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Abstract

Background: Ovarian cancer (OC) is one of the most common gynecological malignant tumors worldwide, with
high mortality and a poor prognosis. As the early symptoms of malignant ovarian tumors are not obvious, the
cause of the disease is still unclear, and the patients’ postoperative quality of life of decreases. Therefore, early
diagnosis is a problem requiring an urgent solution.

Methods: We obtained the gene expression profiles of ovarian cancer and normal samples from TCGA and GTEx
databases for differential expression analysis. From existing literature reports, we acquired the RNA-binding protein
(RBP) list for the human species. Utilizing the online tool Starbase, we analyzed the interaction relationship between
RBPs and their target genes and selected the modules of RBP target genes through Cytoscape. Finally, univariate
and multivariate Cox regression analyses were used to determine the prognostic RBP signature.

Results: We obtained 527 differentially expressed RBPs, which were involved in many important cellular events,
such as RNA splicing, the cell cycle, and so on. We predicted several target genes of RBPs, constructed the
interaction network of RBPs and their target genes, and obtained many modules from the Cytoscape analysis.
Functional enrichment of RBP target genes also includes these important biological processes. Through Cox
regression analysis, OC prognostic RBPs were identified and a 10-RBP model constructed. Further analysis showed
that the model has high accuracy and sensitivity in predicting the 3/5-year survival rate.

Conclusions: Our study identified differentially expressed RBPs and their target genes in OC, and the results
promote our understanding of the molecular mechanism of ovarian cancer. The current study could develop novel
biomarkers for the diagnosis, treatment, and prognosis of OC and provide new ideas and prospects for future
clinical research.

Keywords: RBP, RBP target gene, Ovarian cancer, Risk model, Overall survival

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: lmhk@mail.ustc.edu.cn; huke8511@163.com
†Chaofan He and Fuxin Huang contributed equally to this work.
1School of Life Science, Bengbu Medical College, Bengbu 233030, Anhui,
People’s Republic of China
Full list of author information is available at the end of the article

He et al. Journal of Ovarian Research           (2021) 14:27 
https://doi.org/10.1186/s13048-021-00777-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13048-021-00777-1&domain=pdf
http://orcid.org/0000-0003-1641-485X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lmhk@mail.ustc.edu.cn
mailto:huke8511@163.com


Introduction
Ovarian cancer is one of the most common
gynecological malignancies worldwide [30]. Although
OC has a lower incidence than cervical and uterine can-
cers, it has the highest mortality rate of all gynecological
malignancies; ovarian cancer is thus a serious threat to
women’s health [35].Unfortunately, as many as 70% of
OC patients are not diagnosed with OC until the ad-
vanced stage, since early specific signs and symptoms of
OC are not obvious and development is rapid; moreover,
there is a lack of efficient early diagnostic methods in
clinical use [36]. At present, surgery and chemoradio-
therapy are the most often used modalities in the treat-
ment of ovarian cancer, but the side effects are severe,
and patients’ quality of life of after the operation is ser-
iously decreased [7, 9]. Postoperative cancer recurrence
and drug resistance are still difficult problems requiring
solutions. Therefore, it is of huge significance to explore
specific markers for early diagnosis of ovarian cancer to
improve treatment effects and patient prognosis.
Gene expression is regulated at multiple levels in eu-

karyotes, for example, the epigenetic, transcriptional,
and post-transcriptional levels, and so on. Currently,
studies on regulation at the transcriptional and transla-
tional levels have been relatively thorough and in-depth,
but the current understanding of post-transcriptional
regulation is still not complete. RNA binding proteins
(RBPs) are important components of post-
transcriptional modification. They regulate the critical
metabolic processes of RNA maturation, transport, sta-
bility, and degradation [43]. In all, 1542 genes have been
confirmed experimentally to encode RBPs in humans,
accounting for about 7.5% of all protein-coding genes.
This suggests that RBPs play a significant role in the
regulation of gene expression [4, 15]. Because of the
omnidirectional and multifunctional regulation of
mRNA by RBP, even small changes can cause significant
physiological and pathological effects. Previous studies
have indicated that cancer, neurodegenerative diseases,
and cardiovascular diseases have been proven to be asso-
ciated with RBP abnormalities [2, 31, 42]. Cell prolifera-
tion, differentiation, apoptosis, and other physiological
processes are precisely regulated at the post-
transcriptional level, which is involved in the develop-
ment of tumors [24]. Therefore, it is of great significance
to understand how RBP regulates gene expression to re-
veal the mechanism of tumor formation and to search
for tumor therapeutic targets.
With the development of science and technology and

the in-depth study of RBP by researchers, More and
more studies have shown the involvement of RBPs in
cancer occurrence. Compared with normal tissue, the
expression level of RNA binding protein QKI is signifi-
cantly lower in gastric cancer tissue. In vitro

experiments also confirmed that overexpression of QKI
could lead to inhibition of proliferation of gastric cancer
cells [5]. Argonaute 2 promotes hepatocellular carcin-
oma by stabilizing MYC mRNA [45]. In ovarian cancer,
SORBS2 inhibits cancer invasion and induces the
tumor-inhibiting immune microenvironment by com-
bining WFDC1 with IL-17D 3UTR [46]. LARP1 binding
to BCL2 mRNA increases its stability and promotes
anti-apoptosis of ovarian cancer cells [21]. Studies have
shown that HuR is involved in tumorigenesis by enhan-
cing the stability of target mRNAs such as CCNA1,
VEGF, IL8, COX2, etc. [32]. It can be seen that RBP in-
teracts with DNA and proteins to form a complex regu-
latory network by regulating the life activities of target
RNA. Therefore, we acquired ovarian cancer RNA-seq
and clinical data from the cancer genome atlas (TCGA)
database and downloaded normal tissue RNA-seq data
from the Genotype-Tissue Expression (GTEx) database.
Through bioinformatics analysis, we obtained differen-
tially expressed RBPs and RBP targets and systematically
discussed their potential functions and interactions. Our
study identified several OC-related RBPs and RBP target
genes to advance our understanding of the molecular
mechanisms underlying the development of ovarian can-
cer. These genes can serve as novel biomarkers for the
prevention and diagnosis of ovarian cancer and provide
new ideas and perspectives for future clinical research.

Materials and methods
Data acquisition
The level 3 gene expression profiles of 379 ovarian can-
cer patients were downloaded from the TCGA data por-
tal (https://tcga-data.nci.nih.gov/tcga/). All data on 88
normal ovarian tissue samples were obtained from the
GTEx data portal (https://gtexportal.org/home/datasets).
Perl software was used to process the expression data of
the normal group and the tumor group and then merge
them. In addition, we obtained the overall survival and
phenotype files. The targeting relationship between
RNA-binding proteins and their target genes was ob-
tained through the Starbase database (http://starbase.
sysu.edu.cn/) [28].

Identification of differentially expressed genes (DEG)
Differentially expressed RBPs and RBP-Target genes
were screened by comparing tumor and normal samples.
The DEGs were identified with the R package limma
[34], and a heatmap and volcano map were drawn with
the R package “pheatmap” and “ggpubr”. A Venn dia-
gram (https://bioinfogp.cnb.csic.es/tools/venny/index.
html) was drawn to identify differentially expressed
genes. P < 0.05 and |Logfold change (FC)| > 1 were con-
sidered as the cutoff values of DEGs.
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Functional enrichment analysis
The R package clusterProfiler was used for Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) enrichment analysis [44]. The ontology
contains three categories: biological process (BP), mo-
lecular function (MF) and cellular component (CC).
Enriched GO terms and KEGG pathways results set the
threshold P < 0.05.

Construction of an RBP-target gene network
The RBP-Target gene network was retrieved from the
Starbase database, and it was reconstructed and analyzed
by MCODE and Cytohubba of Cytoscape software. The
colors of the nodes in the PPI network reflected the gene
expression level |LogFC|; the size of the node indicates
the number of proteins that interact with the specified
protein.

Overall survival curve
Survival analysis was performed using survival data from
the TCGA database, and a threshold of P < 0.05 was set.
We verified the overall survival of RBP in the Cox model
through different GEO datasets on the Kaplan Meier
plotter (https://kmplot.com/analysis/) [17].

Construction and validation of the cox regression model
We first screened for prognostic RBPs by univariate Cox
regression analysis (P value < 0.05 was set as the cutoff).
Next, prognostic RBP signatures were determined by
multivariate Cox regression analysis. In multivariate Cox
regression analysis, AIC had a minimum value of

2266.94 as the best cutoff point. The prognosis-related
RBP signature is expressed as follows: risk score = (coef-
ficient RBP1 × RBP1 expression) + (coefficient RBP2 ×
expression of RBP2) +… + (coefficient RBPn × expres-
sion RBPn). Finally, the R packages “survival” and “surv-
miner” were used to explore the optimal cutoff for the
risk score and draw the survival curve. In particular, the
risk curve was performed by grouping the patients into
high- and low-risk groups. The R packages “survival-
ROC” and “timeROC” were used to investigate the time-
dependent prognostic value of the gene signature [6, 18].

Survival analysis
Survival analysis was performed using survival data from
the TCGA database and compared by log-rank tests with
P < 0.05 being statistically significant. Univariate and
multivariate cox regression analyses were used to evalu-
ate the survival rates of ovarian patients. The hazard ra-
tio (HR) and 95% confidence interval (CI) were
calculated to determine the expression of RBPs associ-
ated with overall survival. Results were considered statis-
tically significant at P < 0.05.

Results
Transcriptomic analysis of differentially expressed genes
In this study, we systematically analyzed the critical roles
and prognostic value of differentially expressed RBPs
and RBP target genes in OC by following the steps de-
scribed in the Materials and methods section. The work-
flow of this study is shown in (Fig. 1). We performed a
principal component analysis (PCA) with significant

Fig. 1 The overall design of the study
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extremely differences on the expression profile data of
tumor tissues and normal tissues (Figure S1). Based on
the thresholds of (P < 0.05 and |LogFC| > 1), we identi-
fied 527 differentially expressed RBPs (Fig. 2a). At the
same time, 554 differentially expressed RBP target genes
were obtained, the screening standard of (P < 0.05,
|log2FC)| > 2) (Fig. 2b). We used volcanic maps to dem-
onstrate the expression of all RBPs (Fig. 2a), heat maps
and forest plot to show statistically significant differ-
ences in survival-related RBP expression in tumors and
normal tissues (Fig. 2c). Similarly, we show the expres-
sion of RBP target genes (Fig. 2b, d).

Functional enrichment analysis of differentially expressed
RBPs and targets
From the 527 differentially expressed RBPs, a total of 8
KEGG pathways were enriched. Among these enriched
pathways, all are related to the activity of RNA life, such
as the ribosome, the spliceosome, RNA transport, etc.
All entries have been listed in (Supplementary Table S1).
The visualization result of the spliceosome is shown in
(Fig. 3a). Besides, the vital movements of these RBPs

were systematically divided into three functional groups:
biological process (BP), Molecular Function (MF), and
Cellular Component (MF). Analysis results showed that
the BP group mainly focused on RNA splicing, RNA cata-
bolic process, ncRNA processing, regulation of translation,
translational initiation, ribosome biogenesis, RNA trans-
port, and mitochondrial gene expression (Fig. 3b); the MF
group mainly concentrated on structural constituents of
the ribosome, ribonuclease activity, catalytic activity acting
on RNA, RNA helicase activity, translation initiation fac-
tor activity, nuclease activity, methyltransferase activity,
and pre-mRNA binding (Fig. 3c); and the CC group
mainly involved in the ribosome, the spliceosomal com-
plex, the ribonucleoprotein granule, focal adhesion, the
cell-substrate junction, the spliceosomal snRNP complex,
and the P-body (Fig. 3d). Similarly, we also carried out en-
richment analysis of the differentially expressed 557 target
genes. The KEGG enrichment results showed that these
genes were closely related to the cell cycle (Supplementary
Figure S2). From the RBP target genes, a total of 241 GO
terms were enriched. We selected some cancer-related
GO terms for visualization, for instance: cell growth,

Fig. 2 Differential expression analysis and identification of RNA-binding proteins and target genes. a, b Intersection of abnormally expressed
genes and RNA binding proteins and RBP target genes(left), volcano map of abnormally expressed RNA-binding proteins and RBP target genes
(right). c, d Univariate COX regression analysis of heat maps(left) and forest plot(right) of abnormally expressed prognostic RNA-binding proteins
and RBP target genes
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response to oxidative stress, cell-cell junction and protein
serine/threonine kinase activity, etc. (Supplementary Table S1).

RBPs-target interaction network and key module analyses
Based on the STRING database (https://string-db.org/),
we established a PPI network to show the interactions of
the 557 target genes. MCODE analysis shows four mod-
ules from the core of the network. Module 1 consisted of
36 nodes and 583 edges, module 2 consisted of 17 nodes
and 93 edges, module 3 consisted of 11 nodes and 38
edges, and module 4 consisted of 17 nodes and 53 edges.
Of the 81 modular genes, 76 target genes were in the top
100 hub genes selected using CytoHubba. It should be
noted that the genes in module 1 are extraordinarily
closely related to each other. Next, we constructed the re-
lationship network between RBP and RBP target genes in
the module genes. We visualized the results (Fig. 4).

A ten-RBP model and risk score evaluation
First, based on the expression of differentially expressed
RNA binding protein and survival information acquired
from the TCGA database, we obtained a list of RBPs re-
lated to prognosis through univariate analysis (Fig. 2c
Right). According to our analysis MRPL14, ISG20, etc.,
showed a significant correlation with prognosis. By

applying the COX regression model to single factor
prognostic analysis, a stepwise regression approach was
used and a ten-prognostic gene model was obtained
(P < 0.0001). Interestingly, the model was observed that
it can be used as an independent predictor of the prog-
nosis of RBPs in OC patients (P < 0.05). We generated
the formula: risk-score = (− 0.5676) * C2orf15 + (0.6076)
* MRPL46 + (− 1.0251) * ZNF239 + (− 1.3075) *
MRPL14 + (− 0.7560) * ISG20 + (− 1.2970) * LUC7L2 +
(− 1.2124) * SRP9 + (0.5287) * PARP4 + (− 1.9149) *
PAPOLA + (1.8874) * STRAP. According to the expres-
sion of these RBPs, we calculated the risk value of each
case. Based on the median risk score, patients were di-
vided into high- and low-risk groups. We plotted the pa-
tient’s survival curve (green for low-risk values, red for
high-risk values) and survival state chart (green for sur-
vival, red for death) (Fig. 5e, f). Surprisingly, it is evident
that the higher the risk, the higher the number of deaths,
and the hazard ratio is often associated with poor
prognosis.
Further, to more conveniently predict the patient’s 3/

5-year survival rate. We used the ten-RBP model to draw
a nomogram (Supplementary Figure S3). It is convenient
to detect the expression of the ten-RBP and calculate the
risk value to predict the corresponding 3/5-year survival

Fig. 3 Functional enrichment of abnormally expressed RNA binding proteins. a KEGG enrichment of abnormally expressed RNA binding proteins
P < 0.05. b-d GO enrichment of abnormally expressed RNA binding proteins
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rate. These results suggest that the ten-RBP model can
be used to assess patients’ prognostic risk. Altogether,
we screened multiple-prognosis-related RBPs and con-
structed a ten-RBP model. This model can achieve the
effect of predicting patient risk and the 3/5-year survival
rate.

Validation of the ten-RBP model
Validation was performed, and the ROC curve
(AUC = 0.738) analysis of the model showed sensitiv-
ity and accuracy (P < 0.05). Similarly, for the analysis
of the 3/5-year survival rate predicted by the model,
we also plotted the R ROC curve and the AUC (>
0.7) analysis showing the sensitivity and accuracy (P <
0.05) (Fig. 5a, b). Next, through the calibration curve,
we calibrated the nomogram very well and the ten-
RBP model performed well in predicting the patients’
3/5-year survival rate (Fig. 5c, d). Finally, based on
the risk groups described above, we found that the
high-risk group had a significantly poorer prognosis
(P < 0.05) (Fig. 5g, h).

Identification of genes with survival significance
We further analyzed the prognostic value of 10 RBPs in
the Cox model using the online tool Kaplan-Meier plot-
ter. The results showed that the overall survival of these
RBPs in different GEO datasets was basically consistent
with the TCGA clinical data analyzed (Fig. 6). In
addition, we conducted a batch survival analysis of the
different target genes and found that six hub genes
(PNISR, CXCR4, TRIP13, EIF3L, LAMB2, and PCBP2)
had significant survival significance (Fig. 7). Then we
searched for each RBPs in The Human Protein Atlas
database (https://www.proteinatlas.org/) and immuno-
histochemical data showed that the expression levels of
these genes (MRPL14, PARP4 and STRAP) were signifi-
cantly increased, and the antibody staining degree of
these genes (MRPL46, LUC7L2 and PAPOLA) was shal-
low in ovarian cancer tissue (Fig. 8) [39]. This is also
consistent with the difference analysis results of RNA-
seq data.
In summary, our work builds a ten-RBP model based

on the expression of RBPs through univariate and multi-
variate cox regression analysis. Through this model, the

Fig. 4 Construction and module analysis of RNA-binding protein and its target gene networka Construction of RNA binding protein and its
target gene network. b-e Analysis of RNA binding protein and its target gene module.
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Fig. 5 Multivariate Cox regression analysis and model construction. a ROC analysis of the ten-RBP model. b ROC (3/5-year) analysis of the
signature. c, d Calibration of 3/5-year survival e, f risk score and survival state analysis for patients in high-risk and low-risk groups by signature. g
Kaplan-Meier analysis for patients in high-risk and low-risk groups. h A heatmap of these 10 RBPs in high-risk and low-risk groups

Fig. 6 Verification of prognostic genes in GEO datasets. a C2orf15, b MRPL46, c ZNF239, d MRPL14, e ISG20, f LUC7L2, g SRP9, h PARP4, i
PAPOLA, and j STRAP
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clinical risk and survival prognosis of different patients
are well predicted, showing high sensitivity and specifi-
city. The model is expected to be useful in rapid clinical
diagnosis of patients and more convenient for providing
prognostic information.

Discussion
Ovarian cancer is a serious threat to women’s health:
even with combined treatment, relapse is not uncom-
mon. In the past decades, great breakthroughs have been
made in the treatment of ovarian cancer. However, due

to the characteristics of drug resistance, easy recurrence
and poor prognosis of ovarian cancer, it is not yet pos-
sible to completely eradicate the disease [27]. Therefore,
it is of great significance to explore the molecular mech-
anism of ovarian cancer and identify better tumor-
specific biomarkers. In this study, we determined 527
differentially expressed RBPs and 554 target genes regu-
lated by partial RBP based on OC data from TCGA and
GETx. We systematically analyzed and demonstrated the
biological pathways in which these genes are enriched.
In addition, a network of interacting relationships

Fig. 7 Survival analysis of hub genes of RBP-target. a PCBP2, b PNISR, c CXCR4, d TRIP13, e EIF3L, and f LAMB2

Fig. 8 Differential expression of RBPs in the Human Protein Atlas database. a MRPL14 (HPA038769), b PARP4 (HPA011739), c STRAP (HPA027320),
d MRPL46 (HPA050166), e LUC7L2 (HPA051631) and f PAPOLA (HPA001788)
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between RBPs and target genes was constructed. Finally,
Cox regression analysis was performed for differential
RBPs to further explore and verify their biological func-
tion and clinical significance. We obtained a prognostic
risk model for OC based on 10 prognostic related hub
RBP genes. Our findings may help to develop new bio-
markers for the prevention and diagnosis of ovarian can-
cer, and provide feasible ideas for clinical research.
The GO functional enrichment analysis showed that

RBPs with different expressions were significantly
enriched in RNA splicing, RNA catabolic process,
ncRNA processing, regulation of translation, structural
constituents of the ribosome, translational initiation,
ribosome biogenesis, catalytic activity acting on RNA,
RNA transport, mitochondrial gene expression, ribo-
nuclease activity, RNA helicase activity, nuclease activity,
translation initiation factor activity, methyltransferase
activity, pre-mRNA binding, ribosome, spliceosomal
complex, ribonucleoprotein granule, focal adhesion, cell-
substrate junction, spliceosomal snRNP complex and P-
body. Previous studies have confirmed that RNA splicing
[13], translation regulation [16], RNA processing [10]
and cell adhesion [37] are closely connected with the oc-
currence and development of malignant tumors. Along
with the regulation and metabolism of RNA, RBP plays a
major role in post-transcriptional regulation, so we ana-
lyzed some target genes of RBP for enrichment analysis.
Results of functional pathway enrichment analysis
showed that the RBPs targets with different expressions
were significantly enriched in cancer-related pathways,
for instance: cell growth, response to oxidative stress,
cell-cell junction and protein serine/threonine kinase ac-
tivity, etc. According to our results, several abnormal
RBPs are related to spliceosomes. It has been reported
that the spliceosome is a new target of carcinogenic
stress in MYC-driven cancer, and some components of
the spliceosome could provide a novel treatment entry
point for MYC-driven cancer [22]. In addition, it has
been reported that in cancer, abnormal pre-mRNA spli-
cing plays an important role in the occurrence or devel-
opment of many human diseases, which are both single-
gene and complex [3]. Splicing factors play a critical role
in these processes. Various studies have demonstrated
that abnormal expression of splicing factors in cancer
can cause malignant transformation of cells [38].
Moreover, we created a co-expression network which

showed relationships of these abnormally expressed
RBPs and their targets and obtained key modules con-
taining 81 key RBP target genes. Many RBPs and target
genes have been revealed to play critical roles in the oc-
currence and progression of tumors. Numerous studies
have shown that dysregulation of IGF2BP2 (IGF2 mRNA
binding protein 2) can lead to the development of a var-
iety of cancers. The up-regulation of IGF2BP2 activates

the PI3K/Akt signaling pathway to promote the growth
of pancreatic cancer cells [43]. IGF2BP2 and IGF2BP3
synergistically promote the metastasis of triple-negative
breast cancer by promoting the inactivation of proges-
terone receptors [23]. Knocking down IGF2BP2 signifi-
cantly reduced the proliferation of ovarian HGSC cell
lines [19]. SAFB2 (scaffold attachment factor B2) is a
multifunctional protein involved in a variety of cellular
processes, known for its role in transcriptional inhib-
ition, and has potential for cancer suppression [20]. Our
results showed that SAFB2 was significantly underex-
pressed in ovarian cancer. Over the past decade, numer-
ous studies have reported that the musashi(MSI) gene,
in particular MSI2, is involved in the development of
cancer in diverse forms. The specific biological functions
of MSI2 and how it is involved in regulating the occur-
rence of cancer are described in detail in this paper [25].
In addition, based on univariate Cox regression ana-

lysis, multivariate Cox regression analysis, and survival
analysis, a total of 10 key RBPS related to prognosis were
identified, including C2orf15, MRPL46, ZNF239,
MRPL14, ISG20, LUC7L2, SRP9, PARP4, PAPOLA, and
STRAP. Studies have reported that MRPL46 [1], ISG20
[14], LUC7L2 [40], SRP9 [26], PARP4 [33], and STRAP
[29] are involved in the development of tumors. It sug-
gests that these RBP may play a crucial role in ovarian
cancer and provide some useful information for the pre-
vention and diagnosis of OC. Next, we established a risk
score prognosis model of OC based on TCGA data, and
verification results showed that these 10 genes had good
diagnostic ability and could select OC patients with poor
prognosis. In fact, it is not clear how these 10 RBPs are
involved in the molecular mechanism of ovarian cancer
formation, and further exploration of their potential
mechanisms may provide some new ideas for future re-
search. Subsequently, we established a nomogram to
help us more intuitively predict our 3 - and 5-year sur-
vival rates. Kaplan Meierplotter was designed to detect
the prognostic value of 10 RBPs, and the results were ba-
sically consistent with those of the TCGA cohort. In a
word, these results suggest that the risk prognosis model
based on these 10 RBPs has certain diagnostic and thera-
peutic value for OC.
Screening methods for ovarian cancer mainly include

transvaginal ultrasonography, histological examination
and other traditional tumor markers, but these methods
have certain clinical application limitations. For example,
CA125 (a tumor-associated antigen) assay are less sensi-
tive in the early stages and may be interfered under spe-
cific conditions such as menstruation or endometriosi
s[11]. It is very important to find new ovarian tumor
markers. With the development of science and technol-
ogy, methods such as gene chip, RNA-seq and proteo-
mics have gradually become the research hotspots in the
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early diagnosis of ovarian cance r[12]. In addition, biop-
sies combined with high-throughput techniques can pro-
vide more effective information for the diagnosis and
treatment of ovarian cancer [8].

Conclusion
In summary, we analyzed and discussed the biological
function and prognostic value of differentially expressed
RBPs and target genes in ovarian cancer by bioinformat-
ics methods. These genes may be involved in the devel-
opment, progression, invasion, metastasis, and
progression of ovarian cancer. A prognostic model of 10
RBP-encoding genes and a PPI network based on 13
RBP and their target genes were constructed, which can
be used as a reference for the prevention, diagnosis, and
treatment of ovarian cancer. To our knowledge, this is
the first report to construct an RBP-related prognostic
risk model for ovarian cancer. Our findings will help to
uncover the pathogenesis of ovarian cancer and develop
new OC-specific biomarkers and therapeutic targets. It
also provides some novel direction for the diagnosis and
treatment of ovarian cancer.
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