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Abstract

Considerable information about mental states can be decoded from non-invasive measures of 

human brain activity. Analyses of brain activity patterns can reveal what a person is seeing, 

perceiving, attending to, or remembering. Moreover, multidimensional models can be used to 

investigate how the brain encodes complex visual scenes or abstract semantic information. Such 

feats of “brain reading” or “mind reading”, though impressive, raise important conceptual, 

methodological, and ethical issues. What does successful decoding reveal about the cognitive 

functions performed by a brain region? How should brain signals be spatially selected and 

mathematically combined, to ensure that decoding reflects inherent computations of the brain 

rather than those performed by the decoder? We will highlight recent advances and describe how 

multivoxel pattern analysis (MVPA) can provide a window into mind-brain relationships with 

unprecedented specificity, when carefully applied. However, as brain-reading technology 

advances, issues of neuroethics and mental privacy will be important to consider.
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INTRODUCTION

Imagine that it is the future, an unknown year in the 21st century. A participant is brought 

into a neuroimaging lab and asked to lie back comfortably on a padded bed table, which is 

slowly glided into a brain scanner. The participant watches a brightly colored display as it 

provides a virtual tour of every painting in the Musée d’Orsay. All the while, non-invasive 

measures of that person’s brain activity are discretely taken, the arrays of numbers quickly 

transferred to the memory banks of a high-speed digital computer. After hours of brain 

scanning and computer analysis, the real scientific test begins. A randomly drawn painting is 

shown again to the observer. The computer analyzes the incoming patterns of brain activity 

from the participant’s visual cortex and makes the following prediction with 99% 

confidence: She is looking at Painting #1023, Cezanne’s Still Life with Apples and Oranges. 

Correspondence and requests for materials should be addressed to Frank Tong (frank.tong@vanderbilt.edu). 

Key terms
Decoding – neural decoding involves determining what stimuli or mental states are represented by an observed pattern of neural 
activity
Encoding – how a stimulus or mental state is encoded or represented by specific patterns of neural activity
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The experimenter turns to look at the computer screen, and indeed, the participant is looking 

at a plateful of pastel-colored red and yellow apples, ripe oranges stacked in a porcelain 

bowl, all carefully arranged in the thick folds of a tousled white tablecloth. Another 

randomly drawn picture is shown, and the computer correctly predicts Landscape with 
Green Trees by Maurice Denis.

What does this remarkable scientific demonstration reveal — successful mind reading? Have 

the neuroscientists effectively cracked the brain’s internal code for vision, such that they 

now understand how features and objects are represented in the mind’s internal eye? We will 

refer to this as Science Fiction Story #1.

The lab volunteer has kindly offered to participate in a second experiment. This time she is 

shown two paintings in quick succession (Bedroom in Arles, The White Horse), and then is 

asked to pick one and hold that image in mind for several seconds. She imagines a horse 

standing in a shallow river, head bent low as if looking at its own reflection in the slowly 

flowing stream. The computer quickly scans the matrix of numbers streaming in. Although 

brain activity levels are substantially weaker as she gazes steadily at the blank screen, 

compared to moments ago, a pattern begins to emerge from her visual cortex. The computer 

announces, with 85% confidence, that the participant is imagining the second painting, The 
White Horse. Would successful decoding in this case indicate that the neural codes for 

imagination and internal visual thoughts have been successfully decoded? More generally, 

what would such a demonstration reveal about the visual and cognitive functions performed 

by the brain? We will refer to this as Science Fiction Story #2.

In reality, these stories represent more fact than fiction. A simplified version of Science 
Fiction Story #1 was carried out at the start of the 21st century in a pioneering study by 

Haxby and colleagues (2001). The authors used functional magnetic resonance imaging 

(fMRI) to measure patterns of BOLD activity, focusing on object-responsive regions in the 

ventral temporal cortex. By comparing the similarity of brain activity patterns between the 

first and second half of the experiment, the authors showed that these high-level object areas 

could accurately predict whether participants were viewing pictures of faces, houses, chairs, 

cats, bottles, shoes, scissors, or scrambled stimuli (Figure 1a). The use of more sophisticated 

pattern classification algorithms (Figure 1b) greatly improved researchers’ ability to predict 

what object categories people were viewing (Carlson et al 2003; Cox & Savoy 2003). 

Subsequently, Kamitani & Tong (2005) discovered that it was possible to decode 

orientation- and direction-selective responses with surprising accuracy (Figure 2), even 

though such feature-selective information is primarily organized at the scale of 

submillimeter columns in the visual cortex. Thus, fMRI pattern analysis could reveal cortical 

information that would otherwise fail to be detected. Perhaps the most striking 

demonstration of Science Fiction Story #1 comes from the work of Kay et al (2008). They 

presented over a thousand natural images to observers and then characterized the response 

preferences of each voxel in the visual cortex, specifying their selectivity for retinotopic 

position, spatial frequency, and orientation. When the observers were shown a new set of 

120 pictures, each of a different real-world scene, the authors could accurately predict which 

new image was being viewed by finding the best match between the observed pattern of 

activity and the predicted activity of these modeled voxels.
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These studies reveal an unprecedented ability to predict the basic visual features, complex 

objects, or natural scenes that are being viewed by the participant. By combining fMRI with 

sensitive pattern analysis methods, accurate predictions about the viewed stimulus can be 

made. Yet it would be mistake to consider such feats as examples of mind reading. Why? 

Because the experimenter does not need a mind-reading device to achieve this performance. 

The same result could be achieved by simply looking over the participant’s shoulder, “Oh, 
she is looking at painting #1023, Cezanne’s still life with apples and oranges.” Put another 

way, one could perform these same feats by reading out the activity patterns formed on the 

retina, even though conscious processing of the image has yet to take place. Activity patterns 

on the retina would remain robust even if the person were anaesthetized or fell into a deep 

coma. So instead, Science Fiction Story #1 should be considered an example of brain 
reading.

Science Fiction Story #2 can be better justified as a demonstration of mind reading. Here, 

information that is fundamentally private and subjective is being decoded from the person’s 

brain; the only alternative would be to ask the participant directly about what she is thinking 

and to hope for an honest reply. Ongoing research is just beginning to probe the possibilities 

and limits of reading out subjective information from the human brain.

In this review, we will discuss recent advances in brain reading and mind reading, and 

consider important conceptual and methodological issues regarding how to apply these 

techniques to the study of human cognition. The brain reading approach has revealed how 

different types of stimulus information are represented in specific brain areas, and some 

studies provide clues to the functional organization of these representations. Pattern analysis 

of brain activity can also be adapted to perform feats of mind reading, to extract information 

about a person’s subjective mental state or cognitive goal. We will consider whether such 

feats of mind reading should be likened to fancy parlor tricks that require the assistance of a 

brain scanner, or whether these methods can be used to genuinely advance our 

understanding of brain function. Studies employing this mind-reading approach have 

revealed how particular representations are activated or called upon during conscious 

perception, attentional selection, imagery, memory maintenance and retrieval, and decision 

making. As will be seen, careful consideration of experimental design, analysis, and 

interpretation of the data is essential when adopting powerful pattern analysis algorithms to 

probe the functions that might be carried out by a brain area. As these methodologies 

continue to advance, it will become increasingly important to consider the ethical 

implications of this technology.

There have been previous reviews on the topic of fMRI decoding (sometimes called 

multivoxel pattern analysis or MVPA, (Haynes & Rees 2006; Norman et al 2006) as well as 

more in-depth reviews on the technical aspects of decoding and encoding (Kriegeskorte 

2011; Naselaris et al 2011; O’Toole et al 2007; Pereira et al 2009). In this review, we will 

highlight recent studies and discuss key issues regarding how fMRI pattern analysis can be 

used to advance understanding of the bases of human cognition.
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BRIEF TUTORIAL ON MULTIVOXEL PATTERN ANALYSIS

Traditional methods of fMRI analysis treat each voxel as an independent piece of data, using 

statistical tests to determine whether that voxel responded more in some experimental 

conditions than others. Such analyses are univariate: the analysis of one voxel has no impact 

on the analysis of any other. By contrast, multivariate pattern analysis extracts the 

information contained in the patterns of activity among multiple voxels, so that the relative 
differences in activity between voxels can provide relevant information. Whereas univariate 

statistical analyses are designed to test whether some voxels respond more to one condition 

than another, multivariate analyses are designed to test whether two (or more) experimental 

conditions can be distinguished from one another based on the activity patterns observed in a 

set of voxels. Critically, multivariate methods might be able to tell apart the activity patterns 

for two different conditions, even if the average level of activity does not differ between 

conditions.

Figure 1b illustrates the simplest example of multivariate pattern analysis involving two 

experimental conditions (shown in red and green) and just two voxels, with the response 

amplitude of each voxel shown on separate axes. Each dot corresponds to a single activity 
pattern or data sample, with its position indicating the strength of the response for voxels 1 

and 2. The Gaussian density plots in the margins indicate that either voxel alone does a 

rather poor job of separating the two experimental conditions. Nevertheless, the two 

conditions can be well separated by considering the pattern of responses to both voxels, as 

indicated by the separating boundary line. In this particular example, the responses of voxels 

1 and 2 are positively correlated and the classification boundary helps to remove this 

correlated “noise” to better separate the two experimental conditions. If there were three 

voxels, a third dimension would be added; the red dots and greens dots would form two 

largely separated (but still overlapping) clouds of points and the classification boundary 

would consist of a linear plane that best divides those two clouds. Typically, anywhere from 

a few dozen to several thousand voxels might be used for fMRI pattern analysis, so an 

activity pattern with N voxels would be represented in an N-dimensional space, and 

“clouds” of dots representing the two classes would be separated by a linear hyperplane. 

(Multiclass classification analysis involves calculating multiple hyperplanes to carve up this 

multidimensional space among three or more conditions.)

The goal of linear pattern classification algorithms, such as support vector machines (SVM), 

linear discriminant analysis (LDA), or logistic regression, is to find the linear hyperplane 

that best separates the two (or more) conditions in this multi-dimensional voxel space. The 

accuracy of classification performance is usually assessed using cross-validation, which 

involves dividing the full set of data samples into separate sets for training and testing the 

classifier. Typically an entire fMRI run or perhaps just one sample from each condition is 

reserved for the test set. The classifier is trained with the remaining data to obtain the 

classification boundary, which is then used to predict the class of each data sample (e.g., 

“red” or “green”) in the test set. This procedure can be done iteratively, so that every sample 

in the data set is tested and an overall measure of classification accuracy is obtained. 

Classification accuracy reflects the amount of information available in a set of voxels for 

discriminating between the experimental conditions tested.
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Here, we focus on linear pattern classification, since the performance of nonlinear classifiers 

applied to a brain region could potentially reflect computations performed by the classifier, 

rather than by brain itself (Kamitani & Tong 2005). For example, if one were to apply 

sufficiently complex nonlinear classifiers to the patterns of activity observed on the retina, it 

would be possible to construct the functional equivalent of receptive fields with position-

invariant tuning to say visual orientation, curved lines, sharp corners, or even a smiley face 

cartoon of Bart Simpson, despite the lack of any such pattern detectors in the human retina. 

All brain processes essentially reflect a series of nonlinear computations; therefore, to 

characterize the information processed by a brain region, we believe it is important to avoid 

adding additional nonlinear steps.

The reliability of linear classification performance depends on several factors: i) the degree 

of separation between the two classes of data samples (i.e., pattern separability or signal-to-

noise ratio), ii) the number of data samples available for analysis, since having more samples 

will allow for better estimation of the optimal classification hyperplane, iii) the choice of 

classification algorithm and its suitability for the data set to be analyzed (Misaki et al 2010), 

and iv) the voxels used for pattern analysis. Adding more voxels should lead to better 

classification performance if those voxels contain some relevant information that can be 

used to better distinguish between the two conditions. However, if these additional voxels 

are uninformative, they may simply add noise or unwanted variability to the activity patterns 

and could thereby impair classification performance (Yamashita et al 2008).

REVIEW OF fMRI STUDIES

Decoding Visual Features

In their original study of orientation decoding, Kamitani & Tong (2005) found that activity 

patterns in early visual areas could predict which of several oriented gratings was being 

viewed with remarkable accuracy (Figure 2a). How was this possible, given that BOLD 

responses were sampled from the visual cortex using 3mm-wide voxels whereas orientation 

columns are organized at submillimeter spatial scales (Obermayer & Blasdel 1993; Yacoub 

et al 2008)? The authors performed simulations to show that random local variations in 

cortical organization could lead to weak orientation biases in individual voxels. By pooling 

the information available from many independent voxels, a pattern classifier could achieve 

robust predictions of what orientation was being presented in the visual field. In subsequent 

work, high-resolution functional imaging studies of the cat and human visual cortices have 

provided support for this hypothesis (Swisher et al 2010). These experiments show that 

orientation information exists at multiple spatial scales, extending from that of submillimeter 

cortical columns to several millimeters across the cortex (Figure 2b). In effect, variability in 

columnar organization at a submillimeter scale appears to lead to modest feature biases at 

coarser spatial scales on the order of millimeters. It should be noted that studies find the 

presence of some global preference for orientations radiating outward from the fovea as well 

(Freeman et al 2011; Sasaki et al 2006), but when such radial biases are controlled for, 

substantial orientation information can still be extracted from the visual cortex (Harrison & 

Tong 2009; Mannion et al 2009).
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These orientation decoding studies suggest that pattern analysis can be used to detect signals 

of columnar origin, by pooling weakly feature-selective signals that can be found at the scale 

of millimeters, presumably due to variability in the organization of the columns. Thus, fMRI 

pattern analysis could be used to reveal hidden signals originating from fine-scale cortical 

columns, which would otherwise be difficult or impossible to isolate with non-invasive 

imaging. Previously, researchers had to rely on fMRI measures of visual adaptation to assess 

the feature selectivity of responses in the human visual cortex (Boynton & Finney 2003; 

Engel & Furmanski 2001).

This decoding approach has been used to investigate cortical responses to many basic visual 

features. Studies have revealed how the human visual system responds selectively to motion 

direction (Kamitani & Tong 2006), color (Brouwer & Heeger 2009; Goddard et al 2010; 

Sumner et al 2008), eye-of-origin information (Haynes et al 2005; Shmuel et al 2010) and 

binocular disparity (Preston et al 2008). The reliability of feature decoding depends on the 

strength of the sensory signal; for example, the orientation of high-contrast gratings can be 

decoded more readily than low-contrast gratings (Smith et al 2011). Moreover, the amplitude 

of the stimulus-driven BOLD response serves as a good predictor of how much feature-

selective information can be extracted from the detailed pattern of activity found in a given 

visual area. Pattern classification has also revealed sensitivity to more complex visual 

features. For example, sensitivity to orientations defined by motion boundaries and by 

illusory contours has been found in early visual areas, including the human primary visual 

cortex (Clifford et al 2009). It has also been used to show that motion patterns that are more 

difficult to see, namely second-order texture-defined motion, lead to similar direction-

selective patterns of activity in the human visual cortex as basic first-order motion (Hong et 

al 2012).

The feature decoding approach has also been used to test for selectivity to conjunctions of 

features (Seymour et al 2009; 2010). For example, Seymour et al. (2009) tested for 

sensitivity to conjunctions of color and motion, by presenting observers with compound 

displays consisting of red dots moving clockwise overlapping with green dots moving 

counterclockwise, or green dots moving clockwise paired with red dots moving 

counterclockwise. Activity patterns in early visual areas could discriminate between these 

different combinations of color and motion, implying that these areas contain neurons 

sensitive to the conjunction of these features. These findings inform current theories of 

perceptual binding, which have debated whether top-down attentional processes are required 

to represent conjunctions of features (Treisman 1996).

What are the underlying neural sources of these feature-selective responses in the human 

visual cortex? In the case of orientation or eye-of-origin signals, these feature-selective 

responses appear to reflect local biases in columnar organization to a considerable extent 

(Shmuel et al 2010; Swisher et al 2010). In other cases, feature selectivity might reflect 

random variations in the distribution of feature-selective neurons (Kamitani & Tong 2006) or 

more global biases such as a preference for radial patterns or radial motions across the 

retinotopic visual cortex (Clifford et al 2009; Sasaki et al 2006). For example, optical 

imaging has revealed the presence of ocular dominance columns, orientation columns, and 

color-sensitive blobs in the primary visual cortex (V1) of monkeys, but no evidence of 
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direction-selective columns (Lu et al 2010). Nonetheless, it is possible to decode strong 

direction-selective responses from human V1 (Kamitani & Tong 2006). Multiple factors can 

contribute to the spatial distribution of these feature preferences in the cortex, and these 

factors could have a strong impact on the efficacy of fMRI pattern analysis. In many cases, 

future studies using high-resolution fMRI in humans or optical imaging in animals will be 

required to map the feature-selective properties of the visual cortex.

Decoding Visual Perception

In the study by Kamitani & Tong (2005), a major goal was to extend the pattern 

classification approach from the problem of brain reading to that of mind reading, which had 

not been demonstrated before. They reported the results of a visual mind-reading 

experiment, showing that it was possible to decode whether an observer was covertly 

attending to one set of oriented lines or the other when viewing an ambiguous plaid display. 

Activity patterns in early visual areas (V1–V4) allowed for reliable prediction of the 

observer’s attentional state (~80% accuracy). Moreover, decoding of the attended orientation 

was successful even in V1 alone, indicating that feature-based attention can bias orientation 

processing at the earliest possible cortical site.

Encouraged by these findings, several research groups began to pursue fMRI pattern 

classification methods to investigate the neural underpinnings of subjective perceptual and 

cognitive states. Haynes & Rees (2005b) showed that fMRI pattern classification can 

effectively decode which of two stimuli are perceptually dominant during binocular rivalry, 

with perceptual alternations occurring every several seconds. Similarly, they found that 

orientation-selective responses were disrupted by backward visual masking, although a small 

amount of orientation information could still be detected in V1 for unseen visual orientations 

(Haynes & Rees 2005a). Perhaps most striking, they were able to apply these methods to 

extract monocular responses in the lateral geniculate nucleus (Figure 3), and showed that 

binocular rivalry leads to modulations at this very early site of visual processing (Haynes et 

al 2005; Wunderlich et al 2005). This latter study provided novel evidence to inform neural 

models of binocular rivalry (Blake & Logothetis 2002; Tong et al 2006). Other research 

groups demonstrated that the perception of ambiguous motion displays could be decoded at 

greater than chance levels from human motion area MT+ and other dorsal visual areas 

(Brouwer & van Ee 2007; Serences & Boynton 2007b).

A intriguing study by Scolari & Serences (2010) revealed that these feature-selective 

responses can also be linked to the accuracy of behavioral performance. The researchers first 

characterized the very modest orientation preference of every voxel in the visual cortex. 

Next, they tested whether voxel responses to a particular orientation might be boosted on 

trials in which observers correctly discriminate a small change in visual orientation, as 

compared to incorrect trials. When observers correctly discriminated a change in orientation 

centered around say 45°, responses in V1 were not enhanced for voxels tuned specifically to 

45°; instead, they were enhanced for voxels that preferred neighboring orientations (~10° 

and 80°). This counterintuitive result is predicted by models of optimal visual coding, which 

propose that discrimination performance will be most improved by enhancing neighboring 

off-channel responses.
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Decoding Visual Objects

The pioneering work by Haxby et al. (2001) suggested that categorical information about 

objects is represented in a distributed manner throughout the ventral temporal lobe. Activity 

patterns in this region could accurately discriminate between multiple object categories, 

even when the most strongly category-selective voxels were removed from the analysis (but 

see also Spiridon & Kanwisher 2002). In effect, the authors could perform “virtual lesions” 

on these activity patterns, and thereby revealed the distributed nature of object information. 

Curiously however, subsequent studies found that activity patterns in low-level visual areas 

could outperform high-level object areas at telling apart viewed objects (Cox & Savoy 

2003). How was this possible, given that low-level visual areas are primarily tuned to the 

retinotopic position of low-level features? These results indicate that the images in each 

object category differed in some of their low-level properties, and that these low-level 

confounds can persist even when multiple images are shown in a stimulus block. Although 

low-level confounds can be reduced by manipulations of object size or 3D vantage point, 

they might not be eliminated, as indicated by the fact that early visual areas can still classify 

an object across changes in size and 3D viewpoint (Eger et al 2008).

These findings reveal a core challenge for fMRI decoding studies. Pattern classifiers are 

quite powerful and will try to leverage any discriminating information that is present in brain 

activity patterns. Even if a brain area can distinguish between certain object images, how can 

one go further to show that a brain area is genuinely sensitive to object properties and not 

simply the low-level features of those objects?

Work by Kanwisher and colleagues has provided several lines of evidence linking the 

activity patterns in object-selective areas to object perception. In a study of backward visual 

masking, they found that activity patterns in object-selective areas were severely disrupted 

on trials in which the observer failed to recognize a briefly presented target (Williams et al 

2007). By contrast, activity patterns remained stable in early visual areas, despite the 

participant’s impaired performance. Another study manipulated the physical similarity of 

simple 2D shapes and estimated the perceptual similarity between pairs of stimuli based on 

the confusion errors that participants’ made with visually masked stimulus presentations. 

Multivariate pattern analysis revealed a striking dissociation: activity patterns in the lateral 

occipital area reflected the physical similarity of the images, whereas those in the ventral 

temporal cortex correlated with perceptual similarity (Haushofer et al 2008). However, other 

studies have found that activity patterns in the lateral occipital area reflect the perceived 3D 

shape of “bumps” and “dimples” conveyed by shape-from-shading cues, even when the 

physical image is greatly altered by changes in the source of illumination (Gerardin et al 

2010).

Activity patterns in the lateral occipital and ventral temporal cortices show strong position-

invariant selectivity, and remain quite stable for a particular object across changes in retinal 

position (Schwarzlose et al 2008). However, these areas show some evidence of position 

selectivity as well. Face- and body-selective areas can better discriminate between pictures 

of different body parts if those parts are presented at a familiar location (Chan et al 2010). 

For example, a front-view image of a person’s right shoulder will lead to more reliable 

activity patterns if the stimulus appears to the left of fixation, as it would if one were looking 
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at the head or chest, than if it appears to the right of fixation. It is also possible to decode the 

retinotopic position of an object from activity patterns in high-level object areas. Moreover, 

perceptual illusions that lead to shifts in apparent position are better predicted by the 

position information contained in the activity patterns in high-level object areas than those in 

the early visual areas (Fischer et al 2011).

When objects are subliminally presented to an observer, activity in object-selective areas is 

greatly attenuated, but somewhat greater than chance-level decoding is still possible, 

indicating the presence of some unconscious visual information in these areas (Sterzer et al 

2008). Subliminal stimuli also appear to evoke more variable patterns of activity in object-

selective areas across repeated presentations, which partly accounts for the poorer decoding 

of subliminal stimuli (Schurger et al 2010).

A major challenge in object recognition concerns the ability to distinguish a particular 

exemplar from other items in the same category. In an ambitious study, Kriegeskorte and 

colleagues (2008) presented 92 images of different real-world objects, and assessed which 

images tended to evoke more similar patterns of activity. Images of animate and inanimate 

stimuli led to broadly distinctive patterns of activity in the human ventral temporal cortex, 

and a similar animate/inanimate distinction was observed when analyzing neuronal activity 

patterns obtained from single-unit recordings in monkeys (Kiani et al 2007). This study also 

found evidence of exemplar-specific activity. Activity patterns in the human inferotemporal 

cortex were better at discriminating between images of different human faces than between 

the faces of non-human primates, while a trend towards the opposite pattern of results was 

observed in the monkey data.

Attempts to isolate exemplar-specific information from small cortical regions have met with 

limited success, with decoding performance reaching levels just slightly greater than chance 

(Kaul et al 2011; Kriegeskorte et al 2007). When large portions of the ventral temporal 

cortex are pooled for analysis, then considerably better decoding of specific faces can be 

obtained (Kriegeskorte et al 2008; Natu et al 2010). However, it remains to be seen whether 

these large-scale distributed representations are truly important for representing individual 

faces, or whether the diverse shape codes throughout this region simply provide more 

information for the classifier to capitalize upon when performing these subtle 

discriminations. Single-unit recordings from isolated face-selective patches in the monkey 

indicate that a cluster of a few hundred neighboring neurons can provide remarkably 

detailed information for distinguishing between individual faces (Tsao et al 2006; Freiwald 

et al 2009; Freiwald & Tsao 2010). However, current fMRI technology cannot readily isolate 

information at this level of detail.

Identifying and Reconstructing Novel Visual Scenes

Decoding algorithms can classify a person’s brain state as belonging to the same category as 

a previously recorded brain state, but these methods lack the flexibility to identify novel 

brain states. To address this, Kay, Gallant and colleagues (2008) devised a visual encoding 

model to predict how early visual areas should respond to novel pictures of complex real-

world scenes. First, they presented 1750 different images to observers, and from the 

resulting fMRI data, they could characterize the response preferences of each voxel in visual 

Tong and Pratte Page 9

Annu Rev Psychol. Author manuscript; available in PMC 2021 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cortex, specifying its preference for particular retinotopic locations, spatial frequencies, and 

orientations. When the observers were later shown a new set of 120 pictures, the model 

predicted how these voxels should respond to each new image. By comparing the predicted 

and actual patterns of activity, the model correctly identified 110 out of 120 test images for 

one participant. In a follow-up experiment, the observer was tested with 1000 new images, 

of which 820 were correctly identified.

This level of identification performance is akin to Science Fiction Story #1, identifying 

which painting the participant is viewing at the Musée d’Orsay. An even loftier goal would 

be to reconstruct the painting, using only the brain activity that results from viewing that 

work of art. An early attempt at reconstruction met with some success at reconstructing 

fragments of simple shapes (Thirion et al 2006). In a more recent fMRI study, observers 

were presented with hundreds of different random patterns of flickering checks placed 

within a 10×10 square grid, and pattern analysis was used to predict whether any given tile 

of the grid was flickering or not (Miyawaki et al 2008). Using this model, the authors could 

effectively reconstruct novel stimuli shown to the participant, including simple shapes and 

letters (Figure 4a). Moreover, the authors could reconstruct the viewed stimulus from single 

brain volumes to show how this information evolved over the time course of the BOLD 

response (Figure 4b). Extending the work of Kay et al (2008), Naselaris et al (2009) 

attempted to reconstruct complex natural scenes using local-feature models, and could 

capture regions of high contrast and some of the “blurry” low spatial frequency components 

of the image (Figure 4c). By incorporating the category-specific information available in 

higher-level object areas, they could also select an image (from a set of 6 million possible 

images) that best matched the visual features and category properties evoked by the original 

viewed image (natural image prior condition).

Decoding Top-Down Attentional Processes

The ability to decode feature-selective responses has helped advance the study of visual 

attention, and in particular, feature-based attention. Kamitani & Tong (2005) showed that the 

activity patterns evoked by single orientations can predict which of two overlapping 

orientations is being attended by an observer. Similar results were obtained in studies of 

attention to overlapping motion stimuli (Kamitani & Tong 2006). These findings indicate 

that top-down attention can bias the strength of feature-selective responses in early visual 

areas, consistent with models of early attentional selection. Serences & Boynton (2007a) 

demonstrated that attending to one of two overlapping sets of moving dots leads to biased 

direction-selective responses not only at the site of the attended stimulus, but also in 

unstimulated portions of the visual field. Such spatial spreading of feature-based attention is 

consistent with neurophysiological studies in monkeys (Treue & Maunsell 1996). A recent 

study found that spatial and feature-based attention can lead to distinct effects in the visual 

cortex (Jehee et al 2011). When spatial attention was directed to one of two laterally 

presented gratings, overall BOLD activity was enhanced for the attended stimulus and yet 

the orientation-selective component of these responses improved only when observers 

focused on discriminating the orientation of the stimulus, rather than its contrast. This may 

suggest that enhanced processing of a specific visual feature may depend more on feature-
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based attention than on spatial attention (Jehee et al 2011; but see also Saproo & Serences 

2010).

Recent studies have also investigated the possible top-down sources of these attentional 

signals. Activity patterns in posterior parietal areas and the frontal eye fields contain reliable 

information about whether participants are attending to features or spatial locations 

(Greenberg et al 2010), and can even discriminate which of two features or locations is 

being attended (Liu et al 2011). These parietal and frontal areas could serve as plausible 

sources of attentional feedback to early visual areas.

Multivariate pattern analysis has also been used to quantify the extent to which spatial 

attention can bias activity in category-selective object areas, for example when face and 

house stimuli are simultaneously presented in different locations (Reddy et al 2009). When 

observers view overlapping face-house stimuli, it is possible to decode the focus of object-

based attention from activity patterns in high-level object areas as well as in early visual 

areas, indicating that top-down feedback serves to enhance the local visual features 

belonging to the attended object (Cohen & Tong, under review). Interestingly, attending to 

objects in the periphery leads to pattern-specific bias effects in the foveal representation of 

early visual areas, perhaps suggesting some type of remapping of visual information or 

reliance on foveal representations to recognize peripheral stimuli (Williams et al 2008). 

Pattern classification has also been used to investigate visual search for objects in complex 

scenes. Activity patterns in the lateral occipital complex can reveal what object category 

participants are actively searching for, as well as those occasions when the target object 

briefly appears at an attended or unattended location (Peelen et al 2009). Overall, fMRI 

pattern classification has greatly expanded the possibilities for studies of visual attention by 

providing an effective tool to measure attention-specific signals in multiple brain areas, 

including parietal and frontal areas.

Decoding Imagery and Working Memory

In an early fMRI study of mental imagery, (O’Craven & Kanwisher 2000) showed that it 

was possible to predict with 85% accuracy whether a person was imagining a famous face or 

place by inspecting the strength of activity in the fusiform face area and parahippocampal 

place area. A more recent study used multivoxel pattern analysis, and found that activity 

patterns in the ventral temporal cortex could predict whether participants were imagining 

famous faces, famous buildings, tools or food items with reasonable accuracy (Reddy et al 

2010). Similar results have been reported in studies of working memory for faces, places, 

and common objects (Lewis-Peacock & Postle 2008). It is also possible to decode the 

imagery of simple shapes, such as an ‘X’ or ‘O’, from these object-sensitive visual areas 

(Stokes et al 2009). In these studies, the activity patterns observed during imagery or 

working memory were very similar to those observed during perception, consistent with 

perception-based theories of imagery (Kosslyn et al 2001). Interestingly, it is also possible to 

distinguish silent clips of movies that imply distinctive sounds (e.g., howling dog, violin 

being played) from activity patterns in the auditory cortex, presumably because these visual 

stimuli elicit spontaneous auditory imagery (Meyer et al 2010).
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Although early visual areas have been implicated in visual imagery (Kosslyn & Thompson 

2003), these areas typically show little evidence of sustained BOLD activity during visual 

working memory tasks (Offen et al 2008). However, recent fMRI decoding studies have 

provided novel evidence to suggest that early visual areas are important for retaining 

visually precise information about visual features (Harrison & Tong 2009; Serences et al 

2009). Serences and colleagues cued participants in advance to remember either the color or 

orientation of a grating, and after a 10s delay, presented a second grating to evaluate working 

memory for the cued feature. They found that activity patterns in V1 allowed for prediction 

of the task-relevant feature (~60% accuracy) but not for the task-irrelevant features; 

information in extrastriate visual areas proved unreliable. Harrison & Tong used a postcuing 

method to isolate memory-specific activity by presenting two near-orthogonal gratings at the 

beginning of each trial, followed by a cue indicating which orientation to retain in working 

memory (see Figure 5a for timeline of trial events). Activity patterns in areas V1–V4 

allowed for reliable decoding of the remembered orientation (mean accuracy of 83%) and 

reliable working memory information was found in each visual area, including V1 (~70–

75% accuracy). Moreover, they found evidence of a striking dissociation between the overall 

amplitude of BOLD activity and the decoded information contained at individual fMRI time 

points. Whereas BOLD activity fell over time (Figure 5a), information about the 

remembered grating was sustained throughout the delay period (Figure 5b). In half of their 

participants, activity in V1 fell to baseline levels, equivalent to viewing a blank screen, yet 

decoding of the retained orientation proved as effective for these participants as for those 

who showed significantly elevated activity late in the delay period. These results suggest that 

visually precise information can be retained in early visual areas with very little overall 

change in metabolic activity, due to subtle shifts in the patterns of activity in these areas.

Decoding Episodic Memory

Although long-term memories are stored via modified synaptic connections in the 

hippocampus and cortex in their inactive state, it is possible to decode these memories when 

they are actively recalled or reinstated by the participant (for an in-depth review, see 

Rissman & Wagner, this issue). Polyn et al (2005) had participants study images of famous 

faces, famous places and common objects in the MRI scanner, and trained pattern classifiers 

on whole-brain activity to discriminate between these categories. When participants were 

later asked to freely recall these items, the classifier readily tracked the category that was 

being recalled from memory (Figure 5c). Remarkably, this category-selective activity 

emerged several seconds before participants switched to reporting items from a new 

category, suggesting that this categorical information might have served as a reinstated 

contextual cue to facilitate memory retrieval (Howard & Kahana 1999; Tulving & Thomson 

1973). Evidence of contextual reinstatement has even been observed when participants fail 

to recall the studied context (Johnson et al 2009). Whole-brain activity patterns could predict 

which of three of different encoding tasks was performed on an item at study, based on the 

reinstated patterns of activity that were later observed during a recognition memory test. 

Task-specific patterns of activity were found for correctly recognized items, and this proved 

true even for items that were rated as merely familiar, despite participants’ reports that they 

could not recollect any details surrounding the time of studying the target item. These 

findings argue against proposed dissociations between conscious recollection and feelings of 
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familiarity, and further suggest that cortical reinstatement of the studied context might not be 

sufficient for experiencing explicit recollection (McDuff et al 2009). Decoding can also 

reliably predict whether an item will be judged as old or new. When participants performed a 

recognition memory task involving faces, multiple brain regions responded more strongly to 

items judged as old than new, including the lateral and medial prefrontal cortex and posterior 

parietal cortex (Rissman et al 2010). The pooled information from these regions could 

reliably distinguish between correctly recognized or correctly rejected items with 83% mean 

accuracy, but failed to distinguish missed items from correctly rejected items. Explicit 

performance of these recognition memory judgments was necessary for decoding, as the 

classifier could no longer distinguish between old and new items when participants instead 

performed a gender discrimination task. The studies described above reveal how fMRI 

pattern analysis can provide a powerful tool for investigating item-specific memory 

processing at the time of study and test, and how such data can be used to address prevalent 

theories of memory function.

Decoding can also be used to isolate content-specific information from fine-scale activity 

patterns in the human hippocampus. After participants learn the spatial layout of a virtual 

environment, decoding applied to hippocampal activity can reveal some reliable information 

about the participant’s current location in that learned environment (Morgan et al 2011; 

Rodriguez 2010). It has also been shown that activity patterns in the hippocampus can 

predict which of three short movie clips a participant is engaged in recalling from episodic 

memory (Chadwick et al 2010). Although decoding performance for the hippocampus was 

modest (~60% accuracy), activity patterns in this region were found to perform significantly 

better than neighboring regions of the entorhinal cortex or the posterior parahippocampal 

gyrus. The ability to target specific episodic memories in the hippocampus may greatly 

extend the possibilities for future studies of human long-term memory.

Extracting Semantic Knowledge

Semantic knowledge is fundamentally multidimensional and often multimodal, consisting of 

both specific sensory-motor associations and more abstracted knowledge. For example, we 

know that a rose is usually red, has soft petals but sharp thorns, smells sweetly fragrant, and 

that the flowers of this plant make for an excellent gift on Valentine’s Day. Given the 

multidimensional nature of semantic information, multivariate pattern analysis might be well 

suited to probe its neural bases.

An early fMRI study demonstrated that it was possible to decode whether participants were 

viewing words belonging to 1 of 12 possible semantic categories, such as four-legged 

animals, fish, tools, or dwellings (Mitchell et al 2003). Subsequent studies have consistently 

found that animate and inanimate visual objects lead to highly differentiated patterns of 

activity in the ventral temporal cortex (Kriegeskorte et al 2008; Naselaris et al 2009). 

Remarkably, people who have been blind since birth exhibit a similar animate/inanimate 

distinction in the ventral temporal cortex when presented with tactile objects (Mahon et al 

2009; Pietrini et al 2004), leading to the proposal that this semantic differentiation might be 

innately determined rather than driven by visual experience (Mahon & Caramazza 2011).
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How might one characterize the broader semantic organization of the brain or predict how 

the brain might respond to any item based on its many semantic properties? (Mitchell et al 

2008) developed a multidimensional semantic feature model to address this issue. They tried 

to predict brain responses to novel nouns by first quantifying how strongly these nouns were 

associated with a basis set of semantic features, consisting of 25 verbs (e.g., see, hear, touch, 

taste, smell, eat, run). In essence, these semantic features served as intermediate variables to 

map between novel stimuli and predicted brain activity (cf. Kay et al 2008). The strength of 

the semantic association between any noun and these verbs could be estimated based on 

their frequency of co-occurrence, from analyzing a trillion-word text corpus provided by 

Google Inc. Using fMRI activity patterns elicited by 60 different nouns, the authors 

characterized the distinct patterns of activity associated with each verb, and could then 

predict brain responses to novel nouns by assuming that the resulting pattern of activity 

should reflect a weighted sum of the noun’s association to each of the verbs. Using this 

method, Mitchell et al. could predict which of two nouns (excluded from the training set) 

was being viewed with 77% accuracy, and could even distinguish between two nouns 

belonging to the same semantic category with 62% accuracy. The activity patterns for 

particular verbs often revealed strong sensorimotor associations. For example, “eat” 

predicted positive activity in frontal regions associated with mouth movements and taste, 

whereas “run” predicted activity in the superior temporal sulcus associated with the 

perception of biological motion. These findings are quite consistent with the predictions of 

neural network models of semantic processing, in which specific items are linked to multiple 

associated features through learning, and semantically related items are represented by more 

similar patterns of activated features (McClelland & Rogers 2003).

Decoding has also been applied to other domains of knowledge such as numerical 

processing. One study found that activity patterns in the parietal cortex reflected not only 

spatial attention directed to the left or right side of space, this spatial bias could be used to 

predict whether participants were engaged in a subtraction or addition task (Knops et al 

2009). Another study found that activity patterns in the parietal cortex could distinguish 

between different numbers, whether conveyed by digit symbols or dot patterns (Eger et al 

2009). In general, these studies are consistent with the proposal that number representations 

are strongly associated with the parietal lobe and may be represented according to an 

implicit spatial representation of a number line (Hubbard et al 2005).

Decoding Phonological Representations and Language Processing

Some recent studies have begun to use fMRI decoding methods to investigate the neural 

underpinnings of phonological and language processing. In one study, participants were 

presented with audio clips of three different speakers uttering each of three different vowel 

sounds (Formisano et al 2008). Activity patterns in the auditory cortex could successfully 

discriminate which vowel was heard, even when the classifier was tested on a voice not 

included in the training set. Likewise, pattern classifiers could identify the speaker at above-

chance levels, even when tested with vowels not included in the training set. Another study 

showed that activity patterns in the auditory cortex can distinguish between normal speech 

and temporally reordered versions of these stimuli, implying sensitivity to speech-specific 

content (Abrams et al 2011).
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Another fruitful approach has been to investigate the role of experience in the development 

of phonological representations. An analysis of activity patterns in the auditory cortex 

revealed better discrimination of the syllables /ra/ or /la/ in native English speakers than in 

Japanese participants who often have difficulty distinguishing between these phonemes 

(Raizada et al 2010). Moreover, the authors found evidence of a correlation within each 

group, between an individual’s decoding performance and his or her behavioral ability to 

distinguish between these phonemes, suggesting that fMRI decoding may be sensitive to 

individual differences in language processing. A recent study of reading ability provides 

further evidence for this view (Hoeft et al 2011). The authors instructed children with 

dyslexia to perform a phonological processing task in the scanner, and later assessed 

whether or not their reading skills had improved two and a half years later. Although purely 

behavioral measures taken in the first session failed to predict which children would improve 

in reading skills over time, a pattern classifier trained on the whole-brain data was able to 

predict improvement with over 90% accuracy. These results raise the exciting possibility of 

using fMRI pattern analysis for diagnostic purposes with respect to language processing.

Decoding Decisions in the Brain

Decoding has revealed that it is possible to predict the decisions that people are likely to 

make, even in advance of their actual choices. For example, activity in the anterior cingulate 

cortex, medial prefrontal cortex, and the ventral striatum is predictive of the participant’s 

choices in a reward-learning paradigm (Hampton & O’Doherty J 2007). Here, one of two 

stimuli is associated with a higher likelihood of reward and the other with a lower likelihood, 

but these reward probabilities are reversed at unpredictable times. Activity in these areas is 

highly predictive of whether a participant will switch their choice of stimulus on a given 

trial, and activity on the trial prior to a switch is also somewhat predictive, indicating an 

accrual of information over time regarding whether the current regime should be preferred or 

not. Such valuation responses can also be observed in the insula and medial prefrontal cortex 

for unattended stimuli, and these decoded responses correspond quite well to the 

participants’ valuation of that item, such as a particular model of car (Tusche et al 2010). 

fMRI decoding can even predict participants’ choices of real-world products at greater-than-

chance levels. In these experiments, participants were offered the opportunity to purchase or 

decline to purchase a variety of discounted items ranging in value from $8–80, with the 

foreknowledge that two of their purchase choices would be realized at the end of the 

experiment (Knutson et al 2007). In studies of arbitrary decisions, such as deciding to press 

a button with one’s left or right hand at an arbitrary time, participants show evidence of 

preparatory activity in motor and supplementary motor areas a few seconds in advance of 

their action. Remarkably, however, a small but statistically reliable bias in activity can be 

observed in the frontopolar cortex up to 10 seconds prior to the participant’s response, 

suggesting some form of preconscious bias in the decision making process (Soon et al 

2008).

CONCEPTUAL AND METHODOLOGICAL ISSUES

Whenever a new methodology is developed, important conceptual and methodological issues 

can emerge regarding how the data should be analyzed, interpreted and understood. Pattern 
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classification algorithms are statistically powerful and quite robust. However, these very 

strengths can pose a challenge, as the algorithms are designed to leverage whatever 

information is potentially available in a brain region to make better predictions about a 

stimulus, experimental condition, mental state, or behavioral response. An example of 

unwanted leveraging was apparent in one of the reported results of the 2006 Pittsburgh Brain 

Competition (http://pbc.lrdc.pitt.edu/), an open competition that was designed to challenge 

research groups to develop state-of-the-art analytic methods for the purposes of brain 

reading and mind reading. This competition assessed the accuracy of decoding the presence 

of particular actors, objects, spatial locations, and periods of humor from the time series of 

fMRI data collected while participants watched episodes of the TV series “Home 

Improvement”. To decode scenes containing humorous events, it turned out that the 

ventricles proved to be the most informative region of the brain—this high-contrast region in 

the functional images tended to jiggle whenever the participant felt an urge to laugh. Despite 

the remarkable accuracy of decoding periods of mirth from this region, it would clearly be 

wrong to conclude that this brain structure has a functional role in the cognitive processing 

of humorous information. If the accuracy of decoding is not sufficient for establishing 

function, then how can one determine precisely what information is processed by a brain 

region? Below, we consider these and other conceptual and methodological issues.

What Is Being Decoded?

A long-standing problem in fMRI research concerns the potential pitfalls of reverse 
inference. As an example, it is well established that the human amygdala responds more 

strongly to fear-related stimuli than to neutral stimuli, but it does not logically follow that if 

the amygdala is more active in a given situation that the person is necessarily experiencing 

fear (Adolphs 2010; Phelps 2006). If the amygdala’s response varies along other dimensions 

as well, such as the emotional intensity, ambiguity or predictive value of a stimulus, then it 

will be difficult to make strong inferences from the level of amygdala activity alone.

A conceptually related problem emerges in fMRI decoding studies, when one identifies a 

brain region that can reliably discriminate between two particular sensory stimuli or two 

cognitive tasks. For example, Haxby et al. (2001) showed that activity patterns in the human 

ventral temporal cortex were reliably different when participants viewed images of different 

object categories. The authors interpreted this decoding result to suggest that the ventral 

temporal object areas are sensitive to complex object properties. However, subsequent 

studies revealed that early visual areas could discriminate between the object categories just 

as well as or better than the high-level object areas, because of the pervasiveness of low-

level differences between the object categories (Cox & Savoy 2003). Therefore, successful 

decoding of a particular property from a brain region, such as object category, does not 

necessarily indicate that the region in question is truly selective for that property. The 

inferences one can make with multivariate pattern analysis still depend on strong 

experimental design, and in many cases multiple experiments may be needed to rule out 

potential confounding factors.

One approach for determining the functional relevance of a particular brain area is to test for 

links between behavioral performance and decoding performance. For example, if one 
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compares correct versus incorrect trials in a fine-grained orientation discrimination task, 

greater activity in the primary visual cortex is found specifically in those voxels tuned to 

orientations neighboring the target orientation (Scolari & Serences 2010). Month-long 

perceptual training at discriminating a specific orientation in the visual field can also lead to 

more reliable orientation-selective activity patterns in human V1, specifically around the 

trained orientation (Jehee et al., submitted). Decoding of object-specific information from 

the lateral occipital complex is much better on trials with successful than unsuccessful 

recognition (Williams et al 2007). Related studies have found that functional activity 

patterns in the ventral temporal object areas are more reliable and reproducible when a 

stimulus can be consciously perceived than when it is subliminally presented (Schurger et al 

2010). Interestingly, when participants must study a list of items on multiple occasions, 

items that evoke more similar activity patterns across repeated presentations are also more 

likely to be remembered (Xue et al 2010).

Because of the high-dimensional nature of visual input, it is possible to investigate the 

similarity of cortical activity patterns across a variety of stimulus conditions to assess the 

properties they might be attuned to. For example, similar orientations evoke more similar 

activity patterns in early visual areas (Kamitani & Tong 2005), and similar colors have been 

found to do so in visual area V4 (Brouwer & Heeger 2009). However, the similarity 

relationships of responses to objects are quite different in early visual areas and high-level 

object areas, with the object areas exhibiting a sharp distinction in their activity patterns for 

animate and inanimate objects (Kriegeskorte et al 2008; Naselaris et al 2009). Studies of 

olfactory perception have revealed comparable findings in the posterior piriform cortex, with 

more similar odors leading to more similar patterns of fMRI activity (Howard et al 2009). 

Thus, if neural activity patterns share the similarity structure of perceptual judgments, this 

can provide strong evidence to implicate the functional role of a brain area.

One can further investigate the functional tuning properties of a brain area by assessing 

generalization performance: do the activity patterns observed in a brain area generalize to 

very different stimulus conditions or behavioral tasks? In Harrison & Tong’s (2009) study of 

visual working memory, the authors trained a classifier on visual cortical activity patterns 

elicited by unattended gratings, and tested whether these stimulus-driven responses might be 

able to predict which of two orientations was being maintained in working memory while 

participants viewed a blank screen. Successful generalization was found despite the 

differences in both stimulus and task across the experiments, thereby strengthening the 

inference that orientation-specific information was being maintained in the visual cortex 

during the working memory task. In a study of auditory perception, classifiers trained using 

phonemes pronounced by one speaker could successfully generalize to the corresponding 

phonemes spoken by another speaker, despite changes in the auditory frequency content 

(Formisano et al 2008). Perhaps the most rigorous test of generalization performance comes 

from demonstrations of the ability to predict brain responses to novel stimuli, as has been 

shown by Kay & Gallant’s visual encoding model and Mitchell et al.’s semantic encoding 

model (Kay et al 2008; Mitchell et al 2008). Successful generalization can be an effective 

tool for ruling out potential low-level stimulus confounds or task-related factors.
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In studies of high-level cognition, isolating the specific function of a brain area may be more 

challenging if the experimental design focuses on discriminating between two cognitive 

tasks. When participants perform cognitive tasks differing in the stimuli, task demands, and 

behavioral judgments required, almost the entire cerebral cortex can show evidence of 

reliable discriminating activity (Poldrack et al 2009). Differential activity can result from 

many factors, including differences in low-level sensory stimulation, working memory load, 

language demands, or the degree of response inhibition required for the task. Even when two 

tasks are quite closely matched, such as performing addition or subtraction (Haynes et al 

2007) or directing attention to features or spatial locations (Greenberg et al 2010), it is 

important to consider potential confounding factors. If one task is slightly more difficult or 

requires a bit more processing time for a given participant, then larger or longer fMRI 

amplitudes could occur on those trials, which could allow decoding to exceed chance-level 

performance. This potential confound has sometimes been addressed by performing 

decoding on the average amplitude of activity in a brain region, to see if overall activity is 

predictive or whether more fine-grained information is needed for reliable decoding. 

Another approach might be to attempt to assess decoding of fast vs. slow reaction times 

using the same brain region, and to test whether these activity patterns resemble those that 

distinguish the two tasks.

Where in the Brain to Decode From?

Many fMRI decoding studies have focused on the human visual system, which contains 

many well-defined visual areas. In addition, it is common to map the particular region of 

visual space that will be stimulated in an experiment, so that only the corresponding voxels 

in the retinotopic visual cortex are used for decoding analysis. There are several advantages 

to applying pattern analysis to well-defined functional areas. First, localization of function is 

possible, and the information contained in each functional region can be independently 

assessed and compared to other regions. Second, there is reduced concern that decoding 

performance might reflect information combined across functionally distinct areas. Finally, 

decoding performance can be compared to other known functional properties of that brain 

area to ask whether the results seem reasonable and readily interpretable. Focused 

investigations of the human hippocampus have also benefitted from having a targeted 

anatomical locus (Chadwick et al 2010; Hassabis et al 2009).

In studies of higher-level cognition, predefined regions of interest usually are not available 

and multiple distributed brain areas might be involved in the cognitive task. Many of these 

studies rely on decoding of whole-brain activity, sometimes first selecting the most active 

voxels in the task or applying a method to reduce the dimensionality of the data (e.g., 

principal components analysis) prior to classification analysis. (When selecting a subset of 

voxels prior to the decoding analysis, it is important to ensure that the selection process is 

independent of the property to be decoded, so it will not bias decoding performance to be 

better than it should (Kriegeskorte et al 2009).) The advantage of the whole-brain approach 

lies in its ability to reveal a majority of the information available throughout the brain. 

Moreover, it is possible to inspect the pattern of “weights” in the classifier and to project 

these onto the cortex to reveal how this information is distributed throughout the brain. For 

example, Polyn and colleagues (2005) found that that fusiform face area was one of the 
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regions most active during the free recall of famous faces whereas the parahippocampal 

place area and retrosplenial cortex were most active during the recall of famous places. 

Thus, decoding of whole brain activity can reveal what information is present in the brain 

and where in the brain such information is most densely concentrated.

However, classification analysis implicitly assumes a “readout mechanism”, in which 

relative differences between the strengths of particular brain signals are calculated and 

leveraged to compute useful information. It is not clear whether the brain is actually 

comparing or combining the neural signals that are being analyzed by the classifier, 

especially when information from distinct brain regions are combined. For example, a 

semantic model might find that the word “rose” leads to whole brain activity that is well 

predicted by the patterns associated with “smell”, “plants”, and “seeing” vivid colors such as 

red. Should each of the respective components of this activity be considered part of a single 

unified representation or several independent components that are being unified outside of 

the brain by the classifier (Mahon & Caramazza 2009; Mitchell et al 2008)? This distinction 

can be made more vivid with a somewhat different example. Assume it is possible to decode 

whether something smells floral or citrus from activity patterns in the olfactory piriform 

cortex, and it is also possible to decode whether the color red or yellow is being perceived 

from the visual cortex. Now, if decoding of whole-brain activity can tell apart a floral-

scented red rose from one that smells like lemon or has lemon-colored petals, can it be 

argued that the brain contains a unified representation of the color and smell of roses? 

According to a recent fMRI study of perceptual binding (Seymour et al 2009), establishing 

evidence of a conjoint representation of color and smell would require demonstrating that 

brain activity patterns can distinguish between a floral-scented red rose paired with a citrus-

scented yellow rose as distinct from a citrus-scented red rose paired with a floral-scented 

yellow rose. This issue also points to a longstanding debate regarding whether the brain 

relies on modular or distributed representations for information processing (Haxby et al 

2001; Op de Beeck et al 2008). Recent fMRI studies indicate that many types of information 

are distributed quite widely throughout the brain, but that there also exist highly stimulus-

selective modules that may form a more local, exclusive network (Moeller et al 2008; Tsao 

et al 2006).

An alternative to decoding whole-brain activity is to perform a searchlight analysis, in which 

decoding is iteratively performed on local activity patterns sampled throughout the cortex 

(Kriegeskorte et al 2006). This typically involves using a moveable searchlight to sample a 

local “sphere” of voxels (say a 5 × 5 × 5 voxel cubic region) from each point in the cortex. 

This approach reveals the information contained in local activity patterns, which reduces the 

extent to which information will be combined across distinct functional areas. A potential 

concern is that brain signals from disparate areas may sometimes be combined across a 

sulcus, so this approach could be further strengthened by analyzing activity patterns based 

on a flattened representation of the cortical surface. A disadvantage of this approach is the 

need to correct for multiple comparisons for each iteration of the search, which reduces 

statistical power. For these reasons, searchlight analyses are often combined with group-

level statistical analyses to evaluate whether reliable information is consistently found in a 

particular region of the brain across participants.
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At What Spatial Scales of Cortical Representation Is Decoding Most Useful?

Multivoxel pattern analysis may serve different purposes, depending on whether the sought 

after information resides at fine or coarse spatial scales in the brain. At the finest scale, 

multivoxel pattern classification may be particularly advantageous at detecting signals 

arising from variability in the spatial arrangement of cortical columns, which can lead to 

locally biased signals on the scale of millimeters (Swisher et al 2010). Pattern analysis of 

fine-scale signals has proven effective not only in the visual cortex but also in high-

resolution fMRI studies of the hippocampus (Hassabis et al 2009). Such fine-grained 

information would otherwise be very difficult or impossible to detect using traditional 

univariate methods of analysis. At a somewhat coarser scale, pattern classifiers are also very 

effective at extracting category-selective information from the ventral temporal cortex, 

which reveals a strong functional organization at spatial scales of several millimeters to 

centimeters (Haxby et al 2001). These methods can be helpful for pooling distributed 

information about objects or semantic categories, particularly when there is no single 

“hotspot” of functional selectivity available in the broad cortical region to be analyzed. 

Decoding has also been applied to activity patterns of large spatial scale, including whole-

brain activity, even when differentially activated regions can be seen using traditional 

univariate analyses such as statistical parametric mapping. For example, one can attain much 

better predictions of an observer’s near-threshold perceptual judgments regarding fearful 

versus non-fearful faces by pooling information across multiple activated regions (Pessoa & 

Padmala 2007). Beyond the benefits of signal averaging, combining signals from multiple 

regions of interest can be beneficial if each region contains some unique information. 

Another example of whole-brain decoding comes from a recognition memory study, which 

compared participants’ behavioral performance at old-new judgments with the 

discriminating performance of the pattern classifier (Rissman et al 2010). Although the 

patterns picked up by the classifier closely resembled the statistical maps, the decoding 

analysis revealed a compelling relationship between subjective ratings of memory 

confidence and differential brain responses to old versus new items on individual trials. 

These examples illustrate how decoding can be useful when applied at large spatial scales. 

Nevertheless, interpreting the combined results from disparate brain areas can be 

challenging, and may warrant careful consideration of exactly what is being decoded, as we 

have described above.

ETHICAL AND SOCIETAL CONSIDERATIONS

What are the potential implications of human neuroimaging and brain-reading technologies 

as this rapidly growing field continues to advance? Over the last decade, there has been 

steadily growing interest in neuroethics, which focuses on the current and future 

implications of neuroscience technology on ethics, society and law (Farah 2005; Roskies 

2002). Although some had thought these concerns to be premature, the intersection between 

law and neuroscience (sometimes called neurolaw) has rapidly evolved in recent years 

(Jones & Shen, submitted).

In October 2009, Dr. Kent Kiehl appeared at a Chicago court hearing to find out whether the 

fMRI scans he had collected of Brian Dugan’s brain might be admissible as evidence in a 
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high-profile death penalty case. Dugan, who had already served over 20 years in prison for 

two other murders, had recently confessed to murdering a 10-year-old girl in 1983, 

following the discovery of DNA evidence linking him to the crime.

On November 5, 2009, the fMRI scans of a defendant’s brain were considered as evidence in 

the sentencing phase of a murder trial, for what appears to be the first time (Hughes 2010). 

Dr. Kiehl provided expert testimony, describing the results of two psychiatric interviews and 

the unusually low levels of activity in several regions of Dugan’s brain, similar to many 

other criminal psychopaths when shown pictures of violent or morally wrong actions 

(Harenski et al 2010). He pointed to these regions on cartoon drawings of the brain, as the 

judge had decided that the presentation of actual brain pictures might unduly influence the 

jury (Weisberg et al 2008). Expert testimony from the prosecution refuted the brain imaging 

data on two grounds: Dugan’s brain might have been very different 26 years ago, and Dr. 

Kiehl’s neuroimaging studies of criminal psychopaths showed average trends in the data and 

were not designed for individual diagnosis. After less than an hour of deliberation, the jury 

initially reached a mixed verdict (10 for and 2 against the death penalty), but then asked for 

more time, switching to a unanimous verdict in favor of the death penalty the next day. 

Dugan’s lawyer noted that although the verdict was unfavorable, Kiehl’s testimony “turned 

it from a slam dunk for the prosecution into a much tougher case”.

If courts are primarily concerned that neuroimaging evidence appears unreliable for 

individual diagnosis, then recent advances in brain classification methods for diagnosing 

neurological disorders could lead to the increasing prevalence of such evidence in 

courtrooms. Recent studies have shown that pattern classification algorithms applied to 

structural MRI scans or functional MRI scans can distinguish between whether an individual 

is a normal control or a patient suffering from either schizophrenia (Nenadic et al 2009), 

depression (Craddock et al 2009) or psychopathy (Sato et al 2011), with reported accuracy 

levels ranging from 80–95%. In the context of a court case, these accuracy levels might be 

high enough to influence a jury’s decision. For example, a diagnosis of paranoid 

schizophrenia might influence decisions regarding whether a defendant was likely to be 

psychotic at the time of the crime. Although a diagnosis of psychopathy might be unlikely to 

affect the determination of whether a defendant should be considered guilty based on his or 

her actions, such evidence could prove to be an influential mitigating factor during the 

sentencing phase of the trial. As neuroscience continues to advance our understanding of the 

neural mechanisms that lead to decisions and actions, neuroscientists and perhaps society 

more generally may feel motivated to reconsider our traditional definitions of free will and 

personal responsibility (Greene & Cohen 2004; Roskies 2006; Sapolsky 2004).

Brain classification methods for individual diagnosis could have strong ethical implications 

in medical settings as well, especially concerning disorders of consciousness. Some patients, 

who partially recover from coma, are diagnosed as being in a vegetative state if they exhibit 

periods of wakefulness but appear to lack awareness or any purpose in their motor actions. 

Despite this apparent lack of awareness, it was recently discovered that some vegetative state 

patients are capable of voluntarily performing mental imagery tasks (Owen et al 2006). 

When asked to imagine either playing tennis or walking around a house, differential patterns 

of activity can be observed in their brains. Recently, this imagery paradigm has been 
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combined with fMRI decoding to obtain reliable yes/no responses from a patient to 

questions such as “Is you father’s name Alexander?” (Monti et al 2010). If highly reliable 

communication can be established with such patients, this could lead to uncharted territories 

in terms of the ethical and legal considerations regarding, for example, any medical requests 

made by the patient.

Perhaps the strongest ethical concerns have been raised regarding the potential application of 

fMRI decoding to detect lies or the presence of guilty knowledge (Bizzi et al 2009). Much 

attention has focused on recent studies of lie detection and their claims, as well as the efforts 

made by private companies to develop and market this nascent technology. In a study by 

Langleben and colleagues, participants were given two cards in an envelope and asked in 

advance to lie whenever they were asked if they had one card and to tell the truth about the 

other (Davatzikos et al 2005). Pattern classification applied to whole brain activity revealed 

that truths and lies could be distinguished in this task with 88% accuracy on individual trials, 

due to greater activity observed for lies in multiple areas including the prefrontal cortex, 

anterior cingulate and insula. On the basis of these findings, some rather bold claims were 

made about the prospects of future fMRI lie detection technology. However, it is critical to 

note that it is not lying per se that is being decoded from these brain areas, but rather the 

cognitive and emotional processes that are associated with lying (Spence et al 2004). Thus, 

lie detection technology suffers the same problem of reverse inference that we have 

discussed previously. Although lying typically leads to the activation of a certain set of brain 

areas, the activation of these brain areas does not necessarily indicate lying. In real world 

settings, such as when a defendant is strongly suspected of committing a crime or feels 

guilty for having witnessed the crime, any questions about the crime might elicit strong 

emotional and cognitive responses akin to those evoked by lying. It is also not clear whether 

criminals, especially those with psychopathy, would show the same activity patterns during 

lying. Other fMRI studies have shown that brain activity patterns differ for prepared lies and 

spontaneous lies (Ganis et al 2003), and that fMRI lie detection technology can be subverted 

by covertly engaging in an separate cognitive task during brain scanning (Ganis et al 2011). 

These major shortcomings bring into serious question whether it will be possible to develop 

an ecologically valid and reliable fMRI lie detector anytime in the near future.

However, this has not prevented the recent efforts of private companies to market such 

technology or to prepare for their use in courtrooms. In May 2010, the first Daubert hearing 

was held in Tennessee to determine whether fMRI lie detection might be considered 

admissible as scientific evidence (Miller 2010). Dr. Steven Laken, CEO of Cephos, a 

company that provides fMRI lie detection services, presented evidence in favor of admitting 

the brain scans he had performed on the defendant, which according to him, indicated 

innocence on the charges of fraud. The prosecution invited expert testimony from 

neuroscientist Marcus Raichle and statistician Peter Imrey to dispute the reliability of the 

current technology. In the end, the judge determined that fMRI lie detection technology was 

supported by peer-reviewed publications, but had not gained wide acceptance among 

scientists. Moreover, its reliability and accuracy had yet to be validated in real-world 

settings, and a well-standardized protocol for implementing such tests had yet to be 

established (Shen & Jones In press).
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It remains to be seen whether fMRI lie detection will ever improve enough to meet general 

scientific acceptance or gain admission into courts. Nevertheless, it would be prudent to 

consider the potential ethical and societal ramifications of such technology, should it 

improve to the point that detection accuracy is no longer the primary concern. There would 

be obvious benefits in a legal setting if accuracy were extremely high. However, mental 

privacy could face enormous new challenges, in both legal settings and beyond, as there has 

been no precedent for being able to look into the mind of another human being. Although 

DNA can be obtained as evidence from a suspect based on court order, brain reading of 

thoughts might fall under the category of testimony, in which case defendants would be 

protected by the Fifth Amendment. Even so, if the technology were ever to develop to near-

perfect levels of accuracy, a refusal to voluntarily submit to fMRI lie detection might be 

interpreted as an implicit admission of guilt by some juries even when instructed not to do 

so. In the worlds of business and personal relationships, the availability of such technology 

could have far-reaching consequences, especially in situations involving employers and 

employees, business partners, or even spouses. Just the existence of such technology and the 

pressure of being asked to undergo testing could lead people to disclose information that 

they otherwise would have declined to share.

Given the conceptual challenges of developing reliable fMRI lie detection and the fact that 

people can use countermeasures to alter their patterns of brain activity, we are doubtful that 

the technology will progress to being truly reliable and ecologically valid. Nonetheless, it is 

important to consider potential implications in case it ever does.

CONCLUDING REMARKS

In recent years, fMRI pattern classification has led to rapid advances in many areas of 

cognitive neuroscience, encompassing perception, attention, object processing, memory, 

semantics, language processing and decision making. These methods have allowed 

neuroimaging researchers to isolate feature-selective sensory responses, neural correlates of 

conscious perception, content-specific activity during attention and memory tasks, and brain 

activity patterns that are predictive of future decisions.

Furthermore, multivariate analyses can be used to characterize the multidimensional nature 

of neural representations, such as the functional similarity between object representations, 

scene representations or semantic representations, allowing one to predict how the brain 

should respond to novel stimuli. Looking forward, the enhanced sensitivity and information 

content provided by these methods should greatly facilitate the investigation of mind-brain 

relationships, by revealing both local and distributed representations of mental content, 

functional interactions between brain areas, and the underlying relationships between brain 

activity and cognitive performance.

Despite, or perhaps because of, the statistical power of these analytic tools, careful 

experimentation and interpretation is required when making inferences about successful 

decoding of a stimulus, task, or mental state from human brain activity. The extension of 

these methods into real-world applications could prove very useful for medical diagnosis 

and also neuroprosthesis (Hatsopoulos & Donoghue 2009). However, there are major 
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concerns regarding the reliability and ecological validity of current attempts to perform real-

world lie detection. Much more research will be needed to determine whether such methods 

might be valid or not. Strong ethical considerations also revolve around the prospect of 

developing reliable lie detection technology, and it would be prudent to consider how mental 

privacy would be protected if such technology were allowed to gain prominent use.

Acknowledgments.

The authors would like to thank Owen Jones, Yukiyasu Kamitani, Sean Polyn, Elizabeth Counterman, and Jascha 
Swisher for helpful comments on earlier versions of this manuscript. The authors were supported by grants from the 
National Eye Institute (R01EY017082), the National Science Foundation (BCS-0642633), and the Defense 
Advanced Research Projects Agency.

References

Abrams DA, Bhatara A, Ryali S, Balaban E, Levitin DJ, Menon V. 2011 Decoding temporal structure 
in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. 
Cereb Cortex 21:1507–18 [PubMed: 21071617] 

Adolphs R 2010 What does the amygdala contribute to social cognition? Ann N Y Acad Sci 1191:42–
61 [PubMed: 20392275] 

Bizzi E, Hyman SE, Raichle ME, Kanwisher N, Phelps EA, et al. 2009 Using imaging to identify 
deceit: Scientific and ethical questions. Cambridge, MA: American Academy of Arts and Sciences

Blake R, Logothetis NK. 2002 Visual competition. Nat Rev Neurosci 3:13–21. [PubMed: 11823801] 

Boynton GM, Finney EM. 2003 Orientation-specific adaptation in human visual cortex. J Neurosci 
23:8781–7 [PubMed: 14507978] 

Brouwer GJ, Heeger DJ. 2009 Decoding and reconstructing color from responses in human visual 
cortex. J Neurosci 29:13992–4003 [PubMed: 19890009] 

Brouwer GJ, van Ee R. 2007 Visual cortex allows prediction of perceptual states during ambiguous 
structure-from-motion. J Neurosci 27:1015–23 [PubMed: 17267555] 

Carlson TA, Schrater P, He S. 2003 Patterns of activity in the categorical representations of objects. J. 
Cogn. Neurosci 15:704–17 [PubMed: 12965044] 

Chadwick MJ, Hassabis D, Weiskopf N, Maguire EA. 2010 Decoding individual episodic memory 
traces in the human hippocampus. Curr Biol 20:544–7 [PubMed: 20226665] 

Chan AW, Kravitz DJ, Truong S, Arizpe J, Baker CI. 2010 Cortical representations of bodies and faces 
are strongest in commonly experienced configurations. Nat Neurosci 13:417–8 [PubMed: 
20208528] 

Clifford CW, Mannion DJ, McDonald JS. 2009 Radial biases in the processing of motion and motion-
defined contours by human visual cortex. J Neurophysiol 102:2974–81 [PubMed: 19759326] 

Cox DD, Savoy RL. 2003 Functional magnetic resonance imaging (fMRI) “brain reading”: detecting 
and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19:261–
70 [PubMed: 12814577] 

Craddock RC, Holtzheimer PE 3rd, Hu XP, Mayberg HS. 2009 Disease state prediction from resting 
state functional connectivity. Magn Reson Med 62:1619–28 [PubMed: 19859933] 

Davatzikos C, Ruparel K, Fan Y, Shen DG, Acharyya M, et al. 2005 Classifying spatial patterns of 
brain activity with machine learning methods: application to lie detection. Neuroimage 28:663–8 
[PubMed: 16169252] 

Eger E, Ashburner J, Haynes JD, Dolan RJ, Rees G. 2008 fMRI activity patterns in human LOC carry 
information about object exemplars within category. J Cogn Neurosci 20:356–70 [PubMed: 
18275340] 

Eger E, Michel V, Thirion B, Amadon A, Dehaene S, Kleinschmidt A. 2009 Deciphering cortical 
number coding from human brain activity patterns. Curr Biol 19:1608–15 [PubMed: 19781939] 

Engel SA, Furmanski CS. 2001 Selective adaptation to color contrast in human primary visual cortex. J 
Neurosci 21:3949–54 [PubMed: 11356883] 

Tong and Pratte Page 24

Annu Rev Psychol. Author manuscript; available in PMC 2021 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Farah MJ. 2005 Neuroethics: the practical and the philosophical. Trends Cogn Sci 9:34–40 [PubMed: 
15639439] 

Fischer J, Spotswood N, Whitney D. 2011 The emergence of perceived position in the visual system. J 
Cogn Neurosci 23:119–36 [PubMed: 20044886] 

Formisano E, De Martino F, Bonte M, Goebel R. 2008 “Who” is saying “what”? Brain-based decoding 
of human voice and speech. Science 322:970–3 [PubMed: 18988858] 

Freeman J, Brouwer GJ, Heeger DJ, Merriam EP. 2011 Orientation decoding depends on maps, not 
columns. J Neurosci 31:4792–804 [PubMed: 21451017] 

Freiwald WA, Tsao DY. 2010 Functional compartmentalization and viewpoint generalization within 
the macaque face-processing system. Science 330:845–51 [PubMed: 21051642] 

Freiwald WA, Tsao DY, Livingstone MS. 2009 A face feature space in the macaque temporal lobe. Nat 
Neurosci 12:1187–96 [PubMed: 19668199] 

Ganis G, Kosslyn SM, Stose S, Thompson WL, Yurgelun-Todd DA. 2003 Neural correlates of different 
types of deception: an fMRI investigation. Cereb Cortex 13:830–6 [PubMed: 12853369] 

Ganis G, Rosenfeld JP, Meixner J, Kievit RA, Schendan HE. 2011 Lying in the scanner: covert 
countermeasures disrupt deception detection by functional magnetic resonance imaging. 
Neuroimage 55:312–9 [PubMed: 21111834] 

Gerardin P, Kourtzi Z, Mamassian P. 2010 Prior knowledge of illumination for 3D perception in the 
human brain. Proc Natl Acad Sci U S A 107:16309–14 [PubMed: 20805488] 

Goddard E, Mannion DJ, McDonald JS, Solomon SG, Clifford CW. 2010 Combination of subcortical 
color channels in human visual cortex. J Vis 10:25

Greenberg AS, Esterman M, Wilson D, Serences JT, Yantis S. 2010 Control of spatial and feature-
based attention in frontoparietal cortex. J Neurosci 30:14330–9 [PubMed: 20980588] 

Greene J, Cohen J. 2004 For the law, neuroscience changes nothing and everything. Philos Trans R Soc 
Lond B Biol Sci 359:1775–85 [PubMed: 15590618] 

Hampton AN, O’Doherty JP. 2007 Decoding the neural substrates of reward-related decision making 
with functional MRI. Proc Natl Acad Sci U S A 104:1377–82 [PubMed: 17227855] 

Harenski CL, Harenski KA, Shane MS, Kiehl KA. 2010 Aberrant neural processing of moral 
violations in criminal psychopaths. J Abnorm Psychol 119:863–74 [PubMed: 21090881] 

Harrison SA, Tong F. 2009 Decoding reveals the contents of visual working memory in early visual 
areas. Nature 458:632–5 [PubMed: 19225460] 

Hassabis D, Chu C, Rees G, Weiskopf N, Molyneux PD, Maguire EA. 2009 Decoding neuronal 
ensembles in the human hippocampus. Curr Biol 19:546–54 [PubMed: 19285400] 

Hatsopoulos NG, Donoghue JP. 2009 The science of neural interface systems. Annu Rev Neurosci 
32:249–66 [PubMed: 19400719] 

Haushofer J, Livingstone MS, Kanwisher N. 2008 Multivariate patterns in object-selective cortex 
dissociate perceptual and physical shape similarity. PLoS Biol 6:e187 [PubMed: 18666833] 

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. 2001 Distributed and overlapping 
representations of faces and objects in ventral temporal cortex. Science 293:2425–30. [PubMed: 
11577229] 

Haynes JD, Deichmann R, Rees G. 2005 Eye-specific effects of binocular rivalry in the human lateral 
geniculate nucleus. Nature 438:496–9 [PubMed: 16244649] 

Haynes JD, Rees G. 2005a Predicting the orientation of invisible stimuli from activity in human 
primary visual cortex. Nat Neurosci 8:686–91 [PubMed: 15852013] 

Haynes JD, Rees G. 2005b Predicting the stream of consciousness from activity in human visual 
cortex. Curr Biol 15:1301–7 [PubMed: 16051174] 

Haynes JD, Rees G. 2006 Decoding mental states from brain activity in humans. Nat Rev Neurosci 
7:523–34 [PubMed: 16791142] 

Haynes JD, Sakai K, Rees G, Gilbert S, Frith C, Passingham RE. 2007 Reading hidden intentions in 
the human brain. Curr Biol 17:323–8 [PubMed: 17291759] 

Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N, et al. 2011 Neural systems predicting 
long-term outcome in dyslexia. Proc Natl Acad Sci U S A 108:361–6 [PubMed: 21173250] 

Tong and Pratte Page 25

Annu Rev Psychol. Author manuscript; available in PMC 2021 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hong SW, Tong F, Seiffert AE. 2012 Direction-selective patterns of activity in human visual cortex 
reveal common neural substrates for different types of motion. Neuropsychologia 50:514–21 
[PubMed: 21945806] 

Howard JD, Plailly J, Grueschow M, Haynes JD, Gottfried JA. 2009 Odor quality coding and 
categorization in human posterior piriform cortex. Nat Neurosci 12:932–8 [PubMed: 19483688] 

Howard MW, Kahana MJ. 1999 Contextual variability and serial position effects in free recall. J Exp 
Psychol Learn Mem Cogn 25:923–41 [PubMed: 10439501] 

Hubbard EM, Piazza M, Pinel P, Dehaene S. 2005 Interactions between number and space in parietal 
cortex. Nat Rev Neurosci 6:435–48 [PubMed: 15928716] 

Hughes V 2010 Science in court: head case. Nature 464:340–2 [PubMed: 20237536] 

Jehee JF, Brady DK, Tong F. 2011 Attention improves encoding of task-relevant features in the human 
visual cortex. J Neurosci 31:8210–9 [PubMed: 21632942] 

Johnson JD, McDuff SG, Rugg MD, Norman KA. 2009 Recollection, familiarity, and cortical 
reinstatement: a multivoxel pattern analysis. Neuron 63:697–708 [PubMed: 19755111] 

Kamitani Y, Tong F. 2005 Decoding the visual and subjective contents of the human brain. Nat 
Neurosci 8:679–85 [PubMed: 15852014] 

Kamitani Y, Tong F. 2006 Decoding seen and attended motion directions from activity in the human 
visual cortex. Curr Biol 16:1096–102 [PubMed: 16753563] 

Kaul C, Rees G, Ishai A. 2011 The Gender of Face Stimuli is Represented in Multiple Regions in the 
Human Brain. Front Hum Neurosci 4:238 [PubMed: 21270947] 

Kay KN, Naselaris T, Prenger RJ, Gallant JL. 2008 Identifying natural images from human brain 
activity. Nature 452:352–5 [PubMed: 18322462] 

Kiani R, Esteky H, Mirpour K, Tanaka K. 2007 Object category structure in response patterns of 
neuronal population in monkey inferior temporal cortex. J Neurophysiol 97:4296–309 [PubMed: 
17428910] 

Knops A, Thirion B, Hubbard EM, Michel V, Dehaene S. 2009 Recruitment of an area involved in eye 
movements during mental arithmetic. Science 324:1583–5 [PubMed: 19423779] 

Knutson B, Rick S, Wimmer GE, Prelec D, Loewenstein G. 2007 Neural predictors of purchases. 
Neuron 53:147–56 [PubMed: 17196537] 

Kosslyn SM, Ganis G, Thompson WL. 2001 Neural foundations of imagery. Nat Rev Neurosci 2:635–
42 [PubMed: 11533731] 

Kosslyn SM, Thompson WL. 2003 When is early visual cortex activated during visual mental 
imagery? Psychol Bull 129:723–46 [PubMed: 12956541] 

Kriegeskorte N 2011 Pattern-information analysis: From stimulus decoding to computational-model 
testing. Neuroimage 56:411–21 [PubMed: 21281719] 

Kriegeskorte N, Formisano E, Sorger B, Goebel R. 2007 Individual faces elicit distinct response 
patterns in human anterior temporal cortex. Proc Natl Acad Sci U S A 104:20600–5 [PubMed: 
18077383] 

Kriegeskorte N, Goebel R, Bandettini P. 2006 Information-based functional brain mapping. Proc Natl 
Acad Sci U S A 103:3863–8 [PubMed: 16537458] 

Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, et al. 2008 Matching categorical object 
representations in inferior temporal cortex of man and monkey. Neuron 60:1126–41 [PubMed: 
19109916] 

Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI. 2009 Circular analysis in systems 
neuroscience: the dangers of double dipping. Nat Neurosci 12:535–40 [PubMed: 19396166] 

Lewis-Peacock JA, Postle BR. 2008 Temporary activation of long-term memory supports working 
memory. Journal of Neuroscience 28:8765–71 [PubMed: 18753378] 

Liu T, Hospadaruk L, Zhu DC, Gardner JL. 2011 Feature-specific attentional priority signals in human 
cortex. J Neurosci 31:4484–95 [PubMed: 21430149] 

Lu HD, Chen G, Tanigawa H, Roe AW. 2010 A motion direction map in macaque V2. Neuron 
68:1002–13 [PubMed: 21145011] 

Tong and Pratte Page 26

Annu Rev Psychol. Author manuscript; available in PMC 2021 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mahon BZ, Anzellotti S, Schwarzbach J, Zampini M, Caramazza A. 2009 Category-specific 
organization in the human brain does not require visual experience. Neuron 63:397–405 [PubMed: 
19679078] 

Mahon BZ, Caramazza A. 2009 Concepts and categories: a cognitive neuropsychological perspective. 
Annu Rev Psychol 60:27–51 [PubMed: 18767921] 

Mahon BZ, Caramazza A. 2011 What drives the organization of object knowledge in the brain? Trends 
Cogn Sci 15:97–103 [PubMed: 21317022] 

Mannion DJ, McDonald JS, Clifford CW. 2009 Discrimination of the local orientation structure of 
spiral Glass patterns early in human visual cortex. Neuroimage 46:511–5 [PubMed: 19385017] 

McClelland JL, Rogers TT. 2003 The parallel distributed processing approach to semantic cognition. 
Nat Rev Neurosci 4:310–22 [PubMed: 12671647] 

McDuff SG, Frankel HC, Norman KA. 2009 Multivoxel pattern analysis reveals increased memory 
targeting and reduced use of retrieved details during single-agenda source monitoring. J Neurosci 
29:508–16 [PubMed: 19144851] 

Meyer K, Kaplan JT, Essex R, Webber C, Damasio H, Damasio A. 2010 Predicting visual stimuli on 
the basis of activity in auditory cortices. Nat Neurosci 13:667–8 [PubMed: 20436482] 

Miller G 2010 Science and the law. fMRI lie detection fails a legal test. Science 328:1336–7

Misaki M, Kim Y, Bandettini PA, Kriegeskorte N. 2010 Comparison of multivariate classifiers and 
response normalizations for pattern-information fMRI. Neuroimage 53:103–18 [PubMed: 
20580933] 

Mitchell TM, Hutchinson R, Just MA, Niculescu RS, Pereira F, Wang X. 2003 Classifying 
instantaneous cognitive states from FMRI data. AMIA Annu Symp Proc:465–9 [PubMed: 
14728216] 

Mitchell TM, Shinkareva SV, Carlson A, Chang KM, Malave VL, et al. 2008 Predicting human brain 
activity associated with the meanings of nouns. Science 320:1191–5 [PubMed: 18511683] 

Miyawaki Y, Uchida H, Yamashita O, Sato MA, Morito Y, et al. 2008 Visual image reconstruction 
from human brain activity using a combination of multiscale local image decoders. Neuron 
60:915–29 [PubMed: 19081384] 

Moeller S, Freiwald WA, Tsao DY. 2008 Patches with links: a unified system for processing faces in 
the macaque temporal lobe. Science 320:1355–9 [PubMed: 18535247] 

Monti MM, Vanhaudenhuyse A, Coleman MR, Boly M, Pickard JD, et al. 2010 Willful modulation of 
brain activity in disorders of consciousness. N Engl J Med 362:579–89 [PubMed: 20130250] 

Morgan LK, Macevoy SP, Aguirre GK, Epstein RA. 2011 Distances between real-world locations are 
represented in the human hippocampus. J Neurosci 31:1238–45 [PubMed: 21273408] 

Naselaris T, Kay KN, Nishimoto S, Gallant JL. 2011 Encoding and decoding in fMRI. Neuroimage 
56:400–10 [PubMed: 20691790] 

Naselaris T, Prenger RJ, Kay KN, Oliver M, Gallant JL. 2009 Bayesian reconstruction of natural 
images from human brain activity. Neuron 63:902–15 [PubMed: 19778517] 

Natu VS, Jiang F, Narvekar A, Keshvari S, Blanz V, O’Toole AJ. 2010 Dissociable neural patterns of 
facial identity across changes in viewpoint. J Cogn Neurosci 22:1570–82 [PubMed: 19642884] 

Nenadic I, Sauer H, Gaser C. 2009 Distinct pattern of brain structural deficits in subsyndromes of 
schizophrenia delineated by psychopathology. Neuroimage 49:1153–60 [PubMed: 19833216] 

Norman KA, Polyn SM, Detre GJ, Haxby JV. 2006 Beyond mind-reading: multi-voxel pattern analysis 
of fMRI data. Trends Cogn Sci 10:424–30 [PubMed: 16899397] 

O’Craven KM, Kanwisher N. 2000 Mental imagery of faces and places activates corresponding 
stiimulus- specific brain regions. J Cogn Neurosci 12:1013–23. [PubMed: 11177421] 

O’Toole AJ, Jiang F, Abdi H, Penard N, Dunlop JP, Parent MA. 2007 Theoretical, statistical, and 
practical perspectives on pattern-based classification approaches to the analysis of functional 
neuroimaging data. J Cogn Neurosci 19:1735–52 [PubMed: 17958478] 

Obermayer K, Blasdel GG. 1993 Geometry of orientation and ocular dominance columns in monkey 
striate cortex. J Neurosci 13:4114–29 [PubMed: 8410181] 

Offen S, Schluppeck D, Heeger DJ. 2008 The role of early visual cortex in visual short-term memory 
and visual attention. Vision Res

Tong and Pratte Page 27

Annu Rev Psychol. Author manuscript; available in PMC 2021 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Op de Beeck HP, Haushofer J, Kanwisher NG. 2008 Interpreting fMRI data: maps, modules and 
dimensions. Nat Rev Neurosci 9:123–35 [PubMed: 18200027] 

Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. 2006 Detecting awareness in the 
vegetative state. Science 313:1402 [PubMed: 16959998] 

Peelen MV, Fei-Fei L, Kastner S. 2009 Neural mechanisms of rapid natural scene categorization in 
human visual cortex. Nature 460:94–7 [PubMed: 19506558] 

Pereira F, Mitchell T, Botvinick M. 2009 Machine learning classifiers and fMRI: a tutorial overview. 
Neuroimage 45:S199–209 [PubMed: 19070668] 

Pessoa L, Padmala S. 2007 Decoding near-threshold perception of fear from distributed single-trial 
brain activation. Cereb Cortex 17:691–701 [PubMed: 16627856] 

Phelps EA. 2006 Emotion and cognition: insights from studies of the human amygdala. Annu Rev 
Psychol 57:27–53 [PubMed: 16318588] 

Pietrini P, Furey ML, Ricciardi E, Gobbini MI, Wu WH, et al. 2004 Beyond sensory images: Object-
based representation in the human ventral pathway. Proc Natl Acad Sci U S A 101:5658–63 
[PubMed: 15064396] 

Poldrack RA, Halchenko YO, Hanson SJ. 2009 Decoding the large-scale structure of brain function by 
classifying mental States across individuals. Psychol Sci 20:1364–72 [PubMed: 19883493] 

Polyn SM, Natu VS, Cohen JD, Norman KA. 2005 Category-specific cortical activity precedes 
retrieval during memory search. Science 310:1963–6 [PubMed: 16373577] 

Preston TJ, Li S, Kourtzi Z, Welchman AE. 2008 Multivoxel pattern selectivity for perceptually 
relevant binocular disparities in the human brain. J Neurosci 28:11315–27 [PubMed: 18971473] 

Raizada RD, Tsao FM, Liu HM, Kuhl PK. 2010 Quantifying the adequacy of neural representations 
for a cross-language phonetic discrimination task: prediction of individual differences. Cereb 
Cortex 20:1–12 [PubMed: 19386636] 

Reddy L, Kanwisher NG, VanRullen R. 2009 Attention and biased competition in multi-voxel object 
representations. Proc Natl Acad Sci U S A 106:21447–52 [PubMed: 19955434] 

Reddy L, Tsuchiya N, Serre T. 2010 Reading the mind’s eye: decoding category information during 
mental imagery. Neuroimage 50:818–25 [PubMed: 20004247] 

Rissman J, Greely HT, Wagner AD. 2010 Detecting individual memories through the neural decoding 
of memory states and past experience. Proc Natl Acad Sci U S A 107:9849–54 [PubMed: 
20457911] 

Rissman J, Wagner AD. In press Distributed representations in memory: Insights from functional brain 
imaging. Annual Review in Psychology

Rodriguez PF. 2010 Neural decoding of goal locations in spatial navigation in humans with fMRI. 
Hum Brain Mapp 31:391–7 [PubMed: 19722170] 

Roskies A 2002 Neuroethics for the new millenium. Neuron 35:21–3 [PubMed: 12123605] 

Roskies A 2006 Neuroscientific challenges to free will and responsibility. Trends Cogn Sci 10:419–23 
[PubMed: 16901745] 

Sapolsky RM. 2004 The frontal cortex and the criminal justice system. Philos Trans R Soc Lond B 
Biol Sci 359:1787–96 [PubMed: 15590619] 

Saproo S, Serences JT. 2010 Spatial attention improves the quality of population codes in human 
visual cortex. J Neurophysiol 104:885–95 [PubMed: 20484525] 

Sasaki Y, Rajimehr R, Kim BW, Ekstrom LB, Vanduffel W, Tootell RB. 2006 The radial bias: a 
different slant on visual orientation sensitivity in human and nonhuman primates. Neuron 
51:661–70 [PubMed: 16950163] 

Sato JR, de Oliveira-Souza R, Thomaz CE, Basilio R, Bramati IE, et al. 2011 Identification of 
psychopathic individuals using pattern classification of MRI images. Soc Neurosci:1–13

Schurger A, Pereira F, Treisman A, Cohen JD. 2010 Reproducibility distinguishes conscious from 
nonconscious neural representations. Science 327:97–9 [PubMed: 19965385] 

Schwarzlose RF, Swisher JD, Dang S, Kanwisher N. 2008 The distribution of category and location 
information across object-selective regions in human visual cortex. Proc Natl Acad Sci U S A 
105:4447–52 [PubMed: 18326624] 

Tong and Pratte Page 28

Annu Rev Psychol. Author manuscript; available in PMC 2021 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scolari M, Serences JT. 2010 Basing perceptual decisions on the most informative sensory neurons. J 
Neurophysiol 104:2266–73 [PubMed: 20631209] 

Serences JT, Boynton GM. 2007a Feature-based attentional modulations in the absence of direct visual 
stimulation. Neuron 55:301–12 [PubMed: 17640530] 

Serences JT, Boynton GM. 2007b The representation of behavioral choice for motion in human visual 
cortex. J Neurosci 27:12893–9 [PubMed: 18032662] 

Serences JT, Ester EF, Vogel EK, Awh E. 2009 Stimulus-specific delay activity in human primary 
visual cortex. Psychol Sci 20:207–14 [PubMed: 19170936] 

Seymour K, Clifford CW, Logothetis NK, Bartels A. 2009 The coding of color, motion, and their 
conjunction in the human visual cortex. Current Biology 19:177–83 [PubMed: 19185496] 

Seymour K, Clifford CW, Logothetis NK, Bartels A. 2010 Coding and binding of color and form in 
visual cortex. Cereb Cortex 20:1946–54 [PubMed: 20019147] 

Shen FX, Jones OD, (2 23, 2011)., Vol., 2011. In press Brain Scans as Evidence: Truths, Proofs, Lies, 
and Lessons Mercer Law Review 62

Shmuel A, Chaimow D, Raddatz G, Ugurbil K, Yacoub E. 2010 Mechanisms underlying decoding at 7 
T: ocular dominance columns, broad structures, and macroscopic blood vessels in V1 convey 
information on the stimulated eye. Neuroimage 49:1957–64 [PubMed: 19715765] 

Smith AT, Kosillo P, Williams AL. 2011 The confounding effect of response amplitude on MVPA 
performance measures. Neuroimage 56:525–30 [PubMed: 20566321] 

Soon CS, Brass M, Heinze HJ, Haynes JD. 2008 Unconscious determinants of free decisions in the 
human brain. Nat Neurosci 11:543–5 [PubMed: 18408715] 

Spence SA, Hunter MD, Farrow TF, Green RD, Leung DH, et al. 2004 A cognitive neurobiological 
account of deception: evidence from functional neuroimaging. Philos Trans R Soc Lond B Biol 
Sci 359:1755–62 [PubMed: 15590616] 

Spiridon M, Kanwisher N. 2002 How distributed is visual category information in human occipito-
temporal cortex? An fMRI study. Neuron 35:1157–65 [PubMed: 12354404] 

Sterzer P, Haynes JD, Rees G. 2008 Fine-scale activity patterns in high-level visual areas encode the 
category of invisible objects. J Vis 8:10 1–2

Stokes M, Thompson R, Cusack R, Duncan J. 2009 Top-down activation of shape-specific population 
codes in visual cortex during mental imagery. J Neurosci 29:1565–72 [PubMed: 19193903] 

Sumner P, Anderson EJ, Sylvester R, Haynes JD, Rees G. 2008 Combined orientation and colour 
information in human V1 for both L-M and S-cone chromatic axes. Neuroimage 39:814–24 
[PubMed: 17964188] 

Swisher JD, Gatenby JC, Gore JC, Wolfe BA, Moon CH, et al. 2010 Multiscale pattern analysis of 
orientation-selective activity in the primary visual cortex. J Neurosci 30:325–30 [PubMed: 
20053913] 

Thirion B, Duchesnay E, Hubbard E, Dubois J, Poline JB, et al. 2006 Inverse retinotopy: inferring the 
visual content of images from brain activation patterns. Neuroimage 33:1104–16 [PubMed: 
17029988] 

Tong F, Meng M, Blake R. 2006 Neural bases of binocular rivalry. Trends Cogn Sci 10:502–11 
[PubMed: 16997612] 

Treisman A 1996 The binding problem. Curr Opin Neurobiol 6:171–8 [PubMed: 8725958] 

Treue S, Maunsell JH. 1996 Attentional modulation of visual motion processing in cortical areas MT 
and MST. Nature 382:539–41 [PubMed: 8700227] 

Tsao DY, Freiwald WA, Tootell RB, Livingstone MS. 2006 A cortical region consisting entirely of 
face-selective cells. Science 311:670–4 [PubMed: 16456083] 

Tulving E, Thomson DM. 1973 Encoding Specificity and Retrieval Processes in Episodic Memory. 
Psychological Review 80:352–73

Tusche A, Bode S, Haynes JD. 2010 Neural responses to unattended products predict later consumer 
choices. J Neurosci 30:8024–31 [PubMed: 20534850] 

Weisberg DS, Keil FC, Goodstein J, Rawson E, Gray JR. 2008 The seductive allure of neuroscience 
explanations. J Cogn Neurosci 20:470–7 [PubMed: 18004955] 

Tong and Pratte Page 29

Annu Rev Psychol. Author manuscript; available in PMC 2021 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Williams MA, Baker CI, Op de Beeck HP, Shim WM, Dang S, et al. 2008 Feedback of visual object 
information to foveal retinotopic cortex. Nat Neurosci 11:1439–45 [PubMed: 18978780] 

Williams MA, Dang S, Kanwisher NG. 2007 Only some spatial patterns of fMRI response are read out 
in task performance. Nat Neurosci 10:685–6 [PubMed: 17486103] 

Wunderlich K, Schneider KA, Kastner S. 2005 Neural correlates of binocular rivalry in the human 
lateral geniculate nucleus. Nat Neurosci 8:1595–602 [PubMed: 16234812] 

Xue G, Dong Q, Chen C, Lu Z, Mumford JA, Poldrack RA. 2010 Greater neural pattern similarity 
across repetitions is associated with better memory. Science 330:97–101 [PubMed: 20829453] 

Yacoub E, Harel N, Ugurbil K. 2008 High-field fMRI unveils orientation columns in humans. Proc 
Natl Acad Sci U S A 105:10607–12 [PubMed: 18641121] 

Yamashita O, Sato MA, Yoshioka T, Tong F, Kamitani Y. 2008 Sparse estimation automatically selects 
voxels relevant for the decoding of fMRI activity patterns. Neuroimage 42:1414–29 [PubMed: 
18598768] 

Tong and Pratte Page 30

Annu Rev Psychol. Author manuscript; available in PMC 2021 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Correlation and classification approaches to decoding brain activity patterns. (a) Average 

activity patterns for chairs and shoes in the ventral temporal cortex, calculated separately for 

even and odd runs. Correlations between these spatial patterns of activity were calculated 

between even and odd runs. Pairwise classifications between any two object categories were 

considered correct if the correlations were higher within an object category than between the 

two object categories. Adapted with permission from Haxby et al (2001). (b) Hypothetical 

responses of two voxels to two different experimental conditions, denoted by red and green 

points. Density plots in the margins indicate the distribution of responses to the two 

conditions for each voxel considered in isolation. The dividing line between red and green 

data points shows the classification results from a linear support vector machine applied to 

these patterns of activity; any points above the line would be classified as red, and those 

below would be classified as green.
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Figure 2. 
Decoding the orientation of viewed gratings from activity patterns in the visual cortex. (a) 
Blue curves indicate the distribution of predicted orientations shown on polar plots, with 

thick black lines indicating the true orientations. Note that common values are plotted at 

symmetrical directions, because stimulus orientation repeats every 180°. Reproduced with 

permission from Kamitani & Tong (2005). (b) Spatial distribution of weak orientation 

preferences in the visual cortex, measured using high-resolution functional MRI with 1mm 

isotropic voxels and plotted on an inflated representation of the cortical surface. Reproduced 

with permission from Swisher et al (2010).
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Figure 3. 
Eye-specific modulation of activity in the lateral geniculate nucleus (LGN) during binocular 

rivalry. (a) Distribution of weak monocular preferences in the LGN of a representative 

participant. (b) Time course of the decoded eye-specific signal from these LGN activity 

patterns is correlated with fluctuations in perceptual dominance during rivalry between left-

eye and right-eye stimuli. Reproduced with permission from Haynes et al (2005).
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Figure 4. 
Reconstruction of viewed images from activity patterns in the visual cortex, based on 

averaged fMRI activity patterns (a) and single fMRI volumes acquired every 2 seconds (b). 

Reproduced with permission from Miyawaki et al (2008). (c) Reconstruction of natural 

scenes from visual cortical activity. Various methods are used to reconstruct the image’s 

high-contrast regions (flat prior) or low spatial frequency components (sparse prior), or to 

select the most visually and semantically similar image to the target from a database of 6 

million predefined images (image prior). Reproduced with permission from Naselaris et al 

(2009).
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Figure 5. 
Decoding item-specific information over time during working memory or free recall from 

long-term memory. (a) Average time course of BOLD activity during a visual working 

memory task, in which two oriented gratings were briefly shown followed by a postcue 

indicating which orientation to retain until test. Although the mean BOLD signal steadily 

declined during the memory retention interval, decoding accuracy for the retained 

orientation remained elevated throughout the delay period (b). Adapted with permission 

from Harrison & Tong (2009). (c) Classification of the reinstated context during a 

participant’s free recall of famous faces, famous places, and common objects. Dots indicate 

whenever the participant verbally reported an item from a given category. Curves show 

estimates of match between fMRI activity patterns at each time point during free recall, 

using classifiers trained on activity patterns from the prior study period with each of the 

three categories. Reproduced with permission from Polyn et al (2005).
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Figure 6. 
Semantic encoding model used to predict brain activity patterns to novel nouns. Neural 

responses to viewed objects and their name, such as “celery”, were modeled as the sum of 

weighted activity patterns to intermediate semantic features consisting of 25 different verbs. 

Examples of activity patterns for 3 semantic features (“eat”, “taste” and “fill”) are shown, 

and the weight of their contribution to the predicted activity pattern reflects their frequency 

of co-occurrence with the target word. Predicted activity patterns are then compared to the 

observed activity for celery. Adapted with permission from Mitchell et al (2008).
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