). These plots show that the particles of DRPnet
improved angular coverage than particles from RELION TBA. With symmetry imposed
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Fig. 6 Particle picking results on EMPIAR-10017 (B-galactosidase): A representative cryoEM micrograph
and picked particles (yellow circles) by DRPnet (a) and RELION (b) (scale is 500 A). All picked particles were
classified using RELION to select good 2D class averages as shown for DRPnet (c) and RELION (d). The angular
distributions were determined during 3D reconstruction and are displayed in angular coverage plots for
DRPnet (e) and RELION (f). The range of the color bar is from 1 view (blue) to 200 views (yellow). Note, better
angular coverage is delineated by increased views for DRPnet-picked particles. (g) Rosenthal and Henderson
B-factor plot shows the relationship between number of particles and the global resolution of the 3D
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Fig. 7 Single particle analysis 3D reconstruction outcomes. Left and middle columns compare the
superimposed 3D reconstructions rendered as isosurfaces colored to represent local resolution variations
generated from DRPnet-picked (a, d, g) or RELION template-based picked particles (b, e, h), respectively. The
3D reconstruction isosurfaces are colored such that higher resolution regions are colored in blue, and red
represents less well-resolved regions (see color scale on left). The right column (c, f, i) contains corresponding
masked Fourier Shell Correlation curves for 3D reconstructions, performed with or without symmetry, using
DRPnet-picked or RELION TBA, with horizontal line indicating the gold standard (0.143) FSC cutoff. The
top row shows 3D reconstructions from EMPIAR-10005 (TRPV1) , the middle row from EMPIAR-10061 (8
-galactosidase) and last row from EMPIAR-10017 (B-galactosidase)

5.999
4

(D2), Table 3 shows DRPnet covers 3103 views while RELION TBA has 3034 views.
Without symmetry (C1), DRPnet increases to 162 views (see Table 3). Both DRPnet and
RELION TBA’s particles had the same efficiency Eyq of 0.69 with two fold symmetry
(D2), and 0.70 without symmetry (C1). The Rosenthal and Henderson B-factor plot in
Fig. 6g shows that when the number of EMPIAR-10017 particles increase from 1200 to
38,400 particles, the resolution of DRPnet’s 3D reconstruction was improved compared

to RELION TBA, especially in case of no symmetry (C1).

In Fig. 7, we display local and global (Fourier Shell Correlation cutoff of 0.143) 3D
reconstruction resolution results for EMPIAR-10005 (TRPV1) in the first row (Fig. 7a—
c), EMPIAR-10061 in the second row(8-galactosidase) (Fig. 7d—f), and EMPIAR-10017
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Table 4 Recall, precision and F-measure for the proposed automated particle picking
pipeline evaluated on EMPIAR-10017 (p-galactosidase) versus other state-of-the-art

pickers
Model training Program  Version # Picked Recall (%) Precision (%) F-measure (%)
particles
Pretrained DRPnet 1 49,604 87.7 71.1 78.5
RELION 3.0 49,855 734 599 65.9
WARP 1.09 46,438 839 73.6 784
TOPAZ cryoSPARC 51,749 834 64.9 73.0
2142
crYOLO(®) 1.7.5 49,329 90.9 74.8 82.1
DeepPicker 1 40,880 26.5 264 26.5
Trained from DRPnet 1 49,604 87.7 711 78.5
. Rf@tc“ with RELION 30 49,855 734 599 65.9
(EMPIAR-10005) WARP 1.09 49,209 85.0 69.7 76.6
TOPAZ cryoSPARC 48,208 723 60.7 66.1
2142
crYOLO 175 49,742 59.2 482 53.1
DeepPicker 1 40,205 233 236 235

The best scoring is indicated in bold and the second-best in italics

*The pretrained model of crYOLO made available by its developers was trained with a training set that included our test set
while training sets for all other pickers did not include particles from the test set

in the last row (B-galactosidase) (Fig. 7g—i). The 3D reconstructions generated from
DRPnet- (left, Fig. 7a, d, g) and RELION- (middle, Fig. 7b, e, h) picked particles are ren-
dered as isosurfaces, contoured at the same level using the UCSF Chimera visualization
software [53]. The detailed differences of resolution between 3D reconstructions from
DRPnet-picked particles and RELION TBA particles are shown using a local resolution-
based color-scheme with blue representing areas with higher resolution, red with lower
resolutions. DRPnet-picked 3D reconstructions show increased local-resolution com-
pared to RELION TBA'’s 3D reconstructions, indicating an overall improved particle ori-
entation and alignment. The local resolution ranges of those maps for EMPIAR-10005
are 3.6-6.7 A (by DRPnet) and 3.7-6.9 A (by RELION TBA), for EMPIAR-10061 are
2.8-3.5 A (by DRPnet) and 2.8-3.7 A (by RELION TBA), and for EMPIAR-10017 are
3.9-58 A (by DRPnet) and 4.0-6.0 A (by RELION TBA). The masked FSC curves pro-
duced by RELION’s post-processing task are shown (Fig. 7c, f, i), with and without
imposing symmetry, for both DRPnet-picked and RELION TBA's particles. The DRPnet-
picked 3D reconstruction Fourier Shell Correlation curve extends to a slightly higher
resolution than RELION TBA’s reconstruction in all 3 datasets, both with and without

imposing symmetry.

Compatrison of particle picking networks

DRPnet’s performance was evaluated in terms of recall, precision, and F-measure [54],
and compared to other previously reported state-of-the-art deep learning-based particle
picking networks. Four networks were compared to DRPnet: WARP (version 1.0.9) [20] ,
TOPAZ (version 0.2.5 implemented in CryoSPARC 2.14.2) [19] , crYOLO (version 1.7.5)
[55] , and DeepPicker (version 1) [18]. Table 4 shows these comparisons. These deep
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learning-based tools (especially WARP and TOPAZ) have become widely adopted in the
cryoEM community to perform the particle picking task. For our first experiment, using
their pretrained network models as downloaded from Github, each network was tested
on the full EMPIAR-10017 (B-galactosidase) dataset (84 cryoEM micrographs) [50].
Recall, precision, and F-measure values were computed for each network and compared
to DRPnet’s values (Table 4, “Pretrained” Model). As mentioned previously, DRPnet had
a recall of 87.7%, precision of 71.1%, and F-measure of 78.5%. DRPnet performed better
than all others tested, with the exception of crYOLO. Pretrained model of crYOLO [21]
was previously trained on multiple datasets by its developers including EMPIAR-10017,
thus crYOLO had an unfair advantage as this network had already seen this testing data.
In our second experiment, each network was trained from scratch with EMPIAR-10005
(TRPV1) [36] using default training settings indicated by the developers, then tested
on EMPIAR-10017 (B-galactosidase) dataset, and recall, precision, and F-measure val-
ues were compared. DRPnet outperformed all other networks as shown in (Table 4,
“Trained with TRPV1” Model). This is true even for crYOLO, whose performance dras-
tically drops when tested on unseen data. Although we used the network developers’
suggested settings for training, retraining the networks could suffer from inappropri-
ate settings used and/or amount of training data used. When we retrained the networks
from scratch on 1800 particles, the performance decreased. This performance decrease
could be attributed to limited quantity of training data used when training from scratch.
If DRPnet training from scratch is required, one benefit of DRPnet is less data quantities
are required compared to other networks. Particle picking results for a sample image
obtained using the pretrained and retrained networks listed in Table 4 are shown in the
Additional file 1: Figures S1 and S2. Corresponding quantitative evaluation results are
given in Table S1. Further sample results demonstrating the DRPnet’s particle picking
performance on negatively stain datasets (ALDH7A1, BiFab OKT3) and on an additional
cryoEM dataset (EMPIAR-10025 T20S proteasome cryoEM) are shown in Additional
file 1: Figures S3 and S4, respectively. These results demonstrate generalization capabili-
ties of DRPnet on unseen data.

Conclusions

In summary, we propose a Deep Regression Picker Network (DRPnet) and successfully
demonstrate the ability to pick particles on a multiple datasets of cryo-EM micrographs
which is different from the training data (TRPV1,EMPIAR-10017)—different sized/
shaped/separated particles, collected on different microscopes, using different cameras,
with different background contrast (ie. negative stain)—and greatly reduced the time-
consuming barrier of manual picking to generate a template (as in RELION’s template
based autopicking). Our deep learning-based network is simple and effective for auto-
matically picking particles from 2D cryo-EM micrographs, including those with low
contrast, having a large particle box size, having differing particle shapes, handling par-
ticles that are clumped, using data collected with different cryo transmission electron
microscopes, with different direct detection cameras, and different defocus ranges. We
have also successfully used DRPnet to pick particles from negatively stained data (Addi-
tional file 1: Figure S3), which has been reported to be a challenge with other deep-learn-
ing based tools [19].
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DRPnet has a cascade of two convolutional neural networks—the first for detection,
followed by a second for classification. This cascade architecture provides flexibility to
retrain either or both networks if desired. Compared to other deep learning tools for
particle picking of cryoEM micrographs reported to date, this cascade strategy is unique.
After the initial training with TRPV1, we found it was unnecessary to retrain DRPnet
when applied to other cryoEM micrographs containing differently shaped particles in
other datasets (e.g. B-galactosidase, EMPIAR-10061 & EMPIAR-10005). Without the
need to retrain, automated particle picking using DRPnet to assist in 3D reconstruction
of protein structures by single particle analysis can be realized. If desired, one can retrain
the classification CNN—which may be useful for very low contrast images or images
that have artifacts, such as ice contamination with similar dimensions to particles of
interest, or if the data exhibits a different pattern or illumination.

Utilizing a pretrained network to pick particles significantly reduces time to obtain a
particle dataset. DRPnet is very efficient for selecting a set of particles. For comparison,
picking ~ 1000 particles manually in our laboratory from the above EMPIAR datasets
took about 30 min per dataset. With manually picking particles, there is also additional
time spent running the manually picked 2D classification (10 min), selecting good 2D
class average templates (1 min), as well as more time invested optimizing template-
based autopicking parameters (10 min) and finally running the autopicking job (10 min
or longer). With DRPnet, it takes about 6 s per micrograph to pick the particles, which
results in significant time savings, as compared to generating a quality particle dataset in
similar quantity via RELION’s workflow.

Considering the size of scaled input particles (64 x 64 pixels), the proposed network
architecture has been kept simple to maintain an appropriate number of neural network
parameters to avoid convergence issues and to achieve faster performance. The current
network configurations are adequate for our picking pipeline and therefore implement-
ing more complex architectures is unnecessary. Our results show that DRPnet archi-
tecture performs better than other more complex architectures (WARP uses UNet,
crYOLO using YOLO), which as we show in Table 4 can be inhibitive for particle pick-
ing. Considering that we achieve this even with smaller training sets also emphasizes the
effect of simpler architecture.

Investigating traditional computer science detection/classification evaluation metrics
of recall, precision, and F-measure, we performed a comparison between popular deep
learning-based particle picking networks (WARP, TOPAZ, crYOLO, DeepPicker)—
both with and without model retraining. We note DRPnet had comparable or improved
evaluation metrics compared to all programs attempted, with or without training—
with the exception of crYOLO, which had been trained previously on our test dataset
(EMPIAR-10017). While these supervised evaluations are very informative, many times,
existing ground truth sets are lacking due to 1) low contrast particles not contained in
the “expert’s” ground truth, or 2) the particles composing final 3D reconstruction not
representing the total particles used for alignment, classification, and averaging. Specifi-
cally, in case of EMPIAR-10017 (B-galactosidase), although the ground truth was the
most comprehensive, it still did not cover all particle patterns, thus orientations. This
may be due to fluctuations in intensity level, which may effect the ground truth’s particle
patterns. Cryo-electron microscopy images captured with low contrast (low defocus or
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minimal electron radiation exposure, therefore enhancing high resolution terms) likely
have high resolution 3D protein structural information, and conversely, those captured
with high contrast (high defocus or high electron radiation exposure, enhancing low res-
olution terms) contain low resolution information. Because images in EMPIAR-10017
(B-galactosidase) have different contrast levels, a true positive particle in a low contrast
image can be a false positive pattern in high contrast image.

For the above reasons, the detection stage F-measure of 78.5% was not high, but it
was the best result we could achieve with EMPIAR-10017 (B-galactosidase) data. We
note however DRPnet was the best compared to deep-learning particle picking net-
works (WARP, TOPAZ, DeepPicker) that hadn’t been previously trained on this data,
and the discrepancy becomes even wider upon model training from scratch. In addition
to supervised detection evaluation metrics, we sought additional unsupervised metrics
to guide our analysis even when complete ground truths are not available. Metrics we
found useful include angular distributions plots, efficiency (E,q) values [47], Rosenthal
and Henderson B-factor plots [48] with and without imposing symmetry, inspecting the
3D isosurface using local-resolution based color scheme, and finally reporting resolution
using the gold standard Fourier Shell Correlation (correlation threshold of 0.143) [48].

We consistently obtained more 2D classes, and improved angular coverage. The corre-
sponding 3D reconstructions had slightly higher global & local resolutions with DRPnet
picked particles compared to RELION’s TBA particles. DRPnet excelled in particle pick-
ing with low contrast data sets (those collected on Gatan direct detectors using images
collected close to focus). Plotting the angular distributions allows one to visually inspect
the orientations (angles and rotations) of the picked particles and also their abundance.
With DRPnet picked particles, a broader coverage of angular space is observed (less
white background in the 2D Hammer projection surface) for all datasets tested. This
finding is also corroborated by the efficiency metric, with DRPnet consistently showing
improved E,q values, indicating a more robust sampling of particle angular orientations
in the final 3D reconstruction. Finally, visual inspection of the 3D reconstruction isosur-
face when displaying the variation in local resolution indicates improved particle align-
ment with DRPnet-picked versus RELION TBA’s 3D reconstructions, indicated by more
blue (high resolution) and less red (lower resolution) isosurface. We conclude DRP-
net, based on the concept of blob detection, can pick diversified patterns which usually
results in wider particle orientation angle coverage, yielding improved resolution. This
is different than the manually selected templates used in RELION TBA. Especially for
low contrast (low defocus, high resolution) datasets, bias from the user picking manual
particles is minimized when using DRPnet—not only are preferred high contrast particle
views picked, but also other less obvious views with less contrast—yielding a particle set
from DRPnet having more diverse angular orientations. If limited by either input par-
ticle quantity, unknown symmetry or inability to apply it (for example variable ligand
binding stoichiometries, variable conformations or allostery), DRPnet may be particu-
larly useful in picking particles that have improved angular orientation sampling leading
to improved particle alignments. All these benefits may likely result in a 3D single parti-
cle reconstruction with improved final resolutions—both global and local. Future plans
include implementation in an open-source framework (Pytorch, for example), reducing
the barrier to DRPnet’s widespread adoption. Also, addition of powerful classification
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networks to our workflow, trained with multiple types of particles (e.g. heterogeneous
populations of particles) would likely reduce the running time of our picking software
while increasing its accuracy (reducing false positives such as noisy and/or low contrast
particles).

Here, we present a deep regression-based particle picking network composed of a dual
cascade of convolutional neural networks, entitled “DRPnet”. The advantages of automated
particle picking with DRPnet are following: (1) the picking algorithm does not have to be,
but can be, retrained, (2) the efficiency of automated particle picking compared to man-
ual template generation, and (3) the ability of DRPnet to perform picking on low contrast
cryoEM datasets (low defocus, high resolution) or data that is not complete (poor angu-
lar sampling). We compare DRPnet performance to popular, deep-learning based particle
picking networks in terms of detection evaluation metrics, recall, precision, and F-measure,
and show that is comparable or better with and without training the respective models. We
also provide functional assessment metrics—higher quantities of good 2D class averages,
better efficiency reflected in angular coverage plots, Rosenthal-Henderson plots, assessing
global/local resolution—for cryoEM micrograph particle picking beyond traditional evalu-
ation metrics. We envision these metrics will be useful to the cryoEM community when
assessing the performance of future particle picking networks.
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