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A B S T R A C T   

Leflunomide (LF) represents the prototype member of dihydroorotate dehydrogenase (DHODH) enzyme in-
hibitors. DHODH is a mitochondrial inner membrane enzyme responsible for catalytic conversion of dihy-
droorotate into orotate, a rate-limiting step in the de novo synthesis of the pyrimidine nucleotides. LF produces 
cellular depletion of pyrimidine nucleotides required for cell growth and proliferation. Based on the affected cells 
the outcome can be attainable as immunosuppression, antiproliferative, and/or the recently gained attention of 
the antiviral potentials of LF and its new congeners. Also, protein tyrosine kinase inhibition is an additional 
mechanistic benefit of LF, which inhibits immunological events such as cellular expansion and immunoglobulin 
production with an enhanced release of immunosuppressant cytokines. 

LF is approved for the treatment of autoimmune arthritis of rheumatoid and psoriatic pathogenesis. Also, LF 
has been used off-label for the treatment of relapsing-remitting multiple sclerosis. However, LF antiviral activity 
is repurposed and under investigation with related compounds under a phase-I trial as a SARS CoV-2 antiviral in 
cases with COVID-19. 

Despite success in improving patients’ mobility and reducing joint destruction, reported events of LF-induced 
liver injury necessitated regulatory precautions. LF should not be used in patients with hepatic impairment or in 
combination with drugs elaborating a burden on the liver without regular monitoring of liver enzymes and serum 
bilirubin as safety biomarkers. 

This study aims to review the pharmacological and safety profile of LF with a focus on the LF-induced hepatic 
injury from the perspective of pathophysiology and possible protective agents.   

1. Introduction 

Leflunomide (LF) is an immunomodulator and a member of the 
disease-modifying antirheumatic family of drugs (DMARDs). LF is used 
effectively in solo or as combined therapy in autoimmune arthritis [1]. 
Basic studies reported immunosuppressant, antirheumatic, 

antineoplastic, and antiviral potentials of LF [2–6]. While clinical 
studies secured an antirheumatic approval of LF in autoimmune 
arthritis, further studies on antineoplastic effectiveness have so far been 
inconclusive [7–9]. Additionally, clinical studies on the benefit of LF in 
treating refractory viral infections such as cytomegalovirus [10] and BK 
polyomavirus [11–14] have also been undertaken without yielding a 
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final decision to certify. Currently, a clinical trial is underway to study 
the effectiveness of LF in mild cases with COVID-19 [15]. 

Leflunomide was first launched at the end of 1998 with alarming 
events of drug-induced liver injury (DILI) ranging from a mild elevation 
of serum transaminases to life-threatening hepatitis [16–24]. In the 
early 2000s, the FDA had labelled LF with a precautionary regular he-
patic function monitoring throughout the therapeutic regimen [25]. 
Studies-driving this decision involved professional and community 
concerns of LF-induced detrimental effects on the liver 
[16,22,24,26,27]. 

2. Chemistry and pharmacokinetics 

LF is an isoxazole antirheumatic and immunosuppressant approved 
medication with antineoplastic and antimicrobial investigational situa-
tion [5,9,28–39]. LF is used through the oral route in a formulation of 
10, 20, or 100 mg per tablet. It is well absorbed, and upon exposure to 
first-pass intestinal and hepatic metabolism, LF is almost totally trans-
formed into its active metabolite teriflunomide (A77-17226). In the 
liver, LF is a substrate of the hepatic microsomal enzymes CYP2C9, 
CYP3A4, and CYP2A1 [1,40]. Cytochrome P450 enzymes are respon-
sible for the opening of the LF isoxazole ring and the production of 
teriflunomide in two forms (E & Z), with the former having a higher 
potency [41]. Drugs that have an inducing or inhibitory effect on these 
hepatic microsomal enzymes carry the risk of adverse drug interactions 
with LF [1]. LF has a short plasma half-life (t1/2) of 3.5 h; however, 
teriflunomide t1/2 is ~360 h. The steady-state concentration (Css) of LF/ 
teriflunomide is attainable after ~2.5 months. To hasten LF Css, a 
loading dose regimen of 100 mg/day for three days is followed by a 
maintenance dose of 10–20 mg/day onward. Teriflunomide is elimi-
nated through the hepatobiliary route in unchanged form. In the case of 
LF toxicity, or the need for abrupt LF withdrawal, an accelerated drug 
elimination procedure using cholestyramine or activated charcoal 
should be followed to lower the teriflunomide plasma concentration to 
0.02 mg/L, which would take two years to be accomplished without this 
procedure [1,42,43]. Teriflunomide has a 99% plasma protein-binding 
capacity and 11 L volume of distribution with an incapability of being 
dialyzed [44,45]. 

3. Pharmacodynamics of LF 

Teriflunomide is the biologically active mediator of LF actions 
[35,46,47]. LF acts through the inhibition of dihydroorotate dehydro-
genase (DHODH), an inner mitochondrial membrane enzyme that cat-
alyzes the rate-limiting step of the de novo pathway of pyrimidine 
biosynthesis [48]. Cellular regeneration and growth can be fulfilled 
through a salvage pathway with a two-fold coverage of pyrimidine 
nucleotide cellular requirements; however, the active proliferation of 
cells such as lymphocytes clonal expansion requires up to eightfold in-
crease of pyrimidine nucleotides with a mandated dependence on the de 
novo pathway [49] Fig. 1. 

3.1. Immunomodulator anti-inflammatory and antirheumatic 

Immune-mediated disorders are associated with the active expansion 
of autoimmune lymphocytes and other innate immune cells such as 
monocytes and macrophages. The main and early characterized mode of 
action of LF is the cellular depletion of the pyrimidine nucleic acid 
building blocks with a milieu-dependent outcome such as inhibition of 
autoimmune lymphocyte expansion and, consequently, inhibition of 
immunokine and immunoglobulin production [2,50]. Additionally, LF 
acts through the inhibition of the tyrosine kinase activity responsible for 
the signal transduction of many vital pathways in the immune response 
[3]. For instance, the inhibition of immunoglobulin class switching of 
IgM to IgG1, which is mediated through IL4-activated JAK3/STAT6 
pathway [51] Fig. 2. Similarly, the activation of T-cell proliferation by 

the T-cell growth factor IL2 was also inhibited with a deficiency of clonal 
expansion [52,53]. LF inhibited signal transduction of the T-cell re-
ceptors stimulated by anti-CD3 mAb in Jurkat cells; this finding supports 
tyrosine phosphorylation inhibition as a mechanism of the immuno-
suppressive function of LF [54] Table 1. 

Fig. 1. Leflunomide inhibits de novo synthesis of pyrimidine through inhibition 
of the mitochondrial enzyme DHODH. 

Fig. 2. Leflunomide inhibits the immune system through inhibition of tyrosine 
kinase phosphorylation of the JAK3/STAT6 and immunoglobulin 
class switching. 
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Studies have highlighted the immunosuppressant activity of LF 
through the inhibition of the PI3K/Akt/mTOR [55]. Mammalian target 
of rapamycin (mTOR) is a serine/threonine kinase activated by the 
upstream effector phosphoinositide 3 kinase (PI3K). Downstream, 
mTOR induces cellular translational machinery in favor of cell growth, 
survival, and proliferation [55]. Akt and mTOR are important de-
terminants of activated B-cell expansion and fate [56]. S6 Kinase 1 
(S6K1)—a serine/threonine kinase—is a predominant downstream 
translational effector in the Akt/mTOR cell growth/survival pathway. 
LF and its metabolite teriflunomide inhibit S6K1 activity with the arrest 
of the cell cycle in the S phase and, hence inhibit cell proliferation [57]. 
Additionally, mast cells undertake major and versatile immune defense 
roles. Mast cells play a crucial role in the pathogenesis of autoimmune 
and inflammatory pathological conditions [58]. Mast cells are abun-
dantly detected in the synovial membrane of joints in patients with RA 
[59]. LF is reported to inhibit PI3K/Akt stimulation with the induction of 
mast cell apoptosis [60]. 

Early in the development of LF, the anti-inflammatory benefits were 
reported [61,62]. Manipulating innate immune responses is considered 
the anti-inflammatory gateway of LF. In a mouse model of lupus 
nephritis, LF inhibited the destructive tissue inflammatory pathway 
mediated through Toll-like receptor 9 (TLR9) signaling pathway with a 
reduction in the autoantibody production and immune complex depo-
sition in the renal tissue [63]. LF anti-inflammatory activity is reported 
in a clinical study of patients with active rheumatoid arthritis. The main 
findings in this study are the reduction of the inflammatory joint 
destruction. IL1β and matrix metalloproteinases (MMP) such as MMP1 
are reduced upon treatment with LF [64]. This may be explained by the 
inhibition of the TNF-α-dependent activation of NF-κB [65]. Further-
more, teriflunomide, the functioning metabolite of LF, was reported as 
being an inhibitor of neuroinflammatory events associated with HIV 
infection independent of viral replication which is attributed to the in-
hibition of the secretion of the proinflammatory mediators IL6, CXCL10, 
and CCL2 [66–68]. In a rat model of lung fibrosis-induced by bleomycin, 
LF reduced lung tissue expression of the inflammatory cytokines IL6, 
TNF-α, and NF-κB [69]. Additionally, LF anti-inflammation can be un-
dertaken through the suppression of the trans-endothelial migration of 
blood mononuclear cells and the inhibition of the expression of adhesion 
molecule CD44 [70]. 

In patients with rheumatoid arthritis, increased levels of C-reactive 
protein (CRP) are correlated with joint destruction. Aryl hydrocarbon 
genomic activity induces a negative control on CRP expression. LF is an 
aryl hydrocarbon receptor agonist, which attenuates CRP expression and 
hence saves the structural integrity of the joints [71,72] Table 1. 

3.2. Antiproliferative activity 

LF at low doses has a reversible antiproliferative action upon cell 
replenishment with pyrimidine [73,74]. Meanwhile higher doses of LF 
showed irreversible antiproliferative activity [49]. Indeed, this action 
may carry a promising antineoplastic potential. In vitro studies reported 
dose- and time-dependent cytostatic effects of LF in transformed pros-
tatic epithelial cells through pyrimidine depletion, mitochondrial bio-
energetic disruption, and cytochrome c release with an apoptotic 
sequalae [32]. In neuroblastoma cells, LF induced cytostatic and 
apoptotic cellular fate attributed to the reduced expression of the 
DHODH enzyme at the transcriptional and translational levels [75]. In a 
melanoma cell line (A375), Dosacas and colleagues unveiled the inhib-
itory effect of LF/ A77-1726 (teriflunomide) on S6K1 with a resultant 
inhibition of its substrates S6, insulin receptor substrate-1 (IRS-1), and 
carbamoyl phosphate synthase 2, concluding an inhibition of cell pro-
liferation [57]. Meanwhile, Xu et al, demonstrated the A77-1726- 
induced autophagy in vitro through releasing TAK1/AMPK/ULK1 
pathway from the inhibitory effect of S6K1 [76]. In contrast, Cheng and 
colleagues (2020), reported the autophagy inhibitory action of LF, 
which is considered an enhancer of the cytotoxic effects on human 
bladder cancer cells. This was attributed to the inhibition of cancer cell 
escape mechanisms and the survival tendency through autophagy [35]. 
Furthermore, teriflunomide synergized Gemcitabine-induced growth 
inhibition of pancreatic cancer cells through PIM kinase-dependent in-
hibition of the c-myc tumorigenic signaling pathway [77]. Teri-
flunomide directly inhibits the entire PIM family, especially PIM-3 and 
PIM-1 [78]. Likewise, teriflunomide suppressed the proliferation of 
the murine leukemia cell line LSTRA through inhibition of the tyrosine 
kinase activity of p56lck [79]. Moreover, LF inhibited angiogenesis in an 
N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder carci-
nogenesis animal model and a tumor xenograft model, as well as in 
bladder cancer cells in vitro via significant inhibition of the sEphrin-A1/ 
EphA2 system [80] Table 1. 

In contrast, low doses of leflunomide exhibited cell survival potential 
through the activation of PI3K/Akt signaling and reduced apoptosis, 
which was induced by anticancer agents in erythroleukemia cells. Also, 
LF inhibited p38/MAPK/JNK basal activity with the reduced apoptotic 
activity of caspase-3 [30]. 

3.3. Antiviral activity 

LF has antiviral properties through the inhibition of viral nuclear 
material replication within the host cells, and the inhibition of protein 
tyrosine-kinase activity leading to inhibition of the phosphorylation of 

Table 1 
Leflunomide main actions and their mechanisms.  

Clinical use MOA/action Action References 

Immunomodulator and 
antirheumatic  

- Inhibition of dihydroorotate dehydrogenase 
enzyme  

- Depletion of pyrimidine nucleotide → inhibition of immune cell 
expansion.  

- Suppression of cell response to cytokines such as IL2.  
- Inhibition of antibody production and antibody class switch 

[54,73,106,148–152]  

- Inhibition of graft rejection and graft-versus host disease [4,153–157]  
- Aryl hydrocarbon receptor agonist  - Decrease C-reactive protein → inhibition of bone erosion [71]  
- Tyrosine kinase inhibition  - Inhibit IL2 signaling through JAK1 & JAK3. [3,52,83,158,159]  
- Anti-inflammatory  - Inhibition of cell response to inflammatory cytokines [61,81,82,160] 

Antineoplastic  - Inhibition of epidermal growth factor 
receptors  

- Inhibition of cell proliferation and induction of apoptosis [32,35,161,162]  

- Inhibition of the canonical WNT/β-catenin 
signaling  

- Cell growth arrest and induction of apoptosis [35,163]  

- Inhibition of Akt and its downstream pathway  - Inhibition of cell proliferation and survival. [35] 
Antiangiogenic  - Inhibition of soluble ephrin-A1/EphA2 

pathway  
- Inhibition of angiogenesis [80] 

Antiviral  - DHODH inhibition  - Inhibition of viral assembly  
- Inhibition of viral load 

[5,6,164–166]  
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cellular proteins required for vital processes [81–83]. 
LF shows antiviral activity against many viruses such as Cytomega-

lovirus (CMV), Polyomavirus type BK, Herpes simplex virus, Respiratory 
syncytial virus (RSV), and SARS CoV2. LF suppressed CMV infection by 
inhibiting virion assembly rather than the synthesis of viral DNA [84]. 
With promising therapeutic potential, LF restrained CMV infection in 
vitro [85], in vivo [86], and in clinical research [10] Table 1 & Fig. 3. 

Also, LF can inhibit the replication of the BK polyomavirus in renal 
tubular epithelial cells through nonspecific pyrimidine depletion 
[12–14,38]. Further, studies showed that the active metabolite of LF 
leads to the inhibition of RSV production in vitro and a reduction in viral 
load in vivo; this mechanism is uridine independent [87] Table 1 & 
Fig. 3. 

Multiple sclerosis patients under treatment regimen with teri-
flunomide, and who developed COVID-19 showed better disease out-
comes, which may be attributed to the immunosuppressant and antiviral 
activity of the drug [88]. 

The active form of LF was also found to be effective against Junín 
Virus. It can inhibit virus replication by inhibiting viral RNA synthesis 
through pyrimidine depletion in a dose-dependent manner. However, 
the addition of uridine or orotate reverses the inhibitory effect of LF 
[39]. 

Blocking of DHODH results in pyrimidine depletion which is very 
effective against rotavirus (responsible for dehydrating diarrhea). For 
that reason, LF anti-microbial activity was investigated against other 
organisms such as Helicobacter pylori, Plasmodium falciparum, and 

Schistosoma mansoni [89]. 

4. Clinical importance of LF 

LF is FDA approved for the treatment of autoimmune arthritis of 
rheumatoid and psoriatic pathogenesis. LF can be used in solo, while in 
refractory cases it should be combined with other immunosuppressants. 
LF shows efficacy after four weeks of treatment with improved physical 
activity comparable to that of methotrexate. After two years, patients 
who received LF had no further increase in joint damage [90] Table 2. 

4.1. Autoimmune and rheumatic conditions 

LF has been initially approved for the treatment of autoimmune 
arthritis, mainly rheumatoid [1] and psoriatic types [91]. The target of 
therapy is to reduce the number of joints affected, which is scored 
clinically for pain and functionality [92]. The use of LF in other auto-
immune conditions, such as systemic lupus and multiple sclerosis, is 
investigational but without an approval decision [93–95]. In multiple 
sclerosis, the use of LF active metabolite teriflunomide was approved in 
2016 [96,97]. This approval did not compare the efficacy of LF to teri-
flunomide in a clinical context and, thus, may require further clinical 
and pharmacoeconomic investigations. The approval of teriflunomide, 
which is >60 times as expensive as LF, has set aside the alternative off- 
label use of LF in multiple sclerosis. Revising the clinical profile of ter-
iflunomide showed that an LF dose of 20 mg/tablet is equivalent to the 

Fig. 3. The antiviral activity of leflunomide and its active metabolite teriflunomide.  

Table 2 
Leflunomide investigational uses.  

Clinical indication Disease Phase Outcome Reference 

Antiviral Mild COVID-19 patients Phase I Ongoing [15] 
HIV-1 Phase I Promising with safety concerns limited progress to further studies [167] 
BK viremia associate nephropathy Phase IV Serum creatinine [168,169] 

Cancer Smoldering multiple myeloma Early phase I Recruiting (to end June 2021) [109] 
Relapsed/refractory Multiple myeloma Phase I/II Completed [110] 
Anaplastic astrocytoma Phase II NA [7] 
Glioblastoma multiformans Phase III NA [8] 
Advanced refractory prostate cancer Phase II/III NA [9,107] 
Mutant metastatic melanoma Phase I NA [170] 
Metastatic triple negative breast cancer Phase I/II NA [171] 

Autoimmune diseases IgG4-related sclerosing disease Phase IV 
Randomized 
Open label 

LF + glucocorticoid is significantly superior to glucocorticoids monotherapy [172] 

Lupus nephritis Phase III 
Non- 
randomized 
Open label 

Low dose LF + prednisone effectiveness and safety [173]  
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17 mg/tablet dose of teriflunomide [95–97]. 
The use of LF in systemic lupus erythematosus is still under investi-

gation, some of these clinical trials have been suspended with no clinical 
data justifying this trial decision Table 2. 

LF was also tried in other joint conditions such as ankylosing spon-
dylitis. However, it did not show clinical promise except in patients with 
associating poly-arthropathy who did show an improvement. While it 
was reported that the spinal manifestations did not significantly 
improve, this may be attributed to the pathogenic mechanisms which 
are different from the joint ones [98]. 

4.2. Transplant rejection and graft versus host disease 

LF is used for the prevention of graft rejection and graft-versus-host 
disease (GVHD). Studies reported the benefit of LF in different animal 
models of graft rejection [99] such as cardiac allograft [4,100], intes-
tinal transplantation [101], renal transplantation [102], corneal allo-
graft [103], and fish-to-mouse pancreatic islets xenograft [104]. Also, LF 
is found to be of benefit in chronic musculoskeletal graft versus the host 
disease following an allogeneic hematopoietic stem cell transplant [105] 
Table 2. 

4.3. Cancer 

Recently, LF has been flagged as a promising antineoplastic drug 
through its pyrimidine nucleotide cellular deprivation activity [73,106]. 
The limitation of LF antineoplastic clinical application may be attributed 
to the doubts surrounding its clinical efficacy due to the action reversal 
by uridine replenishment [73]. This may be true despite the protein 
tyrosine kinase inhibitory action, which was found to be of additional 
benefit. LF and its congeners are investigated in different in vitro and in 
vivo models of cancer including prostate [9,32,107], breast [34], neu-
roblastoma [8,108], multiple myeloma [78,109,110], thyroid [33], 
leukemia [111,112], and lymphoma [113] Table 2. 

4.4. Antiviral 

Recently, with the worldwide SARS CoV-2 pandemic, LF antiviral 
activity has been an appealing candidate fitting COVID-19 pathogenesis 
with a dual benefit. The first is the immunomodulatory and anti- 
inflammatory activity which may help to reduce the raged immune re-
sponses and cytokine storm. Secondly, the antiviral activity of the drug 
may have merit for handling the task [15]. A congener of LF, vido-
fludimus is currently under investigation in two phase-II/III trials in 
patients with COVID-19 [114] Table 2. 

5. Common adverse effects 

Antirheumatic agents are among the most commonly used drugs 
associated with hepatotoxic effects ranging from acute drug-induced 
liver injury (DILI) to chronic hepatic ailments and even drug-induced 
autoimmune hepatitis. Based on the National Data Bank for Rheu-
matic Diseases it has been estimated that leflunomide-related events 
leading to hospitalization (without formal causality assessment) occur in 

2 out of 1000 patients per year [115]. 
LF is generally considered to be a safe drug with respect to the re-

ported adverse effects. The main adverse effects of LF are gastrointes-
tinal disturbances such as diarrhea (17%), nausea (9%), abdominal pain 
(5%), and increased hepatic enzymes (5–10%) [116,117]. Hepatic 
injury represents a serious drawback of LF based on the issued report by 
the European Agency for the Evaluation of Medicinal Products (EMEA) 
in 2001. In this report, 129 cases of LF-induced hepatotoxicity were 
reported, which included two patients with hepatic cirrhosis, 15 pre-
sented with acute hepatic failure, and a 60% fatality rate [118]. 
Accordingly, a community petition was addressed to the FDA, advo-
cating for the withdrawal of LF from the U.S. market [119,120]. The 
FDA declined this petition based on the fact that the benefits outweighed 
the hazards with imposing a black-boxed warning on the pack of LF 
stating the need for a regular monitoring of hepatic enzymes and a re-
striction of use in patients with advanced hepatic diseases [1]. 

Furthermore, some cases with severe liver injury were reported with 
fatality outcomes [16,19,121]. This has been documented as occurring 
within six months of the start of LF in patients with risk factors for 
developing hepatotoxicity [122,123]. LF combined with methotrexate 
enhanced hepatic damage with elevated liver enzymes reaching > 3 
times the upper limits of normal (ULN). One case of liver injury was 
reported in a patient with liver cirrhosis who had received a combina-
tion of both LF and methotrexate [90]. Liver damage associated with LF 
therapy is commonly noted as alimentary tract symptoms, including 
nausea and abdominal distention; hence, liver transaminases must be 
monitored throughout the therapeutic regimen [124]. 

On the other hand, doses of LF (4, 12, 36 mg/kg) were found to 
significantly decrease the serum transaminase (ALT, AST) activity and 
improve antioxidant and anti-inflammatory mediated hepatic injury 
[125]. 

6. Studies reporting the drawbacks of leflunomide on the liver 

The use of LF can be applied in solo or as a combined regimen with 
other immune-suppressing drugs like methotrexate. Liver toxicity is rare 
in rheumatoid arthritis patients using combination therapy with LF (20 
mg/day) and methotrexate (20–25 mg/week) [126]. Meanwhile, animal 
studies using the combined therapy of LF and methotrexate showed high 
antiarthritic benefit but with the possibility of a hepatotoxic effect. In 
the same study, LF (10 mg/kg/day) and an LF/methotrexate combina-
tion showed the greatest degree of liver fibrosis [127]. Accordingly, in 
any patient with hepatic impairment, this combination is contra-
indicated. Furthermore, LF clinical guidelines recommend monthly 
monitoring of hepatic enzymes within the first six months of therapy 
with further trimonthly monitoring later. ALT levels greater than three 
times ULN without an increase in bilirubin have been identified as 
sensitive, but are not necessarily a specific signal of liver toxicity [128]. 

Clinical studies and basic research reported on the hepatotoxicity of 
LF, which was found to be dose and time-dependent [129–132]. For the 
former, the use of LF doses of higher than 20 mg/day is associated with a 
higher incidence of hepatic injury, which may be asymptomatic or of a 
fulminating nature with a life-threatening hazard [1,16,126]. 

LF causes hepatotoxicity, which is presented as increased liver 

Table 3 
Leflunomide mechanisms of hepatotoxicity.  

Pathogenesis Mechanism 

Mitochondrial stress  - Leflunomide > teriflunomide preferentially inhibits mitochondrial OXPHOS complex V (F1F0 ATP synthase) → ATP depletion and the 
collapse of mitochondrial membrane potential [131]. 

Endoplasmic reticulum stress  - MAPK signaling cascade, through inhibiting JNK and enhancing ERK1/2 pathways [130]. 
Metabolic stress and inflammatory 

pathway  
- TLR4-induced apoptosis through activation of PI3K/mTOR/NFκB pathway [129]. 

Hepatic fibrosis  - Increased hepatic expression of TGF-β [127,129]. 
CYP450 polymorphism  - CYP2C9*3 allele may be associated with hepatic toxicity of LF in rheumatoid arthritis patients [16,138].  

- Genetic polymorphism of CYP1A2*1F may be associate with hepatic toxicity of LF in rheumatoid arthritis patients [137].  
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enzymes > 2–3 times ULN. In a human study involving 46 participants, 
30% of patients continued LF therapy without dose diminution. How-
ever, 20% of the patients required the discontinuation of LF with 
normalized liver enzymes within 4–6 weeks afterward [26]. In the case 
of proof of LF-induced liver injury, a withdrawal maneuver is recom-
mended with the use of cholestyramine, or activated charcoal for a faster 
washout of LF [1,118]. 

LF is considered a therapeutic choice in patients with autoimmune 
hepatitis while this may be cautiously considered due to the hepatotoxic 
nature of the drug itself. However, the idiosyncratic nature of LF hep-
atotoxicity supports the metabolic idiosyncratic notion [133]. For 
instance, in APAP-induced hepatotoxicity, LF inhibited JNK1/2 activa-
tion and prevented mitochondrial permeability transition pore opening, 
thus offering protection from cell death induced by toxic concentrations 
of APAP [134]. While, in immune-mediated hepatitis induced by 
concanavalin A, LF inhibited T-cell mediated hepatic injury through the 
inhibition of NF-κB, TNF-α, and caspase-mediated apoptosis [135]. 

6.1. Pathogenesis of LF-induced liver injury (Table 3) 

The liver is the main detoxifying tissue in the body with its exposure 
to chemical and toxicant liabilities, it requires stable energy resources 
and continuously replenished tissue antioxidant mechanisms. The 
metabolic products of xenobiotics represent a major threat with popu-
lation variations based on their environmental and genetic makeup 
[136]. The main pathogenesis in LF hepatotoxicity involves the hepatic 
oxidant burden and metabolic and tissue energy derangements leading 
to cellular damage. LF-induced DILI is mediated through different 
mechanisms including an inflammatory pathway ending with tissue 
damage. 

In animal studies, LF-induced-inflammatory liver injury occurs 
through dose-dependent upregulation of the TLR4/PI3K/mTOR 
pathway and the cellular apoptotic marker caspase 3 [129]. Also, LF and 
its active metabolite teriflunomide exhibited mitochondrial toxicity in 
human hepatic HepG2 cells. LF caused dose-dependent depletion in 
cellular ATP through the inhibition of mitochondrial oxidative phos-
phorylation complexes mainly complex V (F1FO ATP synthase), LDH 
leakage, and cell death [131]. Furthermore, LF-induced cytotoxicity in 
HepG2 cells was mediated by endoplasmic reticulum stress and the 
enhancement of the JNK and ERK1/2 of the MAPK signaling pathways 
[130]. 

Genetic polymorphic cytochrome P450 enzymes were investigated 
in 105 patients with rheumatic arthritis to examine the relationship 
between patients’ CYP1A2*1F, CYP2C19*17, CYP2C9*2, and 
CYP2C9*3 alleles and LF toxicity. Forty-three patients discontinued LF 
therapy within the first year due to toxicity. Patients with CYP1A2*1F 
were at a 9.7-fold higher risk than patients who only carried the allele. 
However, patients with CYP2C19 and CYP2C9 had no relationship 
[137]. Other genetic studies showed a correlation between the slow 
CYP2C9*3 allele and LF-induced hepatitis in rheumatoid arthritis pa-
tients [16,138]. 

6.2. Preventive and therapeutic agents for LF-induced liver injury 

Drug-induced liver injury (DILI) anticipation and prevention repre-
sent an elusive target for health and pharmaceutical bodies. DILI is 
classified as intrinsic such as paracetamol- and alcohol-induced DILI. On 
the other hand, idiosyncratic DILI is unpredictable and, hence, difficult 
to avoid. Without an understanding of the molecular pathogenesis of 
idiosyncratic DILI, it will be difficult to prevent or specifically manage. 
The possible protective agents for minimizing LF-induced liver injury 
may rely on antagonizing the oxidant stress, metabolic derangements, 
and inflammatory character of its pathogenesis. 

6.2.1. Using antioxidant hepatoprotective agents 
Rheum Palmatum L. showed hepatoprotective effects through anti- 

inflammatory, antioxidant and antiapoptotic mechanisms in mice by 
inhibiting NF-κB, nitric oxide, IL-1β, Caspase 3 and Caspase 8 in the liver 
tissue. Also, it reduced iNOS, COX-2, and Bax and enhanced the 
expression of Bcl-2 and PCNA [139]. Further, the silymarin and propolis 
hepatoprotective effect in CCL4 hepatotoxicity in rats is mediated 
through antioxidant properties [140]. In vivo studies on rats, showed 
that LF causes portal fibrosis, sinusoidal congestion, and infiltration 
with periductal inflammatory cells. Meanwhile, the use of LF combined 
with β-caryophyllene reduced the hepatotoxic effect of LF. β-car-
yophyllene acts through antioxidant activity that leads to the inhibition 
of hydroxyl anions, lipid peroxides, and superoxide anions [141]. 
Oenanthe Javanica—a Chinese medicinal herb—is an aquatic perennial 
herb cultivated in East Asian countries. Total phenolics from Oenanthe 
Javanica in 125, 250, and 500 mg/kg doses showed hepatoprotective 
effects in D-galactosamine-induced liver injury in mice through anti-
oxidant and anti-inflammatory actions detected as decreased iNOS, 
COX2, NO, and PGE2 [142]. 

6.2.2. Using mitochondrial and metabolic equilibrating agents 
5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) is an 

analog of AMP and an activator of AMP-dependent protein kinase 
(AMPK). AICAR prevents/reverses drug-induced mitochondrial and 
hepatocellular damage by regulating mitochondrial fusion and 
mitophagy in acetaminophen and diclofenac-induced hepatic cell 
toxicity of murine and human origin [143]. 

6.2.3. Using anti-inflammatory agents 
The hepatoprotective effect of vitamin D3 (1,25(OH)2D3) [low-dose 

0.025 μg/kg/day, moderate dose 0.15 μg/kg/day, and high dose 0.3 μg/ 
kg/day) was investigated in diabetic-induced hepatic injury in rats. 
After four months of therapy, the high dose of vitamin D3 down- 
regulated TLR4, NF-κB, ALT, and LDL and improved hepatic tissue ar-
chitecture with reduced inflammatory cell infiltrates [144]. 

Aqueous extract of the Chinese herb Aconitum Carmichaelii Debeaux 
showed anti-inflammatory and antiapoptotic potential in the treatment 
of acute liver failure induced by D-galactosamine in rats. The hep-
atoprotective effects are presented as a decrease of hepatic pathological 
scores, reduced expressions of TLR4, NF-κB, HMGB1, and caspase-3, and 
increased PCNA cell regeneration marker [145]. 

Total glucoside of paeony, which is a Chinese herb, was used as an 
adjuvant with methotrexate and leflunomide in doses of 0.6 and 1.8 g/ 
day for 12–24 weeks. This combination showed the increased anti-
rheumatic effectiveness of the LF/methotrexate combination in rheu-
matoid arthritis patients with hepatoprotective advantages. This 
combination ameliorates liver fibrosis and decreases the progression of 
liver disease in a non-alcoholic patient through IL13 regulation. [146]. 

In support, assessment of the therapeutic effect of total glucosides of 
peony for juvenile idiopathic arthritis was detected through the 
extraction of data from eight electronic databases that concluded total 
glucosides of peony as a unique nonbiologic disease-modifying anti-
rheumatic drug (nonbiologic DMARD) with good efficacy and minimal 
adverse effects [147]. 

In conclusion, the current study represents a comprehensive revision 
of the clinical importance of LF as a multitask therapeutic agent not only 
in the approved application in autoimmune arthritis but also as an 
antineoplastic and antimicrobial candidate. With the ongoing dilemma 
of the SARS CoV2 pandemic and the life-threatening conditions of 
COVID-19 patients, LF should be investigated in patients with COVID-19 
as an anti-inflammatory immunomodulator due to its advantageous 
antiviral activity. LF adverse effects are highlighted with an emphasis on 
LF-induced hepatotoxicity molecular pathogenesis and the possible 
hepatoprotective agents which can be considered as a supportive 
treatment during long-term therapeutic regimen on LF. 
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