Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Jan 22;77(Pt 2):153–157. doi: 10.1107/S2056989021000657

Crystal structure of bis­{2-hy­droxy-N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazidato}cadmium(II)

Ping Yang a, Xiao-Bao Xie a,*, Qing-Shan Shi a
PMCID: PMC7869545  PMID: 33614145

The structure of a cadmium(II) aroylhydrazone complex, viz. bis­{2-hy­droxy-N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazidato}cadmium(II) is described.

Keywords: crystal structure, cadmium(II) complex, hydrazone derivatives

Abstract

In the title complex mol­ecule, [Cd(C13H11N4O2)2], the Cd atom is coordinated in a distorted octa­hedral geometry by two tridentate ligands synthesized from 2-hy­droxy­benzohydrazide and 1-(pyrazin-2-yl)ethan-1-one. The mol­ecule has twofold crystallographic symmetry and is isomorphous to its Mn, Co, Ni, Cu and Zn counterparts.

Chemical context  

Aroylhydrazones are competent ligands for various functional coordination compounds. They have the ability of polydentate coordination and are often used as building units of polynuclear magnetic compounds (Huang et al., 2016; Zhang et al., 2010). Aroylhydrazones can exhibit keto–enol tautomerism, and the uncomplexed aroylhydrazone ligand is commonly found in its keto form (Kalinowski et al., 2008; Tai & Feng, 2008). Metal complexes of deprotonated aroylhydrazones have been used in various catalytic and biological applications (Sutradhar et al., 2013; Yang et al., 2019; Yang, Chen et al., 2020). Aroylhydrazones synthesized from aryl­hydrazides and aromatic aldehydes/ketones with a nitro­gen or oxygen atom in the ortho position can coordinate to metals in a tridentate chelating mode (Cindrić et al., 2017; Patel et al., 2018; You et al., 2018), and they have been used as probes and chemosensors for various metal ions. For example, the aroylhydrazone ligand containing a 4-(di­methyl­amino)­phenylprop­enyl or benzamide substituent specifically senses Al3+, Cd2+ (Kar et al., 2015) and Ni2+ ions (Manna et al., 2019) through significant changes in their absorption and emission spectroscopic behaviour after complexation with the metal ions. Here, we study the coord­ination attributes of an aroylhydrazone with cadmium.graphic file with name e-77-00153-scheme1.jpg

Structural commentary  

In the title complex, the Cd2+ ion possesses a distorted octa­hedral N4O2 coordination environment, which is generated by the two deprotonated ligands L (Fig. 1). The complex is bis­ected by a twofold crystallographic axis with the two ligands being equivalent by crystal symmetry. The complex is isomorphous to its Mn, Co, Ni, Cu and Zn counterparts (Yang et al., 2019; Yang, Zhang et al., 2020). The O2—C7 and C7—N1 bond lengths in the title compound are 1.255 (5) Å and 1.355 (5) Å, respectively, indicating that the coordinated ligands are closer to the keto than the enol form, but are slightly more delocalized than in the purely keto tautomeric form as found in the free ligand form of similar aroylhydrazones. The free ligand L has not yet been structurally described, but the equivalent bond distances in e.g. 2-hy­droxy-N′-[1-(3-methyl­pyrazin-2-yl)ethyl­idene]benzohydrazide, L 1, with one more methyl group on pyrazine (Tai & Feng, 2008), were reported as 1.235 and 1.340 Å, respectively.

Figure 1.

Figure 1

The mol­ecular structure of [Cd(C13H11N4O2)2] with displacement ellipsoids at the 30% probability level. Symmetry code: (xi) −x + 1, −y + 1, z.

The ligand in the title complex is close to planar (the mean deviation from the average plane is 0.0763 Å). The largest deviation from planarity is only 0.145 (3) Å, observed for atom C12 of the pyrazine ring. The Cd1 atom is nearly coplanar with each of the two ligands (deviation = 0.316 Å). The dihedral angle between the two ligands is 78.705 (16)°. The oxygen atom O1 of the phenolic group remains protonated, and forms an intra­molecular hydrogen bond O1—H1⋯N1 [2.557 (4) Å, 146 (7)°].

The intra­molecular hydrogen bond stabilizes the planar geometry of the ligand. The presence of the intra­molecular hydrogen bond does also appear to affect the propensity of the metal complex towards crystallization. We found that when the hydroxyl group is in the meta or para position {3-hy­droxy-N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide (L 2) or 4-hy­droxy-N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide (L 3)}, where no intra­molecular hydrogen bond can be formed, crystallization is substanti­ally delayed and a much longer time is required for the complexes to crystallize.

In the isomorphous Mn, Co, Ni, Cu and Zn M(L)2 complexes, the ligands are also close to planar (the mean deviation from the average plane ranges from 0.0608 to 0.0754 Å). In di­methyl­formamide (DMF)-solvated Ni and Cu complexes of similar ligands L 2 {3-hy­droxy-N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide} and L 3 {4-hy­droxy-N′-[1-(pyr­az­in-2-yl)ethyl­idene]benzohydrazide} [M(L 2)2]·2(DMF) (M = Ni, Cu and Zn) and [Cu(L 3)2]·2(DMF) (M = Ni and Cu), the planarity of the ligands is reduced, with a mean deviation from the average plane between 0.2164 to 0.2290 Å.

In the title complex, the Cd1—N3, Cd1—N2 and Cd1—O2, bond lengths are 2.356 (3), 2.273 (3) and 2.277 (4) Å, respectively, which are close to typical for Cd2+ complexes closely related to the title compound, such as bis­{N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazidato}cadmium(II) (Sen et al., 2005), bis­{2-[2-(pyridin-2-yl­methyl­ene)hydrazine-1-carbon­yl]benzene­sulfonamide}­cadmium(II) (Sousa-Pedrares et al., 2008) and bis­[N′-(2-hy­droxy­benzo­yl)picolino­hydra­zon­am­ide]­cadmium(II) (Xu et al., 2014), bis­{N′-[di(pyridin-2-yl)methyl­ene]benzohydrazidato}cadmium(II) (Kuriakose et al., 2017) [the range of N—Cd is 2.360 (12)–2.4135 (11) Å, N(middle)—Cd 2.225 (2)–2.295 (2) Å, O—Cd 2.240 (2)–2.358 (10) Å].

The coordination environment of the Cd ion is highly distorted octa­hedral, caused by the rigidity of the ligand and its small N—N and N—O bite angles of only 69.86 (11) (N3—Cd1—N2) and 69.83 (11)° (N2—Cd1—O2). As a result, the N—Cd—O, N–Cd—N and O—Cd—O angles in the title compound deviate substanti­ally from the values of 180 and 90° expected for an idealized octa­hedral complex. The trans angles range from 139.07 (10) to 170.63 (17)°, while the cis angles vary between 69.83 (11) and 117.27 (11)°.

Bond distances and angles within the isomorphous series of the Mn, Co, Ni, Cu, Zn, and Cd complexes follow a trend consistent with the metal ion radius (Table 1). Bond lengths first decrease and then increase, with a minimum value for the Ni or Cu complexes, and a maximum for the title cadmium complex as a result of its substanti­ally larger ion radius as the only 4d complex of the series. The trend of the N—M—O angle (within the same ligand) is opposite to that of the metal ion radius, and first increases and then decreases, with the maximum value appearing for the Ni complex (Brines et al., 2007; Reger et al., 2012; Sola et al., 1994; Database of Ionic Radii, 2020). The distortion from octa­hedral geometry increases with ion radius, and is most pronounced for the title cadmium complex, as can be seen for e.g. the N(mid)—M—N(mid) angles, which range from 172.30 to 174.46° for the 3d complexes, while the value for the 4d Cd complex is 170.63 (17)°.

Table 1. Comparative analysis of ion radius and the bond lengths and bond angles of coordination polyhedra (Å, °).

  Mn2+ Co2+ Ni2+ Cu2+ Zn2+ Cd2+
Ion radius 0.83 0.745 0.69 0.73 0.74 0.95
M—N 2.283 2.151 2.114 2.192 2.215 2.356
M—N(mid) 2.193 2.050 1.994 1.979 2.074 2.273
M—O 2.148 2.102 2.097 2.130 2.125 2.277
N(mid)—M—N(mid) 174.46 172.30 173.86 173.64 173.97 170.63
N—M—O (within the same ligand) 142.08 148.53 153.95 151.98 148.84 139.07
O—M—O 99.76 102.86 95.26 97.43 98.87 95.39
N(mid)—M—O (within different ligands) 104.25 99.33 98.33 98.79 100.49 103.58
CSD refcode CIZJEDa CIZGOKb CIZGAWc COYVUKd CIZFUPe 2051612f

Notes: (a) Yang (2019); (b) Yang (2019); (c) Yang, Zhang et al. (2020); (d) Yang, Zhang et al. (2019); (e) Yang (2019); (f) this work.

Supra­molecular features  

Two types of weak inter­molecular inter­actions, C—H⋯N and C—H⋯O hydrogen bonds and π–π stacking and C—H⋯π inter­actions, have a significant impact on the packing of the complexes in the solid state. Three inter­molecular hydrogen bonds (Table 2) are observed in the crystal. Two hydrogen bonds (C10—H10⋯O2ii and C12—H12⋯O1i, symmetry code given in Table 2; Fig. 2 a) form a sheet parallel to the crystallographic bc plane. Adjacent sheets of the complex are connected to each other via a weak C4—H4⋯N4iii inter­action, forming a three-dimensional network (Table 2 and Fig. 2 b). Inter­molecular π–π stacking is observed between the pyrazine rings and benzene rings of ligands in neighbouring complexes [the centroid–centroid distance between N3–N4/C9–C12 and C1–C6vi [symmetry code: (vi) x, y − Inline graphic, z − Inline graphic] is 3.641 (2) Å, with a slippage of 1.252 Å, Fig. 3. Inter­molecular inter­actions between carbon atoms C13 and the π ring of lateral benzene rings and pyrazine rings in neighbouring mol­ecules are found, namely C13—H13BCg1v [2.71 Å, Cg1 is the centroid of the C1–C6 ring; symmetry code: (v) −x + Inline graphic, y, z − Inline graphic] and C13–H13ACg2iv [2.86 Å, Cg2 is the centroid of the N3–N4/C9–C12; symmetry code: (iv) −x + Inline graphic, y, z + Inline graphic] (Fig. 3).

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and N3–N4/C9–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N4i 0.95 2.47 3.349 (6) 154
C10—H10⋯O2ii 0.95 2.55 3.283 (5) 134
C12—H12⋯O1iii 0.95 2.49 3.439 (5) 174
O1—H1⋯N1 0.90 (8) 1.76 (8) 2.557 (4) 146 (7)
C13—H13ACg2iv 0.98 2.86 3.740 (6) 149
C13—H13BCg1v 0.98 2.71 3.592 (6) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

Crystal packing of the title compound showing the O—H⋯O and C—H⋯N hydrogen bonds. For clarity, another symmetrical ligand coordinated with metal center has been omitted. Symmetry codes: (ii) x + Inline graphic, −y + 1, z − Inline graphic; (iii) x − Inline graphic, −y + 1, z − Inline graphic; (vii) x + Inline graphic, −y + 1, z + Inline graphic; (viii) x − Inline graphic, −y + 1, z + Inline graphic; (ix) x, y, z − 1; (x) x, y, z + 1.

Figure 3.

Figure 3

(a) Crystal packing of the title compound showing the C—H⋯π and π–π inter­actions. For clarity, the second ligand at each metal centre has been omitted. Symmetry codes: (iv) x, y − Inline graphic, z − Inline graphic; (v) −x + Inline graphic, y, z − Inline graphic; (vi) −x + Inline graphic, y, z + Inline graphic. (b) View down [100].

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.41, August 2020; Groom et al., 2016) for metal complexes involving the N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide ligand resulted in seven related metal complexes with exactly the same ligand. These are the already discussed isomorphous Mn, Co, Ni, Cu and Zn [M II(L)2] complexes (CCDC refcodes: CIZJED for M = Mn, CIZGOK for M = Co, CIZGAW for M = Ni (Yang, Zhang et al., 2020), COYVUK for M = Cu and CIZFUP for M = Zn) (Yang et al., 2019). In all of these complexes, the ligand L acts as a tridentate chelating ligand to generate a distorted octa­hedral structure with a close to planar ligand. Several complexes of related ligands have been found to be also isomorphous to the above series, crystallizing in the same Aba2 space group. These are a Co and a Zn complex bearing the ligand N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide (L 4, with one less hydroxyl group on benzene) (YELKUY, YELWUK; Tai et al., 2008) as well as four metal complexes involving the ligand 2-hy­droxy-N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide (L 5, substituted pyrazine group with pyridine group) with M = Cu2+, Ni2+, Zn2+ and Fe2+ [ADEYAK (Dang et al., 2006a ); XENFEC (Dang et al., 2006b ); HIGPOD (Barbazán et al., 2007); RADDOR (Zhang et al., 2010)].

There are also complexes of ligands L 4 and L 5 that are not isomorphous to the title complex: complex Cu2(L 4)2Cl2 is binuclear, where each Cu centre has two μ-chlorine ligands along with a tridentate coordinated L 4 mol­ecule, giving rise to a distorted square-pyramidal coordination environment. It belongs to the triclinic P Inline graphic space group (YELXAR; Tai et al., 2008). The cobalt complex [Co(L 5)2(ClO4)]·0.25(CH3OH) (IGAZAS; Shit et al., 2009) has a nearly ideal octa­hedral structure in the monoclinic P21/n space group, and the ligands have N—N and N—O bite angles of 81.70 to 83.11°. Cu(L 5)Br (HIGPIX; Barbazán et al., 2007) and Cu(L 5)(NO3) (YILYEY; You et al., 2018) have roughly square-planar coordination geometries. [Sb(L 5)Cl2]·H2O (YILYEY; Abboud et al., 2007) has a square-pyramidal coordination geometry in the monoclinic P21/n space group. Cu2(L 5)2Cl2 (NICYOP; Mondal et al., 2013) is a binuclear complex and each Cu centre has a square-pyramidal coordination geometry. It is isomorphic to Cu2(L 4)2Cl2. A Zn complex, Zn(L 1)2·H2O (XIYNUP; Tai et al., 2008) with the ligand L 1 with one more methyl group on pyrazine crystallizes in the monoclinic P21/n space group. The planarity of the ligand is decreased compared to the title complex, and the Zn ion exhibits a distorted octa­hedral geometry. Also reported are five similar compounds featuring the ligands L 2 and L 3 with the hydroxyl group in the meta and para positions of the benzene ring, respectively. They crystallize as DMF solvates [M(L 2)2]·2(DMF) (DMF = di­methyl­formamide; M = Ni, Cu and Zn; CIZHIF, CIZGUQ and CIZJAZ) and [Cu(L3)2]·2(DMF) (M = Ni and Cu; CIZHUR and COYWEV) (Yang et al., 2019; Yang, Zhang et al., 2020) in the ortho­rhom­bic Pbcn space group. They also feature distorted octa­hedral structures and the planarity of the ligands is decreased compared to the title compound. All the complexes with the [M(Ligand)2] core are distorted octa­hedral, and all metal centres have a mer geometry. All ligands L, L 1, L 2, L 3, L 4 and L 5 are tridentate chelating.

Synthesis and crystallization  

The title complex and ligand were synthesized according to literature procedures (Yang, Zhang et al., 2020; Yang et al., 2019). The complex was obtained by mixing a solution of the aroylhydrazone (0.02 mmol) in methanol (2 mL) and a solution of Cd(NO3)2·4H2O (0.01 mmol) in water (2 mL). After two weeks of static volatilization in a test tube at room temperature, clear light-yellow block-shaped crystals of Cd(L)2 were obtained (5.6 mg, yield 90%) (calculated based on metal ions), m.p. > 543 K. IR (KBr): ν (cm−1) = 1594 s, 1534 s, 1518 s, 1489 s, 1458 s, 1401 w, 1349 s, 1299 s, 1248 m, 1225 m, 1198 m, 1162 m, 1147 s, 1106 w, 1072 s, 1042 m, 1029 m, 910 w, 850 w, 833 w, 786 w, 764 m, 701 m, 662 w, 565 w, 541 w, 492 w, 419 w, 406 w.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were placed in calculated positions (Csp 2—H = 0.95 Å and Csp 3—H = 0.98 Å) and were included in the refinement in a riding-model approximation, with U iso(H) set to 1.2U eq(Csp 2) and 1.5U eq(Csp 3). The O-bound H atom was located based on a difference-Fourier map and its position was freely refined. It was assigned U iso(H) = 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula [Cd(C13H11N4O2)2]
M r 622.91
Crystal system, space group Orthorhombic, A b a2
Temperature (K) 108
a, b, c (Å) 12.6654 (1), 17.63940 (18), 10.88800 (11)
V3) 2432.49 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 7.64
Crystal size (mm) 0.12 × 0.10 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.519, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36223, 2475, 2458
R int 0.038
(sin θ/λ)max−1) 0.630
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.075, 1.20
No. of reflections 2475
No. of parameters 182
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.99
Absolute structure Flack x determined using 1131 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter −0.012 (4)

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXS and SHELXP (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021000657/zl5004sup1.cif

e-77-00153-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021000657/zl5004Isup2.hkl

e-77-00153-Isup2.hkl (198.6KB, hkl)

CCDC reference: 2051612

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Guangzhou University and Zi-Zhou Wang for recording the X-ray crystallographic data for the crystals.

supplementary crystallographic information

Crystal data

[Cd(C13H11N4O2)2] Dx = 1.701 Mg m3
Mr = 622.91 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Aba2 Cell parameters from 31744 reflections
a = 12.6654 (1) Å θ = 2.5–76.5°
b = 17.63940 (18) Å µ = 7.64 mm1
c = 10.88800 (11) Å T = 108 K
V = 2432.49 (4) Å3 Block, clear light yellow
Z = 4 0.12 × 0.10 × 0.08 mm
F(000) = 1256

Data collection

Rigaku Oxford Diffraction XtaLAB Synergy R, DW system, HyPix diffractometer 2475 independent reflections
Radiation source: Rotating-anode X-ray tube 2458 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.038
ω scans θmax = 76.2°, θmin = 5.0°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) h = −14→15
Tmin = 0.519, Tmax = 1.000 k = −21→22
36223 measured reflections l = −13→13

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0473P)2 + 1.8799P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075 (Δ/σ)max < 0.001
S = 1.20 Δρmax = 0.72 e Å3
2475 reflections Δρmin = −0.99 e Å3
182 parameters Extinction correction: SHELXL (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.00067 (9)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack x determined using 1131 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Secondary atom site location: difference Fourier map Absolute structure parameter: −0.012 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6224 (3) 0.6694 (2) 0.9539 (4) 0.0255 (8)
C2 0.7242 (3) 0.6887 (2) 0.9964 (4) 0.0322 (9)
C3 0.7340 (5) 0.7364 (3) 1.0986 (5) 0.0422 (13)
H3 0.802253 0.749817 1.127537 0.051*
C4 0.6462 (5) 0.7642 (2) 1.1578 (4) 0.0439 (12)
H4 0.654329 0.795728 1.227906 0.053*
C5 0.5452 (5) 0.7465 (2) 1.1153 (4) 0.0399 (11)
H5 0.484590 0.766539 1.155165 0.048*
C6 0.5341 (4) 0.6995 (2) 1.0149 (4) 0.0316 (8)
H6 0.465320 0.687281 0.986326 0.038*
C7 0.6043 (3) 0.61456 (19) 0.8526 (3) 0.0220 (7)
C8 0.7448 (4) 0.5100 (2) 0.6398 (5) 0.0240 (9)
C9 0.7096 (3) 0.4582 (2) 0.5418 (4) 0.0247 (8)
C10 0.7783 (3) 0.4270 (2) 0.4540 (4) 0.0319 (9)
H10 0.851195 0.439329 0.458193 0.038*
C11 0.6425 (4) 0.3646 (2) 0.3636 (4) 0.0365 (10)
H11 0.616344 0.331030 0.302482 0.044*
C12 0.5728 (3) 0.3950 (2) 0.4482 (4) 0.0282 (8)
H12 0.500036 0.382194 0.443503 0.034*
C13 0.8597 (3) 0.5252 (3) 0.6647 (5) 0.0388 (11)
H13A 0.879522 0.502577 0.743598 0.058*
H13B 0.871828 0.580037 0.667603 0.058*
H13C 0.902554 0.502866 0.599080 0.058*
Cd1 0.500000 0.500000 0.68642 (13) 0.01811 (16)
N1 0.6931 (3) 0.58932 (17) 0.7964 (3) 0.0236 (6)
N2 0.6699 (2) 0.54015 (16) 0.7035 (3) 0.0211 (6)
N3 0.6056 (2) 0.44157 (17) 0.5356 (3) 0.0227 (6)
N4 0.7454 (4) 0.3809 (2) 0.3652 (4) 0.0398 (9)
O1 0.8136 (3) 0.66287 (19) 0.9425 (3) 0.0393 (7)
H1 0.796 (6) 0.631 (4) 0.880 (7) 0.059*
O2 0.5115 (2) 0.5951 (2) 0.8272 (4) 0.0271 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.031 (2) 0.0204 (17) 0.0249 (18) −0.0051 (13) −0.0068 (15) 0.0044 (15)
C2 0.039 (2) 0.0289 (18) 0.0291 (19) −0.0115 (17) −0.0106 (18) 0.0059 (16)
C3 0.062 (3) 0.0319 (18) 0.032 (2) −0.019 (2) −0.020 (2) 0.004 (2)
C4 0.076 (4) 0.029 (2) 0.026 (2) −0.015 (2) −0.010 (2) −0.0013 (17)
C5 0.064 (4) 0.025 (2) 0.030 (2) −0.010 (2) 0.000 (2) −0.0017 (18)
C6 0.041 (2) 0.0249 (19) 0.028 (2) −0.0056 (19) −0.003 (2) −0.0002 (16)
C7 0.0221 (17) 0.0225 (16) 0.0214 (16) −0.0039 (13) −0.0030 (14) 0.0033 (14)
C8 0.014 (2) 0.0278 (18) 0.031 (2) 0.0012 (15) 0.0002 (18) 0.0100 (16)
C9 0.0225 (19) 0.0237 (16) 0.0279 (18) 0.0048 (13) 0.0074 (15) 0.0079 (14)
C10 0.030 (2) 0.0273 (18) 0.038 (2) 0.0084 (15) 0.0141 (17) 0.0076 (17)
C11 0.055 (3) 0.0276 (19) 0.027 (2) 0.0030 (19) 0.010 (2) −0.0020 (16)
C12 0.033 (2) 0.0258 (17) 0.0261 (17) −0.0022 (15) 0.0027 (16) 0.0024 (16)
C13 0.0136 (18) 0.045 (2) 0.058 (3) −0.0028 (18) 0.0024 (19) 0.010 (3)
Cd1 0.0110 (2) 0.0243 (2) 0.0190 (2) −0.00150 (9) 0.000 0.000
N1 0.0208 (15) 0.0243 (15) 0.0256 (15) −0.0053 (12) −0.0046 (12) 0.0016 (12)
N2 0.0155 (14) 0.0234 (12) 0.0243 (16) −0.0022 (11) 0.0008 (12) 0.0048 (12)
N3 0.0207 (15) 0.0243 (14) 0.0230 (13) 0.0016 (11) 0.0039 (12) 0.0029 (12)
N4 0.049 (2) 0.0302 (17) 0.040 (2) 0.0100 (17) 0.0206 (18) 0.0047 (16)
O1 0.0320 (17) 0.0460 (17) 0.0399 (16) −0.0136 (13) −0.0121 (14) 0.0016 (15)
O2 0.0208 (14) 0.0311 (17) 0.0293 (18) −0.0023 (10) −0.0010 (11) −0.0091 (15)

Geometric parameters (Å, º)

C1—C6 1.405 (7) C10—N4 1.330 (7)
C1—C2 1.412 (6) C10—H10 0.9500
C1—C7 1.485 (5) C11—N4 1.335 (7)
C2—O1 1.354 (6) C11—C12 1.385 (6)
C2—C3 1.401 (7) C11—H11 0.9500
C3—C4 1.375 (8) C12—N3 1.324 (5)
C3—H3 0.9500 C12—H12 0.9500
C4—C5 1.396 (8) C13—H13A 0.9800
C4—H4 0.9500 C13—H13B 0.9800
C5—C6 1.378 (6) C13—H13C 0.9800
C5—H5 0.9500 Cd1—N2 2.273 (3)
C6—H6 0.9500 Cd1—N2i 2.273 (3)
C7—O2 1.255 (5) Cd1—O2 2.277 (4)
C7—N1 1.355 (5) Cd1—O2i 2.277 (4)
C8—N2 1.289 (6) Cd1—N3i 2.356 (3)
C8—C9 1.475 (7) Cd1—N3 2.356 (3)
C8—C13 1.504 (7) N1—N2 1.365 (4)
C9—N3 1.351 (5) O1—H1 0.90 (8)
C9—C10 1.405 (5)
C6—C1—C2 118.7 (4) N3—C12—H12 119.4
C6—C1—C7 118.4 (4) C11—C12—H12 119.4
C2—C1—C7 122.8 (4) C8—C13—H13A 109.5
O1—C2—C3 118.2 (4) C8—C13—H13B 109.5
O1—C2—C1 122.7 (4) H13A—C13—H13B 109.5
C3—C2—C1 119.1 (5) C8—C13—H13C 109.5
C4—C3—C2 121.0 (5) H13A—C13—H13C 109.5
C4—C3—H3 119.5 H13B—C13—H13C 109.5
C2—C3—H3 119.5 N2—Cd1—N2i 170.63 (17)
C3—C4—C5 120.4 (4) N2—Cd1—O2 69.83 (11)
C3—C4—H4 119.8 N2i—Cd1—O2 103.58 (11)
C5—C4—H4 119.8 N2—Cd1—O2i 103.58 (11)
C6—C5—C4 119.4 (5) N2i—Cd1—O2i 69.83 (11)
C6—C5—H5 120.3 O2—Cd1—O2i 95.4 (2)
C4—C5—H5 120.3 N2—Cd1—N3i 117.27 (11)
C5—C6—C1 121.4 (5) N2i—Cd1—N3i 69.86 (11)
C5—C6—H6 119.3 O2—Cd1—N3i 100.55 (13)
C1—C6—H6 119.3 O2i—Cd1—N3i 139.07 (10)
O2—C7—N1 126.0 (3) N2—Cd1—N3 69.86 (11)
O2—C7—C1 119.0 (4) N2i—Cd1—N3 117.27 (11)
N1—C7—C1 114.9 (3) O2—Cd1—N3 139.07 (10)
N2—C8—C9 115.0 (4) O2i—Cd1—N3 100.55 (13)
N2—C8—C13 122.8 (5) N3i—Cd1—N3 91.59 (16)
C9—C8—C13 122.2 (4) C7—N1—N2 111.4 (3)
N3—C9—C10 119.0 (4) C8—N2—N1 120.2 (3)
N3—C9—C8 117.7 (4) C8—N2—Cd1 121.6 (3)
C10—C9—C8 123.2 (4) N1—N2—Cd1 117.5 (2)
N4—C10—C9 122.7 (4) C12—N3—C9 118.5 (3)
N4—C10—H10 118.6 C12—N3—Cd1 126.5 (3)
C9—C10—H10 118.6 C9—N3—Cd1 115.1 (3)
N4—C11—C12 122.1 (4) C10—N4—C11 116.5 (4)
N4—C11—H11 119.0 C2—O1—H1 109 (5)
C12—C11—H11 119.0 C7—O2—Cd1 114.1 (3)
N3—C12—C11 121.2 (4)
C6—C1—C2—O1 −179.3 (4) C8—C9—C10—N4 −179.3 (4)
C7—C1—C2—O1 4.8 (6) N4—C11—C12—N3 −0.4 (6)
C6—C1—C2—C3 0.8 (6) O2—C7—N1—N2 1.7 (5)
C7—C1—C2—C3 −175.2 (4) C1—C7—N1—N2 −179.1 (3)
O1—C2—C3—C4 −179.7 (4) C9—C8—N2—N1 −179.8 (3)
C1—C2—C3—C4 0.2 (6) C13—C8—N2—N1 1.4 (6)
C2—C3—C4—C5 −1.3 (7) C9—C8—N2—Cd1 10.1 (5)
C3—C4—C5—C6 1.3 (6) C13—C8—N2—Cd1 −168.8 (3)
C4—C5—C6—C1 −0.3 (6) C7—N1—N2—C8 −179.7 (3)
C2—C1—C6—C5 −0.7 (6) C7—N1—N2—Cd1 −9.2 (4)
C7—C1—C6—C5 175.4 (4) C11—C12—N3—C9 −1.0 (6)
C6—C1—C7—O2 −2.2 (5) C11—C12—N3—Cd1 179.4 (3)
C2—C1—C7—O2 173.7 (4) C10—C9—N3—C12 1.5 (5)
C6—C1—C7—N1 178.6 (3) C8—C9—N3—C12 −179.9 (3)
C2—C1—C7—N1 −5.5 (5) C10—C9—N3—Cd1 −178.8 (3)
N2—C8—C9—N3 −6.2 (5) C8—C9—N3—Cd1 −0.2 (4)
C13—C8—C9—N3 172.6 (4) C9—C10—N4—C11 −0.6 (6)
N2—C8—C9—C10 172.3 (4) C12—C11—N4—C10 1.2 (6)
C13—C8—C9—C10 −8.8 (6) N1—C7—O2—Cd1 6.4 (5)
N3—C9—C10—N4 −0.8 (6) C1—C7—O2—Cd1 −172.7 (3)

Symmetry code: (i) −x+1, −y+1, z.

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and N3–N4/C9–C12 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C4—H4···N4ii 0.95 2.47 3.349 (6) 154
C10—H10···O2iii 0.95 2.55 3.283 (5) 134
C12—H12···O1iv 0.95 2.49 3.439 (5) 174
O1—H1···N1 0.90 (8) 1.76 (8) 2.557 (4) 146 (7)
C13—H13A···Cg2v 0.98 2.86 3.740 (6) 149
C13—H13B···Cg1vi 0.98 2.71 3.592 (6) 150

Symmetry codes: (ii) −x+3/2, y+1/2, z+1; (iii) x+1/2, −y+1, z−1/2; (iv) x−1/2, −y+1, z−1/2; (v) −x+3/2, y, z+1/2; (vi) −x+3/2, y, z−1/2.

Funding Statement

This work was funded by the National Natural Science Foundation of China grant 41701349. GDAS’ Project of Science and Technology Development grant 2020GDASYL-20200103015. Nanyue Talent Fund grant GDIMYET20180205.

References

  1. Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642–3646.
  2. Barbazán, P., Carballo, R. & Vázquez-López, E. M. (2007). CrystEngComm, 9, 668–675.
  3. Brines, L. M., Shearer, J., Fender, J. K., Schweitzer, D., Shoner, S. C., Barnhart, D., Kaminsky, W., Lovell, S. & Kovacs, J. A. (2007). Inorg. Chem. 46, 9267–9277. [DOI] [PMC free article] [PubMed]
  4. Cindrić, M., Bjelopetrović, A., Pavlović, G., Damjanović, V., Lovrić, J., Matković-Čalogović, D. & Vrdoljak, V. (2017). New J. Chem. 41, 2425–2435.
  5. Dang, D.-B., Bai, Y. & Duan, C.-Y. (2006a). Acta Cryst. E62, m1567–m1568.
  6. Dang, D.-B., Bai, Y. & Duan, C.-Y. (2006b). Acta Cryst. E62, m2290–m2292.
  7. Database of Ionic Radii (2020). Hosted by the Atomistic Simulation Group in the Materials Department of Imperial College, http://abulafia.mt.ic.ac.uk/shannon/PTABLE.php
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Huang, W., Shen, F.-X., Wu, S.-Q., Liu, L., Wu, D., Zheng, Z., Xu, J., Zhang, M., Huang, X.-C., Jiang, J., Pan, F., Li, Y., Zhu, K. & Sato, O. (2016). Inorg. Chem. 55, 5476–5484. [DOI] [PubMed]
  10. Kalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331–344. [DOI] [PubMed]
  11. Kar, C., Samanta, S., Goswami, S., Ramesh, A. & Das, G. (2015). Dalton Trans. 44, 4123–4132. [DOI] [PubMed]
  12. Kuriakose, D., Aravindakshan, A. A. & Kurup, M. R. P. (2017). Polyhedron, 127, 84–96.
  13. Manna, A. K., Chowdhury, S. & Patra, G. K. (2019). Dalton Trans. 48, 12336–12348. [DOI] [PubMed]
  14. Mondal, S., Naskar, S., Dey, A. K., Sinn, E., Eribal, C., Herron, S. R. & Chattopadhyay, S. K. (2013). Inorg. Chim. Acta, 398, 98–105.
  15. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  16. Patel, R. N., Singh, Y., Singh, Y. P., Patel, A. K., Patel, N., Singh, R., Butcher, R. J., Jasinski, J. P., Colacio, E. & Palacios, M. A. (2018). New J. Chem. 42, 3112–3136.
  17. Reger, D. L., Pascui, A. E., Smith, M. D., Jezierska, J. & Ozarowski, A. (2012). Inorg. Chem. 51, 11820–11836. [DOI] [PubMed]
  18. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  19. Sen, S., Talukder, P., Rosair, G. & Mitra, S. (2005). Struct. Chem. 16, 605–610.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Shit, S., Chakraborty, J., Samanta, B., Slawin, A. M. Z., Gramlich, V. & Mitra, S. (2009). Struct. Chem. 20, 633–642.
  23. Sola, M., Mestres, J., Duran, M. & Carbo, R. (1994). J. Chem. Inf. Comput. Sci. 34, 1047–1053.
  24. Sousa-Pedrares, A., Camiña, N., Romero, J., Durán, M. L., García-Vázquez, J. A. & Sousa, A. (2008). Polyhedron, 27, 3391–3397.
  25. Sutradhar, M., Kirillova, M. V., Guedes da Silva, M. F. C., Liu, C.-M. & Pombeiro, A. J. L. (2013). Dalton Trans. 42, 16578–16587. [DOI] [PubMed]
  26. Tai, X.-S. & Feng, Y.-M. (2008). Acta Cryst. E64, o707–o707.
  27. Tai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m656. [DOI] [PMC free article] [PubMed]
  28. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  29. Xu, S.-P., Yang, F.-L., Zhu, G.-Z., Shi, H.-L. & Li, X.-L. (2014). Polyhedron, 68, 1–9.
  30. Yang, P. (2019). CSD Communications (refcodes CIZJED, CIZGOK and CIZFUP). CCDC, Cambridge, England.
  31. Yang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248–111248. [DOI] [PubMed]
  32. Yang, P., Zhang, D.-D., Wang, Z.-Z., Liu, H.-Z., Shi, Q.-S. & Xie, X.-B. (2019). Dalton Trans. 48, 17925–17935. [DOI] [PubMed]
  33. Yang, P., Zhang, L.-L., Wang, Z.-Z., Zhang, D.-D., Liu, Y.-M., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 203, 110919–110919. [DOI] [PubMed]
  34. You, Z., Yu, H., Li, Z., Zhai, W., Jiang, Y., Li, A., Guo, S., Li, K., Lv, C. & Zhang, C. (2018). Inorg. Chim. Acta, 480, 120–126.
  35. Zhang, L., Xu, G.-C., Xu, H.-B., Mereacre, V., Wang, Z.-M., Powell, A. K. & Gao, S. (2010). Dalton Trans. 39, 4856–4868. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021000657/zl5004sup1.cif

e-77-00153-sup1.cif (2.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021000657/zl5004Isup2.hkl

e-77-00153-Isup2.hkl (198.6KB, hkl)

CCDC reference: 2051612

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES