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Abstract

Objective: Anxiety disorders are common and often disabling. The goal of this study was to 

examine the genetic architecture of anxiety disorders and anxiety symptoms, which are also 

frequently comorbid with other mental disorders, such as major depressive disorder.

Methods: Using one of the world’s largest biobanks including genetic, environmental, and 

medical information, the Million Veteran Program, the authors performed a genome-wide 

association study (GWAS) of a continuous trait for anxiety (based on score on the Generalized 

Anxiety Disorder 2-item scale [GAD-2], N=199,611) as the primary analysis and self-report of 

physician diagnosis of anxiety disorder (N=224,330) as a secondary analysis.

Results: The authors identified five genome-wide significant signals for European Americans 

and one for African Americans on GAD-2 score. The strongest were on chromosome 3 

(rs4603973) near SATB1, a global regulator of gene expression, and on chromosome 6 

(rs6557168) near ESR1, which encodes an estrogen receptor. The locus identified on chromosome 
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7 (rs56226325, MAF=0.17) near MAD1L1 was previously identified in GWASs of bipolar 

disorder and schizophrenia. The authors replicated these findings in the summary statistics of two 

major published GWASs for anxiety, and also found evidence of significant genetic correlation 

between the GAD-2 score results and previous GWASs for anxiety (rg=0.75), depression 

(rg=0.81), and neuroticism (rg=0.75).

Conclusions: This is the largest GWAS of anxiety traits to date. The authors identified novel 

genome-wide significant associations near genes involved with global regulation of gene 

expression (SATB1) and the estrogen receptor alpha (ESR1). Additionally, the authors identified a 

locus (MAD1L1) that may have implications for genetic vulnerability across several psychiatric 

disorders. This work provides new insights into genetic risk mechanisms underpinning anxiety and 

related psychiatric disorders.

Anxiety disorders are common, affecting 1 in 10 Americans each year, and are a leading 

cause of disability worldwide (1). An analysis of health expenditures in the United States 

found that anxiety and depressive disorders together accounted for about $90 billion in 

personal health spending in the United States in 2013 (2). Given their prevalence, associated 

impairment, and economic costs, anxiety disorders are a major public health concern (3).

Anxiety is “a future-oriented mood state associated with preparation for possible, upcoming 

negative events” (4) and is usually a normal and adaptive behavioral response to everyday 

life. In anxiety disorders, anxiety is excessive or out of proportion to the actual or anticipated 

event and is accompanied by clinically significant distress or disability (5). Numerous risk 

factors for anxiety disorders have been studied, including experiential and genetic factors 

(6). For example, neurotic personality traits are predictive of the onset of anxiety disorders 

(7). Twin studies demonstrate a heritable component to anxiety disorders (6), but there have 

been few published genome-wide association studies (GWASs) to date investigating anxiety 

or anxiety-related traits. The Anxiety Neuro Genetics Study (ANGST) (8) meta-analysis was 

the first large GWAS to identify significant genetic associations, finding one genome-wide 

significant locus each for a categorical case-control design for any anxiety disorder 

diagnosis and a quantitative factor score for anxiety in a cohort of over 18,000 subjects. 

Another recent large GWAS, from the Lundbeck Foundation Initiative for Integrative 

Psychiatric Research (iPSYCH), identified a significant genetic association with anxiety and 

stress-related disorders in a cohort of 31,880 individuals in the national Danish registers (9). 

Also of note is a study based on the UK Biobank cohort, the second largest GWAS of 

anxiety to date (10), which examined anxiety using case-control and clinical cutoffs based 

on a score ≥10 on the Generalized Anxiety Disorder 7-item scale (GAD-7). While progress 

is being made, understanding of the genetics of anxiety disorders has lagged behind other 

related disorders, such as major depression (11).

Only a third of individuals with anxiety disorders receive treatment (12). For those who do 

enter treatment, psychological approaches such as cognitive-behavioral therapy (CBT) have 

been shown to be effective (13), as have certain pharmacotherapies (14). A recent systematic 

review of CBT treatment response rates for anxiety disorders showed average rates of 49.5% 

at end of treatment and 53.6% at follow-up (15). A better understanding of genetic risk 

factors and determinants now informs other aspects of medicine, such as oncology and 
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cardiology, through identification of causal mutations (16) and variants, and this approach 

will have important implications for psychiatry (17). These precision-medicine approaches 

are challenging in complex traits such as anxiety, which are associated with many (perhaps 

hundreds of thousands of) variants of individually small effect (18). The use of polygenic 

risk scores will require a suitably large sample size to provide sufficient confidence in these 

small individual effects that cumulatively account for so much of the heritability (19). 

Underlying polygenic risk factors from sufficiently large cohorts may inform an approach to 

identifying individuals with a predisposition to anxiety disorders and to improving 

outcomes.

The Million Veteran Program (MVP), one of the world’s largest biobanks including genetic, 

environmental, and medical information, is based on data from U.S. military veterans (20–

22). Using this large genetic data set and the Generalized Anxiety Disorder 2-item scale 

(GAD-2) (23) as well as self-reported physician diagnosis of an anxiety disorder, we 

discovered novel genome-wide significant variants associated with anxiety in European 

Americans and African Americans. We examined replication and genetic overlap of these 

results with previous studies of anxiety and traits with which anxiety disorders are 

commonly comorbid—major depression, PTSD, and neuroticism. We also examined 

expression quantitative trait loci (eQTLs) to identify possible gene expression implications 

of these genetic variants, with eQTL evidence for altered expression in the basal ganglia and 

cerebellum. These findings, in the largest cohort of individuals analyzed by GWAS for 

anxiety and anxiety disorders (199,611 subjects for the quantitative trait, 224,330 for binary 

self-report diagnosis) to date, indicate shared genetic risk with some other mental disorders 

but also point to loci that may be especially important for anxiety and anxiety-related traits.

METHODS

Participants

The MVP cohort has been described previously (20). Results were analyzed in two separate 

tranches based on when genotyping results were available. Ancestry was assigned using 10 

principal components and the 1000 Genomes Project phase 3 EUR and AFR data as 

reference within each MVP tranche.

Genotyping, Imputation, and Quality Control

Genotyping, imputation, and quality control within MVP has been previously described. 

Briefly, samples were genotyped using a 723,305-SNP Affymetrix Axiom Biobank array, 

customized for MVP (20). Imputation was performed with minimac3 using data from the 

1000 Genomes Project. For postimputation quality control, SNPs with an imputation INFO 

score <0.3 or a minor allele frequency (MAF) <0.001 were removed from analysis. For the 

first tranche of data, 22,183 SNPs were selected through linkage disequilibrium (LD) 

pruning using PLINK 2.0 (24), and then Eigensoft (25) was used to conduct principal 

component analysis on 343,286 MVP samples and 2,504 1000 Genomes samples. The 

reference population groups (EUR, EAS, AFR, AMR, or SAS) in the 1000 Genomes 

samples were used to define European American (N=241,541) and African American 

(N=61,796) groups used in this analysis. Similar methods were used in the second tranche of 
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data, which contained 108,416 new MVP samples and the same 2,504 1000 Genomes 

samples. In tranche 2, 80,694 participants were defined as European American and 20,584 

as African American.

Phenotypic Assessment

We used the GAD-2 (23) for our primary analysis. The GAD-2 consists of two questions 

(see Table S1 in the online supplement) in a self-report survey, each scored on a scale of 0–

3. Participants are asked to respond according to their symptoms during the past 2 weeks. 

Values for the two responses are summed, resulting in a range of scores between 0 and 6, 

which we treated as a continuous trait (Table 1). Mean GAD-2 scores in European American 

men (N=163,470) and women (N=11,693) were 1.08 (SD=1.64) and 1.64 (SD=1.87), 

respectively, and mean scores in African American men (N=21,153) and women (N=3,295) 

were 1.57 (SD=10.21) and 1.94 (SD=10.64), respectively. The mean ages of the European 

American and African American participants were 66.58 years (SD=11.62) and 60.6 years 

(SD=10.78), respectively.

Another anxiety phenotype—self-reported physician diagnosis of anxiety disorder—was 

analyzed based on data collected from the MVP baseline survey. Participants were asked, 

“Please tell us if you have been diagnosed with the following conditions: anxiety reaction/

panic disorder.” Answers were recorded as yes/no binary responses, and missing responses 

were excluded from analysis. A total of 224,330 participants (34,189 case subjects who 

responded yes, 190,141 control subjects who responded no) had available phenotype and 

genotype information and had assignments of either European ancestry (28,525 cases, 

163,731 controls) or African ancestry (5,664 cases, 26,410 controls) (see Table S2 in the 

online supplement).

Statistical Analysis

GWAS analysis was carried out by linear regression for each ancestry group and tranche 

using PLINK 2.0 on genotype dosage data, covarying for age, sex, and the first 10 principal 

components against the phenotype of GAD-2 score. Ancestry-specific and trans-ancestry 

meta-analysis were performed using inverse variance weighting in the METAL software 

package (European American, N=175,163; African American, N=24,448; combined trans-

ancestry, N= 199,611). Logistic regression was used for self-reported physician diagnosis of 

an anxiety disorder, and the results obtained were combined using the same meta-analytic 

approach. To identify independent GWAS signals, we clumped results using an r2 of 0.10 

and window size of 1,000 kb. Post-GWAS analyses were conducted for what turned out to 

be the most genetically informative phenotype based on z-scored heritability: GAD-2 score.

Linkage Disequilibrium Score Regression and SNP-Based Heritability

We used linkage disequilibrium score regression through LD Hub (26) to estimate SNP-

based heritability and to assess genetic correlation of GAD-2 anxiety with all traits available 

in LD Hub. The traits from the ANGST GWAS of anxiety case-control and factor scores (8) 

and iPSYCH anxiety and stress-related disorders (9)—neither of which were available in LD 

Hub—were calculated separately with LD score regression software (LDSC) using summary 
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statistics downloaded from the Psychiatric Genomics Consortium (PGC) web site (https://

www.med.unc.edu/pgc/results-and-downloads/) or from the authors, respectively.

Conditional Analysis for Major Depression

Considering the extensive comorbidity between major depression and anxiety disorders (6), 

we ran a conditional analysis with the multi-trait-based conditional and joint analysis 

method (mtCOJO) (27) using the GCTA software package. This method uses GWAS 

summary statistics from one trait to perform conditional analysis on GWAS summary 

statistics from another trait. We conditioned the MVP GAD-2 summary statistics as the 

primary analysis with the PGC major depressive disorder (11) summary statistics for 

depression. We quantified changes in variance explained by using LD score regression to 

calculate heritability in the depression-conditioned GAD-2 analysis and compared with the 

original GAD-2 analysis.

Gene-Based Tests

Summary statistics from the GWAS were loaded into the FUMA (Functional Mapping and 

Annotation) GWAS platform to test for gene-level associations using Multi-Marker Analysis 

of GenoMic Annotation (MAGMA) (28). Input SNPs were mapped to 18,469 protein coding 

genes. The genome-wide significance threshold for the gene-based test was defined in 

accordance with Bonferroni multiple testing correction (p=0.05/18,469=2.71×10−6).

Fine Mapping

Fine mapping was conducted using PAINTOR, version 3 (29). A brain functional annotation 

set (30) was used to prioritize causal SNPs. The z-scored GAD-2 GWAS summary statistics 

served as the base analysis data set, with the aforementioned brain data set serving as the 

functional annotation. We enumerated all possible combinations and searched for a single 

causal SNP within each locus.

RESULTS

Primary Analysis

GWAS of GAD-2 scores was conducted separately in two tranches of each ancestry in the 

MVP sample, defined by the time when data became available, and meta-analyzed together 

within ancestral group. One genomic locus was genome-wide significant in the African 

American meta-analysis (Figure 1A), and five loci were genome-wide significant in the 

European American meta-analysis (Figure 1B). The genome-wide significant result from the 

African American analysis (rs575403075, MAF=0.06, p=2.82×10−8) was near the TRPV6 
(Transient Receptor Potential Cation Channel Subfamily V Member 6) locus. The top signal 

in the European American meta-analysis consisted of 64 genome-wide significant SNPs in 

high LD at the SATB1-AS1 (Special AT-Rich Sequence Binding 1 Antisense RNA 1) locus 

on chromosome 3. The strongest finding (rs4603973, MAF= 0.29, p=6.18×10−11) was 

intronic at SATB1-AS1. The second strongest independent signal was on chromosome 6 

(rs6557168, MAF=0.37, p=1.33×10−9) intronic at ESR1 (Estrogen Receptor 1) with 10 other 

genome-wide significant SNPs in high LD. A third genome-wide significant association for 

European Americans was found on chromosome 1 (rs12023347, MAF=0.48, p=8.88×10−9) 
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near the long noncoding RNA LINC01360 and LRRIQ3 (Leucine-Rich Repeats and IQ 

motif containing 3). The fourth genome-wide significant association found in European 

Americans was on chromosome 7 (rs56226325, MAF=0.17, p=2.01×10−8) in an intron of 

MAD1L1 (Mitotic Arrest Deficient 1 Like 1). The fifth association for European Americans 

was on chromosome 20 in and around the TCEA2 (Transcription Elongation Factor A2), 

RGS19 (Regulator of G Protein Signaling 19), and OPRL1 (Opioid Related Nociceptin 

Receptor 1) genes (rs6090040, MAF=0.48, p=3.28×10−8).

We conducted additional analyses using case-control status for self-reported physician 

diagnosis of an anxiety disorder. For the European American subjects, there were two 

genome-wide significant signals for the GWAS of self-reported physician diagnosis of an 

anxiety disorder, in a gene-rich region nearest AURKB on chromosome 17 (rs35546597, 

MAF=0.42, p=1.88×10−8) and on chromosome 7 in an IQCE intron (rs10534613, 

MAF=0.41, p=4.92×10−8) close to the MAD1L1 locus identified for GAD-2. There were no 

genome-wide significant findings for this phenotype in African Americans.

Replication

For replication, we tested our top five SNPs from the analysis of GAD-2 scores in European 

Americans in three independent GWASs with anxiety-related phenotypes. We considered a 

replication to be significant if the p value was <0.05. We investigated our lead genome-wide 

significant SNPs in GWASs for the ANGST anxiety case-control (8), iPSYCH anxiety and 

stress-related disorders (9), and UK Biobank, 23andMe, and Genetics of Personality 

Consortium (GPC) neuroticism (31) phenotypes (Table 2). The first two phenotypes are very 

similar to our GAD-2 measure; the third is best considered a related phenotype (rg=0.7174, 

p=1.95×10−53).

In the ANGST anxiety study (8), which was the smallest replication cohort, all five of our 

top independent SNPs had the same direction of effect, with two being nominally significant 

(p<0.05). In the iPSYCH study of anxiety and stress-related disorders (9), four of five 

independent SNPs had the same direction of effect, with three being nominally significant 

(p<0.05). We also replicated the lead SNP from iPSYCH near PDE4B in our own study 

(iPSYCH lead SNP: rs7528604, p=5.39×10−8; present study GAD-2: same SNP, p=0.015). 

Only one of our findings, near OPRL1, failed to replicate in at least one independent study.

Our lead SNP on chromosome 3 near the SATB1 locus, rs4603973, was not available for 

lookup in the neuroticism GWAS (31), which we used as a proxy replication of a related 

trait, so we used the strongest LD-proxy SNP available (rs4390955 R2=0.91, p=7.78E-11). 

In this study, four of our five independent SNPs we looked up had the same direction of 

effect, three were nominally significant (p<0.05), and one near MAD1L1 was nearly 

genome-wide significant (UK Biobank neuroticism: rs56226325, p=6.59×10−8; present 

study GAD-2: same SNP, p=2.01×10−8).

Lastly, a preprint reported results for anxiety from the UK Biobank using case-control and 

the GAD-7, scored as a dichotomous trait (10). We found significant replication for two of 

their four findings, with suggestive evidence for a third (see Table S9 in the online 

supplement).
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Genome-Wide Gene-Based Association Study for GAD-2

In the genome-wide gene-based association study, the top gene identified was OPRL1 
(p=1.15×10−9), which was also significant in the SNP-wise analysis, as noted above. Thirty-

one genes were identified as genome-wide significant following Bonferroni correction for 

multiple comparisons. A more permissive Benjamini-Hochberg correction performed by 

step-up procedure, with genes ranked by p value and corrected for 18,469 individual tests 

with a still relatively restrictive 0.05 false discovery rate, identified 189 genes (see Table S3 

in the online supplement) in total for investigation of biological relevance through the 

Ingenuity pathway enrichment tool (32), Ingenuity Pathway Analysis (Ingenuity Systems, 

Redwood City, Calif.; www.ingenuity.com) (see Table S4 in the online supplement). Among 

the top enriched diseases or functional annotations were carcinoma (p=1.76×10−7) and fear 

conditioning (p=3.62×10−4).

Expression Quantitative Trait Loci (eQTLs)

To identify causal implications for genetic variants, eQTLs were assessed for the top 

genome-wide significant GAD-2 signals using GTEx version 7 brain tissue expression data. 

Top genome-wide significant signals on chromosomes 7 and 20 had significant eQTLs (false 

discovery rate ≤0.05) for four different genes: FTSJ2, RGS19, C20orf201, and OPRL1 (see 

Table S7 in the online supplement). The top signals are centered in the basal ganglia and 

cerebellum.

SNP-Based Heritability

SNP-based heritability using LDSC for the GAD-2 quantitative trait was estimated to be 

5.58% (SE=0.004, z-score=13.95). SNP-based inflation was mild considering the sample 

size and polygenic trait studied (λ=1.19); the intercept (1.026) and attenuation ratio (0.1177) 

estimated by LDSC showed negligible evidence for inflation due to population stratification. 

SNP-based heritability for the self-reported physician diagnosis of an anxiety disorder 

binary trait was 8.79% (SE=0.0085, z-score=10.34) on the liability scale assuming 

prevalence of 20%. This value is similar to that reported for anxiety by Otowa et al. 

(h2=0.095, SE=0.037, z-score=2.57) (8), depression by the PGC (h2=0.087, SE=0.004, z-

score=21.75) (11) and Howard et al. (h2=0.089, SE=0.003, z-score=29.67) (33), and 

neuroticism by Nagel et al. (h2=0.100, SE=0.003, z-score=33.33) (31), but some-what lower 

than that reported by Meier et al. for anxiety and stress-related disorders (h2=0.28, 

SE=0.027, z-score=10.37) (9).

Linkage Disequilibrium Score Regression Analysis

The traits most significantly genetically correlated with GAD-2 score were depressive 

symptoms (rg=0.81, p=1.95×10−53) and neuroticism (rg=0.72, p=6.53×10−53). We also 

investigated genetic correlation within the MVP cohort for GAD-2 score and self-reported 

physician diagnosis of an anxiety disorder. These were high (rg=0.87, p=2.39×10−119), and 

higher than the phenotypic correlation between these traits (r=0.64, p<2.2×10−16) (Figure 2; 

see also Table S5 in the online supplement).
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Polygenic Risk Score (PRS) Analysis

Summary statistics from the MVP GAD-2 analysis were used as the base data for 

calculating polygenic risk scores (PRSs) (using PRSice, version 1.25 [34]). Genetic overlap 

between anxiety and PTSD or major depressive disorder was tested using the “summary 

statistics to summary statistics” procedure, using the gtx R package incorporated into 

PRSice, in the PGC major depressive disorder (11) and PTSD (35) GWASs, respectively, 

and overlap with case-control anxiety disorder was tested in the largest previously available 

studies (8, 9). Significant overlap was identified: the MVP GAD-2 PRS can explain up to 

0.24% of the variance in major depressive disorder in the PGC GWAS (p=2.05×10−94), 

0.23% of the variance in PTSD in the PGC GWAS (p=4.23×10−12), and 0.48% of the 

variance in both the ANGST (p=3.66×10−20) and iPSYCH anxiety studies (p=6.68×10−36) 

(Table 3).

Multi-Trait-Based Conditional and Joint Analysis

Multi-trait-based conditional and joint analysis was used to condition the GAD-2 MVP 

summary statistics for anxiety on the PGC summary statistics for major depressive disorder 

(11). There were no new signals and the significance levels of the lead findings were 

reduced, but the results on chromosomes 3 (SATB1) and 6 (ESR1) remained genome-wide 

significant. Degree of lost variance explained in the anxiety GWAS when conditioned on 

major depressive disorder was tested using LD score regression. Genetic correlation analysis 

was performed between the original European American GAD-2 GWAS summary statistics 

and the major depressive disorder conditioned summary statistics, which served as an 

internal control to show that the trait measured was still the same (rg=1.0). Heritability 

dropped significantly (p=0.021) from 0.0558 (SE=0.0041) in the original GWAS to 0.0429 

(SE=0.0038) in the conditioned GWAS.

Fine Mapping

Fine mapping in PAINTOR, version 3, was used to predict causal SNPs using functional 

brain annotations (see Figure S6 in the online supplement). In one case (chromosome 6, 

rs6557168) the causal SNP identified was the same as the GWAS lead SNP. On chromosome 

20, there were several genes in the region of our lead SNP, and several genes had associated 

eQTLs. The fine mapping analysis prioritized a likely causal SNP (rs8126001) within the 5′ 
UTR of OPRL1.

DISCUSSION

We present the largest GWAS to date for anxiety traits, employing a quantitative phenotype, 

the GAD-2 score, in nearly 200,000 MVP subjects, as well as self-reported physician 

diagnosis of anxiety/panic case-control phenotypes in >220,000 MVP subjects. We 

identified novel genetic variants in and around several genes, some of which have previously 

known functional relationships with anxiety. These genes play roles in the hypothalamic-

pituitary-adrenal (HPA) axis, neuronal development, and global regulation of gene 

expression.
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There is high comorbidity between anxiety, PTSD, and depression. We used a PRS derived 

from the MVP GAD-2 analysis to identify genetic overlap with the independent PGC PTSD 

and major depressive disorder GWASs (Table 3; see also Figure S7 in the online 

supplement). We found significant genetic overlap between these traits, providing biological 

evidence that this known clinical comorbidity is due at least in part to shared genetic 

etiology. Additionally, we performed multi-trait-based conditional and joint analysis, using a 

prior GWAS of depression to condition the results of the present GAD-2 GWAS. In this 

analysis, we show not only that the peak signals for anxiety are reduced in magnitude (see 

Figure S3 in the online supplement) but also that the overall heritability for anxiety 

symptoms is diminished, from 5.58% to 4.29%, when conditioned on genetic liability to 

depression. Via linkage disequilibrium score regression, we identified substantial genetic 

correlations between anxiety and numerous other traits (Figure 2). Particularly noteworthy 

were positive correlations with depression and neuroticism as well as a negative correlation 

with subjective well-being (Figure 2). These findings replicate similar correlations found 

using a case-control approach (9).

The genome-wide significant result in African Americans is an insertion variant that is rare 

outside of African ancestry and occurs in a genomic region proposed to be under recent 

selection in Europeans (36). The lead SNP is at TRPV6, which encodes a Ca2+-selective 

membrane cation channel associated with epithelial calcium transport and homeostasis in 

kidney and intestine. The lead SNP rs575403075 has an MAF range of between 0% and 1% 

in non-African populations and would fall below MAF quality control thresholds used for 

common variants in most non-African populations. In individuals of African ancestry, this 

variant is much more common, with an MAF in our study of 5.8%. This highlights the 

importance of studying genetic risks in diverse populations–otherwise these signals may be 

missed entirely.

The top genome-wide significant findings for European Americans in the GAD-2 analysis 

were in and around SATB1 and the antisense gene SATB1-AS1. SATB1 is a global regulator 

that influences expression of multiple genes involved in neuronal development (37). One 

gene modulated in expression is Corticotropin Releasing Hormone (CRH), encoding the 

protein product of the same name that plays an essential role in the HPA axis, which has 

frequently been shown to modulate stress and fear/anxiety response (38). The CRHR1 
(Corticotropin Releasing Hormone Receptor 1) gene was genome-wide significant in the 

gene-based association analysis (p=3.60×10−7). CRHR1 has been a proposed target for 

treatment for anxiety and stress-related disorders, with evidence for anxiolytic-like effects of 

CRHR1 antagonists in animal models although not yet in humans. Based on our findings, 

we speculate that individuals with differing genetic risk that does or does not involve this 

pathway may differ in their responses to CRHR1-targeted and other glucocorticoid-targeted 

therapeutic agents; this may be a reasonable pathway to address via personalized medicine, 

and it presents a testable hypothesis.

The estrogen receptor ESR1 (also known as estrogen receptor alpha) has been a focus in 

animal models of anxiety-like behaviors, and these have provided mechanistic validity for 

the role of ESR1. Studies of estradiol administration to ovariectomized rats and ESR1 null 

mice have shown consistent evidence that ESR1 is involved in anxiety-like behavior (39). 

Levey et al. Page 9

Am J Psychiatry. Author manuscript; available in PMC 2021 February 08.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Our finding of an association between ESR1 and anxiety may have implications for our 

understanding of sex differences in anxiety disorders and trauma and stressor-related 

disorders such as PTSD, which are more common in females (40). Although this female 

predominance is partially explained by sex-specific exposure to certain kinds of traumatic 

events (e.g., domestic violence, sexual assault), there may also be differential biological 

context provided in part by the role of the estrogen receptor. Our study in a predominantly 

male sample identifies ESR1 as genome-wide significant. Estrogen is important in both 

sexes, and a recent review has highlighted the important role for estrogens in men (41). 

Studies with larger numbers of women will be needed to more fully investigate sex 

differences in genetic risk for anxiety-related traits.

Previous genetic epidemiology studies have shown that common genetic factors can underlie 

anxiety and depressive traits (42). The lead SNP from the GAD-2 GWAS near the 

LINC01360 and LRRIQ3 (rs2180945) loci is nominally significant and has the same 

direction of effect in the 2018 PGC major depressive disorder analysis (p=1.434×10−6) (11). 

This variant may be linked to a common risk factor for both disorders.

One genome-wide significant signal for GAD-2 was in a gene-rich region on chromosome 

20 near TCEA2, C20orf201, RGS19, and OPRL1, with fine-mapping analysis prioritizing a 

causal region in the latter gene. OPRLI (which encodes the amygdala nociceptin/orphanin 

FQ receptor) is involved in learning and memory and anxiety and fear-related behaviors (43, 

44) and has been hypothesized to play a role in anxiety and stressor-related disorders such as 

PTSD (44). Interestingly, fear conditioning was also significantly enriched in the pathway 

analysis. Taken together, these observations suggest that OPRL1 and related systems should 

be further explored as targets for anxiety and stressor-related therapeutics. eQTL data 

suggest that variants in this region regulate expression of RGS19 and OPRL1 in the 

cerebellum and in the basal ganglia (see Table S7 in the online supplement). The basal 

ganglia have long been implicated in obsessive-compulsive disorder and anxiety disorders. 

A recent review discussed cerebellum-linked neurocircuitry to anxiety and fear behaviors in 

rodents and in humans (45). The cerebellum is thought to play an important role in 

anticipation/prediction processes. Given that anxiety has been defined as “a future-oriented 

mood state associated with preparation for possible, upcoming negative events” (4), these 

results may provide further evidence for a role for the cerebellum in fear and anxiety.

MAD1L1 (GAD-2 lead SNP rs56226325, MAF=0.17, p=2.01×10−8; self-reported physician 

diagnosis of an anxiety disorder lead SNP rs10534613, MAF=0.41, p=4.92×10−8) is 

replicated in the iPSYCH anxiety GWAS data (9) (Table 2; p=6.85×10−4) and has been 

associated previously with bipolar disorder (46). One of the lead SNPs in the iPSYCH study 

is also nominally associated with anxiety in the present study (rs11764590, p=3.36×10−7); 

this SNP is in LD with our lead SNP, rs56226325 (r2=0.69). A recent large GWAS of bipolar 

disorder identified genome-wide significant SNPs in the MAD1L1 locus, although their lead 

signal is not significant in our study of anxiety (rs4236274, p=0.27) (47). This locus has also 

been identified among 108 genome-wide significant loci by the PGC schizophrenia study 

(rs58120505, p value= 6.43×10−14) (48), and our lead SNP is nominally significant in that 

study (rs56226325, p=1.12×10−3). This SNP is also nominally significant (6.71×10−4) in the 
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2018 PGC depression GWAS (11). Taken together, these observations suggest that this locus 

may be a common risk factor for several psychiatric disorders.

MAD1L1*rs56226325 is also an eQTL for expression of FTSJ2 (see Table S7 in the online 

supplement), and this variant is associated with decreased expression in the brain. MAD1L1 

is a mitochondrial RNA methyltransferase that is important for the proper assembly of the 

mitochondrial ribosome and cellular respiration (49). The protein product of FTSJ2 is 

Mitochondrial rRNA Methyltransferase 2 (MRM2), which was implicated in a case study of 

a 7-year-old Italian boy with a damaging mutation that reduced the catalytic activity of 

MRM2, leading to an encephalopathy, lactic acidosis, and stroke-like (MELAS) syndrome 

(50). Larger-effect mutations at this locus can have devastating effects on the brain; smaller-

effect variations may be less deleterious but still cumulatively influence development, which 

may predispose to neurological and psychiatric disorders.

The Brainstorm Consortium has investigated shared heritability between psychiatric and 

neurological disorders (51). Consistent with their findings, we find very strong genetic 

correlation between anxiety (GAD-2) and psychiatric traits such as depression (rg=0.81, 

p=2.48×10−53) and neuroticism (rg=0.72, p=7.09×10−53) but relatively weaker genetic 

overlap with neurological disorders. Significant positive genetic association is detected for 

amyotrophic lateral sclerosis (rg=0.39, p=3.00×10−4), and negative genetic association with 

Parkinson’s disease (rg=−0.19, p=4.70×10−3), but no genetic overlap is seen for Alzheimer’s 

disease (rg=0.00, p=1.00). Further work will be needed to better discern the implications of 

these findings for understanding shared and disparate disease mechanisms among these 

neuropsychiatric conditions (11, 35, 51).

Limitations of this work include the fact that phenotypes were based on self-reported survey 

data. The GAD-2 asks questions that temporally reference the “past 2 weeks.” Although the 

GAD-2 has demonstrated high sensitivity and specificity for anxiety disorders (52), it falls 

short of the desired trait (lifetime) anxiety measure. That our work reproduces (and is 

reproduced by) other independent groups who did use lifetime anxiety measures (8, 9) 

further supports the utility of the GAD-2 in capturing a genetically meaningful anxiety trait. 

Similarly, the question about diagnosis for anxiety or panic that yielded our binary self-

reported physician diagnosis of anxiety or panic disorder phenotype relies on self-report. A 

further limitation is that MVP has predominantly male participants (92.5%). While women 

are included in this analysis, clinically important interactions between sex, phenotype, and 

genotype could not be addressed. This cohort is growing, and future recruitment will provide 

additional power to revisit sex-stratified analyses of this sample. Males presumably have a 

higher genetic liability threshold for anxiety, as evidenced by lower rates of anxiety 

disorders. Accordingly, affected males could reflect higher genetic risk than females 

(because they must pass a higher threshold to be affected), which would result in greater 

power to detect risk loci in a mostly male compared with a mostly female sample.

In summary, we have identified novel variants for anxiety by performing GWASs in the 

large MVP cohort. We replicated results in our GWASs for top findings from recent anxiety 

and other relevant anxiety-related GWASs. We also identified significant genetic overlap 

with major depressive disorder, PTSD, and neuroticism using polygenic risk scores and LD 
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score regression. This work provides additional genetic evidence for the overlap between 

disorders that are frequently comorbid with anxiety and presents new molecular targets for 

investigation with a longer view toward the development of new treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Circle Manhattan plot for anxiety phenotypes in African Americans and European 
Americansa

a The outer circle displays results of the Generalized Anxiety Disorder 2-item scale genome-

wide association study (GWAS), and the inner circle contains results for the case-control 

(self-report of physician diagnosis of anxiety disorder) GWAS. Numbers outside the circle 

represent chromosomes. Red dots indicate genome-wide significant findings (p<5 ×10−8) 

and yellow dots indicate suggestive findings (p<5×10−6). The scale on the y-axis represents 

−log10(p value). Vertical dashed gray lines are drawn through genome-wide significant 

findings to indicate overlap between analyses. The genes nearest to the lead SNP are labeled 

adjacent to the result. In most cases a genome-wide significant (red) locus from one 

phenotype overlaps with at least a suggestive (yellow) locus in the other.
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FIGURE 2. Genetic correlation between Million Veteran Program GAD-2 score in European 
Americans and other traits and disorders from LD score regression in LD Huba

a All plotted traits survive 0.05 false discovery rate. Full results are presented in Table S5 in 

the online supplement. GAD-2=Generalized Anxiety Disorder 2-item scale; LD=linkage 

disequilibrium; PGC=Psychiatric Genomics Consortium.
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