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Abstract

Bone formation in the craniofacial complex is regulated by cranial neural crest (CNC) and 

mesoderm-derived cells. Different elements of the developing skull, face, mandible, maxilla (jaws) 

and nasal bones are regulated by an array of transcription factors, signaling molecules and 

microRNAs (miRs). miRs are molecular modulators of these factors and act to restrict their 

expression in a temporal-spatial mechanism. miRs control the different genetic pathways that form 

the craniofacial complex. By understanding how miRs function in vivo during development they 

can be adapted to regenerate and repair craniofacial genetic anomalies as well as bone diseases 

and defects due to traumatic injuries. This review will highlight some of the new miR technologies 

and functions that form new bone or inhibit bone regeneration.
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INTRODUCTION

Bone formation during early development can be by two processes;1) intramembranous 

bone formation or 2) endochondral ossification [1–3]. Cranial neural crest (CNC) cells 

migrate from the neural tube into the anterior region of the skull to form some of the bones 

and cartilages of the face and anterior skull. The cartilages and bones in the posterior region 

of the skull are derived from prechordal mesoderm cells. These cells condense and either 

differentiate into osteoblasts (which directly form bone by intramembranous bone formation 

or differentiate into chondrocytes (which form cartilage and bones by endochondral bone 

formation). Thus, CNC-derived cells involved in intramembranous bone formation form the 

anterior region of the skull, face, mandible and maxilla. The mesoderm-derived cells form 

the posterior regions of the skull by endochondral ossification [3–7].

The molecular mechanisms that control craniofacial growth that gives rise to the different 

vertebrate head sizes and morphology include signaling and growth factors [3,8–19]. In 

particular, the Wnt, Fgf, Bmp, Shh, and Tgf-β signaling pathways control the early 

patterning and growth of the craniofacial skeleton by regulating the migration, proliferation, 

differentiation and transformation of cells derived from the mesoderm and cranial neural 

crest [20–29]. These factors and pathways interact and intersect to control development of 

the brain and skull [7,9,10,13,14,30–32]. Furthermore, early signals by these pathways 

especially the Wnt pathway emanating from the pharyngeal endoderm and epithelium, 

appear to regulate patterning of the developing skeleton [19,33–35]. Tissue-tissue 

interactions that give rise to cell fate decisions are fundamental to the development of head 

structures, especially for the patterning and morphogenesis of craniofacial organs including 

teeth [36–38]. These early developmental cues drive the morphogenesis and patterning of 

perinatal craniofacial tissues. Hippo signaling has also been shown to regulate prenatal and 

post-natal craniofacial development and growth [39,40]. Recently, microRNAs (miRs) have 

emerged as new modulators of craniofacial bone development and maintenance.

miRs are short non-coding RNA molecules approximately 22 nucleotides long. miRs bind to 

complementary targets on the 3’ untranslated region (UTR) of messenger RNAs (mRNAs), 

attenuating mRNA translation via either mRNA strand degradation or sequestration [41]. 

Through this mechanism, miRs play a broad role in the regulation of mRNA translation and 

have been demonstrated to play a significant part in an array of biological processes [42–44].

As we understand the mechanisms and functions of miRs they act as global modulators of 

multiple gene expression pathways. It is not simply one miR regulates one gene, network 

and/or process. In our research we find that miRs are regulators of one or more genetic 

pathways controlling specific tissue, organ or cellular processes. The temporal and spatial 

levels of miR expression change either moderately or dramatically depending on the tissue 

during development. Almost all cells will express low levels of specific miRs, but there 
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appears to be a threshold of miR expression for them to be effective modulators of cellular 

processes. The complexity of miR biogenesis, processing and degradation during 

developmental time points mediates the fine-tuning of gene expression.

There are many cell-based studies on the role of miRs in osteogenesis that have identified 

several genetic pathways for the differentiation of cells into osteoblasts and osteocytes. We 

have found that in vitro based miR expression and profiling differ from the in vivo state. The 

process of using osteogenic differentiation media in different types of cell cultures can result 

in miR expression profiles that are different from in vivo bone development. Many cell types 

can be manipulated to express miRs using osteogenic media and many miRs can induce the 

bone-forming program in cells under osteogenic conditions. This review will focus on miR 

mouse and rat models for craniofacial bone development, regeneration and repair.

I. NEW TECHNOLOGY TO INHIBIT MICRORNAS IN VIVO AND AS 

THERAPEUTIC REAGENTS

Plasmid-Based microRNA Inhibitor System (PMIS)

The problems with current miR inhibition methods are that chemically modified anti-miR 

oligonucleotides (AMOs) and locked-nucleic acids (LNAs) bind miRs transiently and 

inefficiently, do not remain in dividing cells and require repeated large doses of oligos in 

cells to be effective and they have severe off-target effects. In previous preclinical and 

clinical trials with LNAs, antagomirs, AMOs and other miR inhibitors they were toxic, non-

specific and caused multiple adverse effects in animals and humans. The sponges and decoys 

also suffer from a lack of stability, inefficient binding of the miR, lack of specificity and 

require toxic delivery systems.

To circumvent these major problems, we developed a new method of miR inhibition, the 

Plasmid-Based miRNA Inhibition System (PMIS), to allow for the simultaneous knockdown 

of homologous miR families in vitro and in vivo [45–47]. The PMIS inhibitor is composed 

of native, unmodified nucleic acids that enables the development of stably expressing cells 

(lentivirus) and animal models for the study of genome-wide miR family inhibition to 

identify miR targets and cellular processes. The PMIS can be used to knockdown miRs 

during embryonic development to determine their effect on stem cells, cell proliferation and 

differentiation as well as developmental processes. The PMIS system represents a major 

paradigm shift in miR biotechnology that allows researchers to finally dissect the role of 

identical miRs expressed in clusters and on multiple chromosomes. The PMIS can 

distinguish between and differentially inhibit miRs with only one nucleotide change in their 

seed sequence. The unique structure of the PMIS-miR complex is bound by factors of the 

RNA-Induced Silencing Complex (RISC), making it very stable, efficient, with a high 

specificity and affinity for specific miRs and is not toxic in animals and cells (Fig. 1)[45]. 

The PMIS transcript is expressed using the U6 Polymerase III promoter to control PMIS-

miR transcript expression levels in the cell. We found that using the CMV Polymerase II 

promoter that PMIS-miR expression levels were exceedingly high and interfered with 

cellular processes. The U6 promoter expresses PMIS-miR constructs at lower levels with 

increased functionality. Furthermore, we engineered the PMIS miR inhibitor to bind to the 
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RISC proteins and it is extremely stable in the cell. This miR inhibitor works in transgenic 

animals (in vivo) as well as xenograft animal models without adverse side effects, it has 

great promise as a therapeutic molecule in clinical applications including bone repair and 

regeneration.

We are currently working on inducible PMIS-miR constructs, but we find that the specificity 

of the PMIS-miR is very efficient and while it is expressed in every cell, not every cell 

expresses the targeted miR, so only those cells/tissues with high levels of targeted miR 

expression are affected during development. Furthermore, not every cell/tissue expresses the 

same genes at high levels, thus we see differential gene expression with and without 

inhibiting specific miRs. Clearly, we observe other cell/tissue developmental defects in our 

PMIS-miR mice depending on the miR that is inhibited and specific genes targeted by the 

miR. It has been reported many times that conditional ablation of a miR cluster for tissue-

specific knockouts have no effect on development. This is because the tissue specific Cre 

knocks out the miR too late in development to observe a defect. The specificity of the PMIS 

system during embryonic development provides a new mechanism to study miR function, 

especially at time points that miRs play critical roles in developmental processes.

II. FUNCTIONS OF MICRORNAS IN CRANIOFACIAL BONE FORMATION 

AND DEVELOPMENT

The tissue-specific Dicer, DGCR8 and Ago2 knockouts in mice have shown miRs are 

involved in bone development [48–54] and the developing tooth [48,55,56]. miRs are post-

transcriptional regulators that repress gene expression by regulating the translation of mRNA 

and promoting the degradation of targeted mRNAs and are thought to regulate tooth and 

bone development by repressing the transcription factors and signaling factors involved in 

these processes [57].

Murine models for miR-17–92 regulation of bone formation

miRs come in a variety of genomic contexts, both intragenic and intergenic [58,59], and can 

be isolated or grouped into polycistronic clusters, as is the case with the widely-studied miR 

cluster, miR-17–92 [60,61]. miR-17–92 is a cluster of six highly conserved miRs from four 

different families located on chromosome 13 in humans and chromosome 14 in mice [62]. 

However, identical miRs to the miR-17–92 cluster are also expressed on chromosomes X 

and 7 in humans and chromosomes X and 5 in mice [45]. Recent studies have implicated the 

miR-17–92 cluster in the development of orofacial and craniofacial defects [63,64]. We 

knocked down all three clusters on these chromosomes using PMIS-miR-17–18, PMIS-
miR-19–92 and PMIS-miR-17–92 mice to dissect the functions of identical miRs within the 

miR-17–92 clusters and found each contributed to craniofacial bone development in 

different aspects of growth [46]. Craniofacial defects were identified in all of the PMIS 

transgenic mice at three weeks of age by High-Resolution X-Ray Microtomograph scans 

(uCT scans). Specific measurements from the uCT scans identified defects in total cranial 

length (rhinion to opisthion, rh-op), neurocranial length (nasion to opisthion, na-op), nasal 

bone length (rhinion to nasion, rh-na), palate length (prosthion to anterior nasal spine, pr-

pns), frontal bone length (nasion to bregma, na-br), and parietal bone length (bregma to 
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lambda, br-l). We report defects in the width and length of cranial structures in all PMIS 

mice compared to WT (Fig. 2) [46]. Other defects identified included suture, mandibular 

condyle growth defects and microcephaly [46].

Murine models for miR-26b regulation of bone formation

Recent studies have reported that miR-26b functions as an odontogenic regulator [65,66]. A 

miR-26b transgenic over-expression (OE) mouse is similar to the Lef-1 general knockout 

mouse as miR-26b regulates Lef-1 expression [65]. These mice lack teeth, including molars 

and incisors, and full body uCT images reveal skeletal and bone defects in these mice. The 

cranial base and cranial breath measurements are essentially identical in the miR-26b OE 
and WT mice. However, the miR-26b OE mice have a shorter nasal bone, snout, frontal 

bone, parietal bone, cranial breath, and cranial base length compared to WT mice. The 

cranial base angle and ramus height are also decreased in the miR-26b OE mice compared to 

WT mice. The miR-26B OE mice have a decreased mandibular length compared to WT 

mice [65]. It appears that miR-26b targets Lef-1 and Wnt signaling to control bone growth 

and formation.

Murine models for miR-200 regulation of bone formation

The miR-200c/141 knockout mice have defects in mandibular bone formation (a decrease in 

alveolar bone) linked to a Noggin regulatory pathway and Bmper expression [66]. miR-200c 
directly targets and inhibits Noggin expression (a Bmp inhibitor) resulting in an increase in 

Bmp activity and cell differentiation [66]. However, the lack of miR-200c increases Noggin 
expression and decreases Bmp activity resulting in a bone developmental defect in these 

mice. The PMIS-miR-200c mice also have a decrease in ossification of craniofacial bones, 

maxilla/palatine bones and facial bone [47]. The molecular mechanism of miR-200c in 

osteogenic differentiation includes a Sox2-mediated Wnt signaling and Klf4 pathway. 

Conversely, the inhibition of miR-200a (PMIS-miR-200a) in mice results in an increase in 

bone density (Fig. 3). Through multiple validation experiments and gene expression analyses 

we have identified multiple miR-200 regulated pathways (Fig. 3). These in vivo results 

demonstrate the effect the miR-200 family has on gene regulatory pathways, gene networks 

and cellular processes.

Murine models for miR-23–24-27 regulation of bone formation

The miR-23–24-27 cluster has been shown to regulate osteoblast differentiation through 

several genetic pathways. A report using a novel miR-23a cluster knockdown mouse model 

demonstrated a role for this cluster in maintaining stage-specific HoxA factor expression 

during osteogenesis [67]. HoxA5 and HoxA11 are targets of the miR-23a cluster and these 

Hox genes regulate bone-specific gene expression through chromatin modifications. The 

miR-23a cluster knockdown increased cortical and trabecular bone mass [67]. These 

researchers used an inducible anti-miR-23a CI knock-in mouse to show regulation of the 

PRC2 complex and repressive H3K27me3 deposition contrasting with BAF-linked 

activating H3K27ac chromatin modifications promote osteoblast differentiation by this miR 

cluster [67]. Other researchers have used miR decoys for miR-23a, miR-27a and miR-24–2 
to knockdown these miRs in mice to show regulation of osteocyte differentiation [68]. The 

knockdown of miR-23a or miR-27a decreased osteocytes but knockdown of miR-24–2 had 
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no effect. In contrast over-expression of the miR-23a cluster in mice demonstrated low bone 

mass associated with a decrease in osteoblasts but an increase in osteocytes [68]. It was 

suggested that the miR-23a cluster regulates osteocyte differentiation by modulating the 

TGF-ß signaling pathway.

Murine models for miR-34 regulation of bone formation

A miR-34c over-expression (OE) mouse demonstrated that miR-34c can regulate bone 

remodeling by affecting both osteoblasts and osteoclasts leading to increased bone 

resorption [69]. The defect in osteoblast differentiation by miR-34c OE was due to targeting 

Satb2 and Runx2. However, miR-34c also targets Notch signaling in osteoblasts and 

miR-34c regulates bone homeostasis by regulating multiple targets in osteoblasts and 

osteoclasts [69].

Murine models for miR-214 regulation of bone formation

miR-214 OE under the control of the osteoclast specific Acp5 promoter in mice 

demonstrated a role for this miR in bone formation. The increase in miR-214 decreased Pten 
levels, increased osteoclast activity and reduced bone mineral density [70]. The expression 

of miR-214 was upregulated in the process of m-CSF and RANKL induced 

osteoclastogenesis, thus inhibition of miR-214 levels reduced osteoclastogenesis.

Murine models for miR-335 regulation of bone formation

A transgenic mouse over-expressing miR-335 using the osterix promoter revealed higher 

bone mass and increased bone formation in the transgenic mouse compared to wildtype [71]. 

Mechanistically in these mice Runx2 and Osx were upregulated, while the Wnt antagonist 

Dickkopf-1 was down-regulated. The researchers suggest that application of miR-335 
modified bone marrow stem cells could be used in craniofacial bone regeneration [71].

A common theme in these critical mouse models is that several miRs can regulate identical 

and intersecting pathways required for bone formation and bone remodeling. The use of 

animal models for studying miR regulation of bone formation is critical to understanding 

how miRs affect osteogenesis. We follow a validation process to determine miR targets in 

mouse tissues and cell-based assays (Fig. 4). The role of miRs in bone homeostasis will be 

discussed in the following section.

III. THE ROLES OF MIRS IN INFLAMMATION, BONE MAINTENANCE, 

REGENERATION AND REPAIR

miRs in bone homeostasis: a balance of formation and resorption

miRs are actively involved in the bone homeostasis by regulating the balance of osteogenesis 

and osteoclastogenesis. This regulation has been investigated using different cell lines and in 
vivo models, including bone homeostasis under estrogen deficiency, mechanical loading and 

corticosteroid stimulation. miRs regulate bone loss by directly and indirectly modulating the 

inflammation that subsequently activates osteoclastogenesis through the RANKL-RANK-

OPG system. miRs may directly regulate the RANKL/OPG balance to adjust 
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osteoclastogenesis. The upregulation and activation of RANKL accelerates the osteoclastic 

differentiation and bone resorption, while downregulation of RANKL diminishes 

osteoclastogenesis. For example, miR-29a and miR-146a regulate the RANKL-RANK-OPG 

system by directly targeting RANKL and Smad4, resulting in the inhibition of bone 

resorption in ovariectomized (OVX) mice [72,73]. Inhibition of these miRs are shown to 

relatively improve bone mass by overcoming osteoclastogenesis [74]. miRs also modulate 

osteoblastogenesis by directly targeting osteogenic signal pathways to inhibit bone 

formation. miR-139, −145, −26a, −451, and −100 have been found to target osteogenic 

signals, including Wnt/β-catenin, Notch, BMP/Smads, and FGF-21, which accelerating 

osteoporosis in the OVX murine models [75–81]. Similarly, some miRs upregulated the 

activities of Wnt-β/catenin and Bmp/Smads and promoted osteogenic differentiation by 

targeting the inhibitory regulator of these pathways. For examples, miR-199a [82,83], 

miR-219a [84], and miR-208a [85] have been reported to improve osteogenesis and bone 

formation by directly targeting an adipogenesis promoter, TET2 (Tet Methylcytosine 

Dioxygenase 2), Rorβ (retinoic acid-related orphan receptor), a transcriptional enhancer of 

inhibitor HBP1 of the Wnt pathway, and a Bmp ligand Activin A receptor type I (ACVR1). 

In addition, miR-23b [86] and miR-103a [87] directly target the osteogenic transcription 

factor, Runx2, to inhibit bone formation, which accelerates osteoporosis in the OVX model.

Anti-inflammatory Therapeutic Potential of miRs in Periodontitis and Bone Loss

The exaggerative inflammatory response plays key roles in the pathogenesis of periodontitis, 

including activated alveolar bone loss and inhibited bone formation. Thus, by manipulating 

the miRs that actively participate in periodontitis, an epigenetic approach is an innovative 

therapeutic tool for periodontitis by fine-tuning the inflammatory response. Although 

numerous miRs are involved in the pathogenic progress of periodontitis, and both miR-146a 
and miR-200c have been reported to negatively feedback to IL-6. miR-146a also negatively 

affects IL-1β and TNF-a, and Hey2 expression [88]. However, miR-146a has been reported 

to be upregulated in gingival tissue of periodontitis and in gingival cells under LPS 

stimulation, which activates inflammation [89]. In the mouse model of P. gingivalis (PG) 

infection-induced experimental periodontitis, injection of a miR-146a mimic exhibited 

protective function on periodontitis associated bone loss [90]. In comparison to miR-146a, 

although it has smaller variation in periodontitis patients, miR-200c was found to be 

significantly down-regulated in the gingival tissues of periodontitis patients [91]. miR-200c 
reduced IL-8 expression by targeting the inhibitor of nuclear factor kappa B kinase subunit 

beta targeting (IKBKB) in the NF-kB signal pathway [92]. Our previous studies have 

confirmed that miR-200c directly targets the 3’UTRs of IL-6, IL-8 and CCL-5 [93]. 

Reporter gene analysis showed that miR-200c targets the 3’UTR of the interferon related 

developmental regulator1 (Ifrd1). We have observed that a local application of plasmid DNA 

encoding miR-200c effectively suppressed IL-6, IL-8, Ifrd1, and NF-kB in rat gingival 

tissues. In a rat model of periodontitis induced by PG-LPS, we observed that the local 

application of miR-200c significantly down regulated the proinflammatory cytokines and 

alveolar bone loss stimulated by of LPS injection.
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Therapeutic function of miRs in bone healing and regeneration.

Several approaches have been attempted to explore the therapeutic function of miRs on 

enhancing bone formation and regeneration. The majority of the reported studies of miR-

driven bone regeneration were cell-based. Both mesenchymal stromal cells from bone 

marrow (BMSCs) and adipose tissues (ADSCs) have served as progenitor cells of bone 

forming cells. Either mimics and/or antagomir inhibitors of specific miRs were transfected 

into BMSCs or ADSCs to increase osteogenic differentiation. The mimics of miR-375 
[94,95], miR-101 [57], miR-450b [96], miR-135 [97], miR-218 [98], miR-335 [99,100], 

miR-199a [83], and miR-99a [101] have reported to regenerate bone tissue by targeting the 

inhibitors or antagonist of osteogenic signaling BMP, IGF, and WNT, including IGFBP3, 

EZH2 (the enhancer of zeste homolog 2), Hoxa2, DKK1, HIF1a, and KDM6B. In addition, 

the antagomirs or inhibitors of miRs that target osteogenic differentiation also have shown 

the osteogenic capabilities and bone regeneration after transfection into BMSCs or ADSCs. 

The antagomirs to miR-133a [102], miR-137 [103,104], and miR-31 [105,106] improve 

Runx2 and Bmp signaling in the progenitor cells. The antagomirs of miR-146a (74), miR-21 
[107], and miR-221 [108] increase osteogenic differentiation by rescuing Smad signaling. 

Inhibitors of miR-138 [109–111] and miR-124 [112] also demonstrated the enhancement of 

osteogenic differentiation by regulating FAK and Dlx signaling. Cells transfected with miR 

mimics and antagomirs also exhibited the capabilities to regenerate bone tissues at ectopic 

sites of murine models and restore calvarial bone defects and long bone fractures at murine 

models.

Section III Summary

miRs genes/pathways targeted effect on bone growth/regeneration

miRs-29a, −146a RANKL-RANK-OPG inhibition of bone resorption (OVX model)

miRs-139, −145, −26a, −451 and 
−100

osteogenic signals increase osteoporosis (OVX model)

miRs-199a, −219a, −208a osteogenic signals improve osteogenesis

miRs-23b, −103a RUNX2 inhibit bone formation (OVX model)

miRs-146a, −200c inflammation, IL6, IL-1B, TNF-
a

inhibition of pro-inflammatory cytokines

miR-200c inflammation, IL-6, IL-8, CCL-5 inhibition of pro-inflammatory cytokines

miRs-375, −101, −450b, −135, 
−218, −335, −199a, −99a

BMP, IGF, WNT regenerate bone tissue, increase osteogenic 
differentiation

miRs-133a, −137, −31 RUNX2, BMP bone progenitor cell differentiation

miRs-146a, −21,−221 SMADs osteogenic differentiation

miRs-138, −124 FAK, DLX increase osteogenic differentiation
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IV. MICRORNA DELIVERY APPROACHES FOR THERAPEUTIC 

TREATMENTS

General strategies of miR-based therapeutic approaches

Depending on the expression strategy of the target miR, the miR therapies are divided into 

two categories: 1) miR activation or gain-of-function therapy which up-regulates exogenous 

miR expression and 2) miR inhibition or loss-of-function therapy which down-regulates 

endogenous miR expression [113,114]. Overexpression of the target miR also can be 

achieved through the delivery of either miR mimics that are double-strand oligonucleotides 

or miR-expressing viral vectors. The double-stranded miR mimics are designed either to 

target a single mRNA or a group of multiple miR units target different mRNAs [115,116]. 

Viral vector-mediated miR over expression enables the sustained generation of miRs, which 

is especially attractive for regenerative medicine applications. Instead of using a viral vector 

for over expressing miRs, our group recently reported that plasmid DNA-mediated sustained 

expression of miR-200c was a viable and translational way for craniofacial and periodontal 

bone regeneration [117–119]. In contrast to the miR activation therapy, the miR inhibition 

therapy aims to block the endogenous miR. So far, the most straightforward technique is to 

use anti-miR oligonucleotides and several different methods have been developed to inhibit 

miR functions. The major limitation of the anti-miR oligonucleotides is their short half-life 

because of the susceptibility to degradation. Therefore, the oligonucleotide has a transient 

effect because its concentration decreases quickly with cell division [113]. Our newly 

developed plasmid-based miR inhibitor system (PMIS) can largely address this challenge by 

sustained production of miR inhibitor molecules to inhibit miR family members in both cells 

and mice [120].

Chemically modified anti-miRs

Tremendous efforts have been reported to develop chemical modification techniques that 

improve the performance of anti-miRs (synthesized oligonucleotides) through enhancing 

cellular uptake, binding affinity, and nuclease resistance [114]. For example, 

phosphorothioate linkage is the most commonly used internucleotide modification on 

synthesized oligonucleotides. This modification delays plasma clearance and enhances 

cellular uptake through the nonspecific binding to serum albumin and membrane proteins 

[121,122]. AntagomiRs containing a terminal phosphorothioate linkage, a cholesterol 

conjugation, and 2’-O-methyl-modified ribose sugars (2-OMe), are the first miR inhibitors 

reported to work in many different tissues in mammals [123]. By using this technique, some 

specific antagomiRs have been developed to modulate bone mass through systemic injection 

methods. One group reported that the blocking of miR-148a by antagomiR-148a through tail 

vein injection significantly increased bone formation while suppressing bone resorption in 

ovariectomized (OVX) mice [124]. Similarly, hind limb-unloading-induced bone loss in 

mice was partly prevented by injection of antagomiR-103a since miR-103 was a 

mechanosensitive miR in bone tissue [87]. Moreover, aging-related bone loss was mitigated 

in rats through the injection of antagomiR-31a-5p into the femoral bone marrow cavity 

[125]. Although antagomiRs have shown encouraging results in several different tissues and 

animal models, the safety concerns caused by high dose requirements prevent their 
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applications [113,114]. Additionally, other chemical modification strategies have been 

reported with promising applications, e.g., peptide nucleic acids (PNAs) [126] and locked 

nucleic acids (LNAs) [127].

Viral vectors

The high transfection efficiency and sustained gene expression of viral vectors make them 

the most effective techniques so far for miR delivery both in vitro and in vivo. Retrovirus, 

lentivirus, adeno-associated virus (AAV), and baculovirus are the most frequently used viral 

vectors for gene therapy [128–130]. Retroviruses carrying two copies of the single-strand 

RNA genome can stably integrate into the host chromosomes, guaranteeing long-term 

expression of inserted therapeutic genes [131]. However, the inability of transducing 

nondividing cells and the safety concern caused by genome integration at an undesired 

location significantly impede the application of retrovirus vectors in regenerative medicine 

[114]. Lentivirus is a subgroup of retrovirus is a more promising vector for in vivo miR 

delivery because it can not only transfect nondividing cells [130] but also prefer to integrate 

within introns of active transcriptional units, thereby reducing the potential to cause 

insertional oncogenesis [132,133]. Therefore, lentivirus-mediated miR delivery has been 

used to improve bone formation in many reports. For example, lentivirus-mediated miR-29a 
over expression can protect rats against glucocorticoid-Induced bone loss and fragility [134]. 

Lentivirus- mediated miR- 26a over expression in bone marrow mesenchymal stem cells 

(BMSCs) significantly improved murine cranial bone regeneration [135]. Additionally, 

lentivirus-mediated anti-miR-31 to inhibit the expression of miR-31 in BMSCs also can 

repair critical-sized calvarial defects in rats [105]. AAV vectors are emerging as the most 

promising gene therapy tool for clinical applications because they have several advantages: 

1) small size (only ~4.7kb DNA genome; 2) infection of both dividing and nondividing 

cells; 3) nonpathogenicity in humans, and; 4) relatively low immunogenicity 

[113,114,129,136]. A recent study reported that either systemic or direct joint administration 

of an rAAV9 vector carrying an artificial-miR that targets shn3 (rAAV9-amiR-shn3) in mice 

markedly improved bone formation via augmenting osteoblast activity [137]. Baculoviruses 

are insect viruses that can transfect a wide variety of mammalian stem cells at high 

efficiency [138]. Importantly, these baculovirus vectors are relatively safe for clinical 

applications because they lack the capabilities of replication and gene integration in 

mammalian cells [139]. One study reported the aberrant elevated expression of miR-214 in 

the BMSCs isolated from OVX rats. To suppress the miR levels, the authors constructed 

hybrid baculovirus vectors expressing miR sponges to bind miR-214. Notably, 

transplantation of the miR-214 sponges in OVX-BMSCs effectively healed the critical-size 

bone defects and ameliorated the bone quality in OVX rats while the OVX-BMSCs 

ectopically expressing Bmp2 failed to heal the defects [140].

Lipid-based delivery system

Lipid-based nanocarriers are the most commonly used nonviral gene delivery systems in 
vitro. Besides numerous in vitro studies, lipid-mediated miR delivery is also feasible for in 
vivo application based on recent findings. One study reported that tail vein injection of a 

miR-451a mimic containing liposome (Invivofectamine® 3.0) significantly enhanced 

osteoblastogenesis, reversed OVX-induced bone loss, and improved bone strength [141].
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However, so far most of the lipid-mediated miR applications are relying on in vitro stem 

cells (e.g., BMSCs) transfection first and then transplantation of these miR-expressing cells 

in vivo [142]. These “ex-situ” strategies instead of direct administration of liposome/miR to 

“in situ” bone defects are largely because the nonspecific distribution and low stability of 

liposomes in tissue fluid will severely limit their efficacy in vivo [114,142,143]. To address 

this challenge, one seminal study developed an innovative bone targeting delivery system 

comprising 1,2-dioleoyl-3-trimethylammonium-propane-based (DOTAP) liposome linked 

with (AspSerSer)6, which selectively bind to osteoblast-mediated mineralizing nodules and 

amorphous calcium phosphate [144]. Through systemic injection of this (AspSerSer) 6-

liposome-containing casein kinase-2-interacting protein-1 (Plekho1) siRNA, bone 

formation, bone microarchitecture, and bone mass were all significantly improved in both 

healthy and osteoporotic rats [144]. Soon after, this exciting bone formation surface-

targeting delivery system, (AspSerSer)6-liposome, was successfully applied to deliver 

antagomiR-214 [145] and agomiR-33–5p [146] to improve bone formation/mass in OVX 

[145] and unloading [146] mice models, respectively. In addition to targeting bone formation 

surface, a novel eight repeating sequences of aspartate (D-Asp8) peptide-conjugated 

DOTAP-based liposome was developed to deliver miR to bone resorption surfaces [147] 

because of the ability of D-Asp8 for selectively binding to highly crystallized hydroxyapatite 

(HA), which is the characteristic of bone resorption surfaces [148]. They demonstrated that 

D-Asp8 conjugation promoted the enrichment of antagomir-148a/liposome after intravenous 

injection and the subsequent down-regulation of miR-148a expression in osteoclasts in vivo, 

resulting in significantly reduced bone resorption in OVX-induced osteoporotic mice [147].

Polymer-based delivery system

Numerous cationic natural and synthetic polymers have been widely studied and shown 

great promise for both plasmid DNA and RNA gene delivery [149]. Compared to lipid 

vectors, one obvious advantage of polymer-based delivery systems is that they are more 

flexible and versatile through variation in polymer molecular weight, structure, composition, 

and conjugation [113]. Among the currently reported polymer-based vectors, high molecular 

weight branched polyethyleneimine (PEI, 25KD) is still the gold standard and has been most 

widely used in both preclinical studies and clinical trials because of its relatively high 

nucleic acid transfer efficiency. Recently, we successfully delivered plasmid DNA 

containing miR-200c into primary human periodontal ligament fibroblasts and bone marrow 

MSCs. miR-200c delivered using PEI effectively inhibited IL-6, IL-8, and CCL-5 in 

periodontal ligament fibroblasts and enhanced osteogenic differentiation of human bone 

marrow MSCs in vitro [119]. However, the significant safety concern derived from PEI’s 

high cytotoxicity and non-degradability prevent its applications in regenerative medicine 

[150]. Many efforts have been reported to reduce PEI’s cytotoxicity while improving the 

gene transfer efficiency. One strategy is to crosslink low molecular weight PEI via a 

disulfide linkage [149]. Another promising strategy is to combine with other inorganic 

nanoparticles. For example, a PEI-capped gold nanoparticle (AuNPs) was developed for 

miR-29b delivery. These AuNPs not only didn’t show obvious cytotoxicity on hMSCs but 

also they were more efficient in improving osteoblastic differentiation compared to 

Lipofectamine RNAi MAX/miR-29b complexes [151]. Similarly, PEI combined with iron 

oxide magnetic nanoparticles (MNPs) indicated moderate cytotoxicity and high uptake 
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efficiency (~75%). MNPs-PEI provided a long-last effect in delivering miR-335 into hMSCs 

in vitro [152].

Chitosan (CS) is one of the most studied natural polymeric gene carriers derived from partial 

deacetylation of chitin [153,154]. Chitosan-based gene carriers are especially attractive for 

regenerative medicine because of its high positive charge, excellent biodegradability, 

favorable biocompatibility, low toxicity, low cost, and low immunogenicity [153–155]. 

Additionally, chitosan has been widely studied in bone tissue engineering either as drug/

gene carriers or scaffolds because of the pro-osteoblastic activity and inherent antimicrobial 

ability [156,157]. In one study, chitosan nanoparticles cross-linked by tripolyphosphate 

(TPP) were used to deliver miR-199a-5p agomiR plasmid. Their data indicated that the 

chitosan nanoparticles could stably overexpress miR-199a-5p in hMSCs in vitro and 

promoted both ectopic bone formation after implantation in vivo and bone defects repair 

delivered by hydrogel [158]. Chitosan/TPP/Hyaluronic Acid (HA) nanoparticles were also 

developed to deliver antimiR-138 to rat bone marrow mesenchymal stem cells (rMSCs) 

[159]. These composite nanoparticles showed a high transfection efficiency (~70%) and 

significantly promoted rMSCs osteogenic differentiation in vitro. Moreover, some in vivo 
studies proved that it was feasible to effectively prevent the bone loss in OVX mice by 

systemic administration of miR-34a mimic [160], or miR-182 inhibitor [161] using TPP/

chitosan nanoparticles.

Inorganic nanoparticle-based delivery system

Calcium phosphates (CaP) have been used as gene carriers for decades through the way of 

DNA-calcium phosphate co-precipitation to introduce plasmid DNA into many cell types 

[162–164]. Among the gene vectors being considered to date, CaP nanoparticle is one of the 

most promising materials for dental and bone tissue regeneration applications by virtue of 

the excellent osteoconductivity, biocompatibility, and biodegradability [165]. Besides DNA, 

e.g., pDNA encoding bone morphogenetic protein-2 (Bmp-2) [166], CaP nanoparticles also 

have successfully delivered miRs [167] and siRNAs [168] as well. The excellent 

osteoconductivity and biocompatibility of CaP nanoparticles as non-viral vectors are 

especially advantageous for bone and dental tissue engineering applications even though 

their transfection efficacy needs to be significantly improved compared to viral vectors 

[166,169].

Inspired by the rationale of co-precipitation of Ca(2+) with DNA, nano-sized CaCO(3)/DNA 

co-precipitates were also developed for gene delivery because of its high biocompatibility 

and inducible biodegradability [170]. Our unpublished data indicated that the CaCO3/PS has 

much higher (at least two times) efficiency than PEI (25KD) at the same culture condition 

with 10% serum presence to deliver plasmid DNA (eGFP) to mouse cranial osteoblasts with 

significantly lower cytotoxicity. Moreover, as an alternative to CaPO4-based biomaterials, 

CaCO3-based biomaterials have shown some excellent properties, e.g., biocompatibility, 

biodegradation, bioactivity, and osteoconductivity for bone implantation and regeneration 

[171,172]. Therefore, CaCO3-based materials show great promise for bone tissue 

engineering applications including as a non-viral gene delivery vector and scaffold materials.
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Mesoporous silica nanoparticles (e.g., MCM-41 and SBA-15 MSNs), are emerging as a 

multifunctional drug delivery carriers because they are cable of absorbing/encapsulating 

large amounts of bioactive molecules through the hundreds of empty channels with a 

honeycomb-like porous structure (mesopores). MSNs have some unique features, e.g., large 

pore volume (~0.9 cm3/g), tunable pore size (2–10 nm), high surface area (~900 m2/g), 

good chemical and thermal stability, good biocompatibility, excellent surface functionality, 

which are all advantageous for various controlled release applications [173,174]. In addition 

to pDNA, one study indicated that MSNs could efficiently deliver siRNA, pDNA, and small 

anti-tumor drugs into cells without significant cytotoxicity when the surfaces of MSNs were 

noncovalent coated with PEI (10KD not 25 KD) [175]. More recently, a new technique was 

developed for functionalization of MSN surface with PEI through disulfide bonds which can 

achieve lysosomal delivery of chemotherapy drug (doxorubicin) and intracellular delivery of 

miR-145 [176].

Section IV Summary

miRs delivery approach/type of molecule effect on bone growth/regeneration

miR-200c viral vector/miR OE bone regeneration

miR-148a antagomirs/modified oligos bone regeneration

miR-103a antagomirs/modified oligos inhibition of bone loss

miR-31a antagomirs/modified oligos inhibition of bone loss

miR-29a viral vector/miR OE protect against bone loss

miR-26a viral vector/miR OE improved bone regeneration

miR-31 viral vector/miR inhibition increased bone formation

miR-214 viral vector/miR inhibition increased bone formation

miR-451a liposome/miR mimic enhanced osteoblastogenesis

mlRs-214, −33 modified liposome/antagomir improved bone formation

miR-148a modified liposome/antagomir reduced bone resorption (OVX)

miR-200c polymer-based/miR OE enhanced osteogenic differentiation

miR-199a chitosan/antagomir promoted ectoptic bone formation

miR-138 chitosan/antimir increased osteogenic differentiation

miRs-34a, −182 chitosan/mimic-inhibitor prevent bone loss (OVX)

V. SCAFFOLD-BASED LOCAL MIR DELIVERY SYSTEM

Stem cells for gene therapy

Currently, there are two gene therapy strategies in bone tissue engineering. The first one is a 

stem cell-based gene delivery which has been used in most reported pDNA or miR-based 

gene therapy studies. The second one is direct gene therapy or acellular gene delivery which 

delivers the therapeutics via viral or nonviral vectors to the injury sites to promote bone 

healing by recruiting endogenous reparative cells without using exogenous stem cells 

[177,178]. Compared to embryonic stem (ES) cells and induced pluripotent stem cells 

(iPSCs), which are pluripotential, the multipotent adult stem cells, especially several types 

of mesenchymal stem cells (MSCs), are the most widely used in dental and bone tissue 
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engineering due to the ethical and legal controversies with ES and iPSCs [179–181]. Almost 

half-century ago, bone marrow-derived MSCs (BMSCs) were identified and isolated from 

murine femur bones as an adherent fibroblast-like population with the capacity to self-renew 

and differentiate into at least three cell lineages, including bone, fat, and cartilage [182]. 

Since then, non–marrow tissue-derived MSCs were isolated and identified in almost all 

tissues, e.g., adipose tissue, placenta, umbilical cord blood, dermis, and orofacial tissue 

[181,183] while most of the current studies are still using BMSCs in miR-based bone tissue 

engineering. However, it should be noted that craniofacial bones originate from two sources: 

most are of cranial neural crest origin while the parietal bones arise from the paraxial 

mesoderm. Therefore, BMSCs harvested from craniofacial bones exhibit distinct properties 

from long bone MSCs although overall, they are very similar. For example, craniofacial 

BMSCs are growing more rapidly with higher levels of alkaline phosphatase in cell culture, 

and forming more compact bone and less bone marrow upon transplantation in vivo [179–

181]. While the BMSCs or other type of stem cells have been used for gene delivery and 

bone tissue engineering, very few studies have discussed if the origination of MSCs could 

affect tissue regeneration. Therefore, we need to investigate if it is appropriate to use long-

bone derived MSCs to repair cranial bone defects as done previously in many cases. 

Moreover, too many procedures including stem cell isolation, culture, characterization, and 

gene transfection in vitro add extra safety concern and complexity that will prevent these 

approaches from clinical applications. Therefore, cell-free direct gene delivery is a more 

straightforward and translational strategy for regenerative medicine while it requires 

developing robust delivery system for local and sustained release of therapeutic molecules to 

promote, recruit and reprogram endogenous stem cells for tissue regeneration.

Scaffolds for gene delivery and regenerative medicine

In addition to stem cells, scaffolds are another critical component for the success of tissue 

engineering including miR-meditated bone and dental tissue regeneration 

[113,114,142,143]. Compared to systemic or bolus delivery, scaffold-based delivery 

provides more controllable, sustained, and local release of miRs to minimize the off-target 

side effects or immune reaction [113]. One basic rationale for developing a tissue 

engineering scaffold/biomaterial is to at least partially mimic the structure and functions of 

the targeting natural extracellular matrix (ECM), e.g., the bone matrix for bone tissue 

engineering. Ideally, these synthesized biomimetic biomaterials should not only provide 

cells with transient and sufficient physical support, e.g., topological and mechanical cues, 

via its three-dimensional (3D) structure but also instructional chemical signals, e.g., 

cytokines, growth factors, or miRs to guide these implanted exogenous cells or recruited 

endogenous cells to proliferate and differentiate until they produce native ECM [184,185]. 

Accordingly, collagen/gelatin, calcium phosphate/hydroxyapatite, and their composite 

materials, including hydrogels and 3D scaffolds, are the most used biomaterials for bone and 

dental tissue engineering because of the similar chemical components to the bone matrix. 

Additionally, some other natural and synthetic polymers, e.g., chitosan, alginate, 

polyethylene glycol (PEG), poly (lactic acid) (PLA), poly (glycolic acid) (PGA), and their 

copolymer poly (lactic-co-glycolic acid) (PLGA), poly(hydroxyl butyrate) (PHB), and poly 

(caprolactone) (PCL), are also widely used for drug delivery and bone tissue engineering 
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largely because of their excellent biocompatibility and flexibility in composition and 

fabrication [184,185].

Hydrogels fabricated by either natural or synthetic polymers are attractive for tissue 

engineering applications because they are highly hydrated and similar to natural ECM. 

Therefore, a hydrogel can easily encapsulate cells and drugs in a mild condition and mix 

with them evenly for controlled release through tuning the degree of crosslinking. Moreover, 

injectable hydrogels are flexible and fit different geometrical deformities with minimal 

invasiveness which is especially advantageous for craniofacial bone tissue engineering 

applications [113]. Recently, an innovative PEG hydrogel was synthesized for simultaneous 

encapsulation of hMSCs and delivery of siNoggin and/or miR-20a. These locally and 

sustainably released RNAs significantly promoted osteogenic differentiation of hMSCs in 
vitro and subsequent bone repair in critical-sized rat calvarial defects after transplantation in 
vivo [186]. In another study, one commercialized hydrogel named HyStem-HP contained 

thiol-modified hyaluronic acid, gelatin, and heparin was used to deliver miR-26a for 

successful repair of mouse critical-sized calvarial bone defects by targeting both 

angiogenesis and osteogenesis [187]. Instead of relying on transplantation of exogenous 

stem cells for carrying miRs, one study reported that they developed a cell-free nanoparticle/

hydrogel composite system for bone regeneration. Both stromal cell-derived factor-1α 
(SDF-1α) and chitosan/tripolyphosphate/hyaluronic acid/anti-miR-138 nanoparticles were 

incorporated in chitosan/β-sodium glycerol phosphate hydrogel which sustained release to 

promote rat critical-sized calvarial bone regeneration by recruiting and differentiating the 

endogenous stem cells [188].

Another type of biomimetic scaffold/biomaterials that are promising for miR-based 

regenerative medicine are 3D nanofibrous scaffolds since they closely mimic the nanofiber 

structure of collagens, the main organic component of ECM. These biomimetic nanofibrous 

scaffolds have been widely studied in many types of tissues, e.g., skin, vascular, cartilage, 

bone, and nerve [185,189,190]. The porous nanofibrous scaffolds with the high surface area 

are valuable because they not only provide a 3D matrix for cell growth and nutrient transport 

but also enable a high dose of drug loading and local sustained release. Importantly, the 

topography of nanofiber could directly influence the migration/differentiation of stem cells 

[185,189,190] and facilitate endocytosis mediated gene transfer through modulating cell-

matrix interactions [191,192]. To date, several techniques including electrospinning, phase 

separation, and self-assembly have been investigated to prepare nanofibrous scaffolds. 

Among these reported methods, the electrospinning technique has been most widely studied 

in many fields because it is facile and versatile [193–195]. Numerous studies have proved 

that electrospun nanofibers are versatile biomaterials for both viral and non-viral vector-

mediated gene delivery, e.g., pDNA and siRNA, which were summarized in a recent review 

[196]. Additionally, a bilayer vascular scaffold was specially prepared via emulsion 

electrospinning of PEG-b-PLA-co-PCL (PELCL) and dual-power electrospinning of PCL 

and gelatin. The inner layer of PELCL loaded with complexes of miR-126 in REDV 

peptide-modified trimethyl chitosan-g-PEG, modulated the response of vascular endothelial 

cells (VEC), while the outer layer of PCL/gelatin provided the mechanical stability. The 

bilayer vascular scaffold loaded with miR-126 complexes were capable of accelerating VEC 

proliferation and improving endothelialization in vivo [197].
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The major limitation of most electrospun scaffolds is the lack of macropores for cell growth 

and tissue formation due to their morphological structure of overlaid nanofiber mats [198]. 

Thus, it is critical to develop innovative strategies for producing biologically and clinically 

relevant 3D electrospun nanofibrous scaffolds with desired structural properties. To tackle 

this significant technical challenge, we and our collaborators have developed an innovative 

technique of thermally induced nanofiber self-agglomeration (TISA). The 3D electrospun 

PCL or PCL/PLA blend nanofibrous scaffolds are prepared using a TISA technique having 

high porosity of >95% as well as interconnected and hierarchically structured pores with 

sizes from sub-micrometers to ~300 μm. Compared to other 3D porous scaffolds, our 3D 

TISA nanofibrous scaffolds had higher elasticity, which enable them with press-fit ability 

suitable for irregular-shaped defects. Importantly, they favorably supported the growth and 

osteoblastic differentiation of hMSCs in vitro and both ectopic and cranial bone regeneration 

in vivo [199–202]. Another technique for the preparation of 3D nanofibrous scaffolds in our 

group is the thermally induced phase separation (TIPS) method with the porogen leaching 

technique (TIPS&P) [203–208]. One main advantage of these TIPS&P nanofibrous scaffolds 

fabricated either by PLLA or gelatin is that the macropore structure is well-defined with 

high interconnectivity and relatively strong mechanical properties. These biodegradable 

biomimetic 3D nanofibrous scaffolds are especially intriguing for bone tissue engineering 

with pro-osteoblastic activity and potent drug delivery capacity combined with versatile 

nanoparticles as we previously reported [209–216]. Furthermore, our group developed an 

innovative porogen-free TIPS technique for fabrication of 3D porous scaffolds with 

interconnected, hierarchically structured macropores, and biomimetic nanostructures. The 

porosity, pore size, and mechanical properties of these porous microspheres-aggregated 3D 

PCL scaffolds were highly tailorable and showed bone-like apatite forming ability and 

multiple drug loading and sustained release capacity. Importantly, the 3D nanofibrous 

scaffolds fabricated by TIPS&P combined with PLGA microspheres were successfully used 

for locally and controlled release of miR-26a polyplexes for heathy and osteoporotic cranial 

bone regeneration. This innovative two-stage release and cell-free strategy showed strong 

bone regenerative ability by harnessing endogenous reparative stem cells and signaling 

pathways [81]. Moreover, a new PLLA nanofibrous spongy microsphere-delivery system 

was fabricated and used as an injectable scaffold for both MSN-mediated fast release of 

IL-2/TGF-β and PLGA microsphere-mediated slow release of miR-10a/polyplexes. In a 

mouse model of periodontitis, this injectable and biomolecule-delivering system effectively 

rescued the periodontal bone loss through modulating regulatory T cells mediated immune 

response [217].

Perspective for biomaterials-based miRNA therapy

As we discussed above, most current miR-based bone regeneration studies rely on ex vivo 
stem cell transfection before their in vivo transplantation. On one side, this reminds us that 

stem cells play an important role in tissue repair by either differentiating the target cells or 

producing trophic and immunomodulatory factors [218]. On the other side, this also 

indicates that current conventional gene delivery vectors/scaffold systems are not efficient 

and safe enough to promote sufficient endogenous tissue regeneration using the direct gene 

therapy strategy. The cell-free strategy is less complicated, more straightforward, and 

translational than a cell-dependent strategy. This significant challenge urges the development 

Hong et al. Page 16

Bone. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of innovative biomimetic tools for translational miR-based therapy. The exosome is 

emerging as a promising natural nanoparticle produced by all types of cells for gene delivery 

with excellent transfection efficiency, biocompatibility, and particular cell/tissue targeting 

ability. Importantly, exosomes similar to liposomes are capable of being engineered with 

extra targeting and functional moieties in addition to loading both small miR and large 

pDNA for customized drug delivery [219–221]. Aptamer, often termed ‘chemical 

antibodies’, developed by the groundbreaking technology systematic evolution of ligand 

exponential enrichment (SELEX), is another exciting cell targeting tool for gene therapy 

[222,223], and have shown promising functions in osteoblasts or MSCs-targeting delivery of 

nanoparticles/siRNA or miR for successfully improving bone formation in vivo [224,225].

Section V Summary

miRs scaffold type/cells effect on bone growth/regeneration

miR-20a PEG hydrogel/hMSCs promoted osteogenic differentiation

mlR-26a HyStemHP/exogenous stem cells repair calvarial bone defects

anti-miR-138 chitosan nanoparticles/hydrogel bone regeneration/endogenous cells

miR-126 PELCL/PCL/gelatin improved endothelialization

miR-26a PLGA nanosphere/3D PLLA scaffold bone regeneration

miR-10a PLGA microsphere rescue bone loss

VI. CURRENT RESEARCH

Although genetically miR modified BMSCs and ADSCs have exhibited the therapeutic 

capabilities to generate bone tissue and facilitate bone formation and regeneration. The 

limited source of the cells and the biosafety of manipulating gene transfection in vitro sets 

up a huge barrier for their application in the clinic. Thus, the cell-free gene delivery of miRs 

has the advantage to provide a promising approach for bone regeneration. In comparison to 

the cell-based approaches, there are relatively few studies that use cell-free gene therapy of 

miRs for bone regeneration. The mature oligo miR-26a has been attempted to be delivered 

by nonviral nanoparticles for sustained release from PLGA microspheres [81]. miR-26a was 

reported to activate Wnt/β-catenin by targeting sclerostin domain containing 1 (SOSTDC1)

[79]. The system has been demonstrated to successfully regenerate calvarial bone in a mouse 

model of critical-sized defects. miR-200c directly targets Noggin, an antagonist of Bmp 

signaling [66]. Our previous studies have demonstrated that miR-200c also directly targets 

Sox2 and Klf4 and activated Wnt signaling activities [117]. The expression of miR-200c was 

upregulated during in vitro osteogenic differentiation of human BMSCs. Inhibition of 

miR-200c in vivo using the PMIS system has exhibited significant downregulation of 

craniofacial bone development and the osteogenic differentiation of human BMSCs. We 

were surprised to observe that the naked plasmid encoding miR-200c can safely and 

effectively increase the transfection of miR-200c in vitro and in vivo. By over expressing 

miR-200c we effectively promoted the osteogenic differentiation of human BMSCs in vitro. 

Furthermore, the plasmid miR-200c incorporated collagen sponges has been shown to 

significantly improve bone formation and restore different sized calvarial defects in rats 
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[117]. Conversely, miR-200a OE delivered to skull sutures inhibited suture fusion and in 

PMIS-miR-200a mice calvarial bone development and bone density were increased in the 

transgenic mice (Fig. 3).

Our group has developed new technology and methods to inhibit miRs both in vivo and in 
vitro for therapeutic applications that can rapidly and efficiently repair and regenerate bone 

using several of the delivery methods outlined in this review. The PMIS system can be 

applied to also inhibit bone formation dependent on the miR that is targeted for inhibition. 

Experiments in dogs, rats and mice demonstrate that the PMIS is not toxic and highly 

effective. This is an exciting time for miR therapeutic research and their ability to regenerate 

bone and tissues.
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Highlights

• microRNAs regulate genetic pathways that form bone and inhibit bone 

regeneration

• New microRNA inhibition technology (PMIS) proven in transgenic mice 

models

• microRNAs regulate bone formation, inflammation, osteoporosis and 

periodontitis

• New microRNA inhibition technology (PMIS) more efficacious than 

oligonucleotides

• microRNA gene therapy approaches are compared to stem cell-based 

scaffolds
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Figure 1. Schematic representation of the PMIS. A U6 promoter drives expression of the PMIS 
transcript.
The inhibitor complex contains a stem loop that comprises the antisense miR of choice. The 

21–22 nucleotide antisense sequence of each miR is cloned into this site in the stem loop. 

EGFP expression is used to determine expression. More than one miR inhibitor can be 

constructed in the same plasmid.
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Figure 2. miRs within the miR-17–92 cluster differentially regulate craniofacial development.
WT, PMIS-miR-17–18, PMIS-miR-19–92 and PMIS-miR-17–92, 3 week-old heads were 

analyzed by μCT. In-depth measurements were obtained for different aspects of craniofacial 

growth. Quantitative measurements of total cranial length and breadth of the PMIS 

transgenic mice are shown compared to WT, N=3.
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Figure 3. The in vivo role of the miR-200 family in craniofacial bone development.
A. Bone density in 4 week old WT, PMIS-miR-200a and PMIS-miR-200c mice heads. BD, 

bone density; BV/TV, bone volume/tissue volume. B. Gene networks involved in bone 

formation regulated by the miR-200 family.
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Figure 4. Validation Workflow of in vivo RNA-Seq., scRNA-Seq. or miR Microarray potential 
targets (compare Control vs miR knockdown, miR OE or inducible (conditional) miR 
inactivation)
• Note- In situ hybridization for gene and miR transcripts may not yield accurate information 

as miRs and miR targets may not be degraded upon miR inhibition or over expression (OE), 

respectively.
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