Table 3.
Models | RMSE | Accuracy | Precision | Recall | F1 | AUC | |
---|---|---|---|---|---|---|---|
K-nearest neighbor | 0.284 | 0.214 | 0.691 | 0.737 | 0.486 | 0.586 | 0.776 |
Linear regression | 0.280 | 0.240 | 0.707 | 0.685 | 0.642 | 0.663 | 0.777 |
Random forest | 0.255 | 0.370 | 0.760 | 0.750 | 0.690 | 0.729 | 0.825 |
Protein-Sol | 0.253 | 0.376 | 0.714 | 0.689 | 0.688 | 0.693 | 0.808 |
XGboost | 0.252 | 0.385 | 0.756 | 0.748 | 0.690 | 0.718 | 0.829 |
Support vector machine | 0.246 | 0.411 | 0.761 | 0.763 | 0.684 | 0.721 | 0.842 |
DeepSol | 0.241 | 0.434 | 0.763 | 0.771 | 0.738 | 0.695 | 0.845 |
ProGAN | 0.237 | 0.442 | 0.763 | 0.770 | 0.676 | 0.720 | 0.853 |
SeqVec | 0.236 | 0.458 | 0.767 | 0.754 | 0.715 | 0.734 | 0.858 |
TAPE | 0.235 | 0.461 | 0.764 | 0.774 | 0.710 | 0.730 | 0.856 |
LSTM (All node features) | 0.236 | 0.458 | 0.765 | 0.748 | 0.677 | 0.730 | 0.855 |
GraphSol (No contact) | 0.235 | 0.462 | 0.763 | 0.710 | 0.676 | 0.729 | 0.853 |
GraphSol | 0.231 | 0.483 | 0.779 | 0.775 | 0.693 | 0.732 | 0.866 |
GraphSol (Ensemble) | 0.227 | 0.501 | 0.782 | 0.790 | 0.702 | 0.743 | 0.873 |
Italic values indicate the performance of our purposed model
Bold italic values indicate the performance of our ensemble model by using all folds of models to make a final prediction