Skip to main content
. Author manuscript; available in PMC: 2021 Feb 8.
Published in final edited form as: Chemosphere. 2019 May 31;233:347–354. doi: 10.1016/j.chemosphere.2019.05.289

Table 1.

Summary of parameters used for model fitting of the microchamber emission tests and obtained Dm and Kma values at different temperatures.

Unit TCEP TCIPP TDCIPP
Chamber conditions
Chamber volume (V)a m3 4.4 × 10−5
Average air velocity in chamberb m/s 0.09
Emission surface area (A0)a m2 3.2 × 10−3
Chamber surface area (As)a m2 3.5 × 10−3
Thickness of foam (L)a m 3.97 × 10−3
Density of foam (ρ)a g/m3 3.04 × 104
Parameters at 23°C (296K)
Ventilation rate (Q)a m3/h 1.2 × 10−2
Air change rate (ACH)a h−1 273
Initial material-phase concentration in foam (C0)a μg/m3 1.08 × 109 5.69 × 108 3.45 × 109
Mass transfer coefficient (hm, hs)c m/h 4.92 4.55 4.28
Chamber surface/area partition coefficient (Ksa)d m 29.4 6.2 N/A
Steady-state gas-phase concentration ± STD (yss, Chamber 1)a μg/m3 5.02 ± 0.54 2.02 ± 0.27 N/A
Steady-state gas-phase concentration ± STD (yss, Chamber 2)a μg/m3 4.65 ± 0.9 2.02 ± 0.2 N/A
Material-phase diffusion coefficient (Dm, chamber 1)e m2/h 8.08 × 10−12 6.30 × 10−12 N/A
Material-phase diffusion coefficient (Dm, chamber 2)e m2/h 9.68 × 10−12 6.72 × 10−12 N/A
Material/air partition coefficient (Kma, Chamber 1)e 9.22 × 108 1.37 × 108 N/A
Material/air partition coefficient (Kma, Chamber 2)e 9.96 × 108 1.37 × 108 N/A
Parameters at 35°C (308 K)
Ventilation rate (Q)a m3/h 1.21 × 10−2
Air change rate (ACH)a h−1 275
Initial material-phase concentration in foam (C0)a μg/m3 1.08 × 108 5.69 × 108 3.45 × 109
Mass transfer coefficient (hm, hs)c m/h 5.17 4.71 4.49
Chamber surface/area partition coefficient (Ksa)f m 0 0 N/A
Steady-state gas-phase concentration ± STD (yss, Chamber 1)a μg/m3 6.48 ± 1.05 8.18 ± 2.91 N/A
Steady-state gas-phase concentration ± STD (yss, Chamber 2)a μg/m3 6.80 ± 1.24 8.21 ± 2.14 N/A
Material-phase diffusion coefficient (Dm, Chamber 1)e m2/h 1.81 × 10−11 9.38 × 10−12 N/A
Material-phase diffusion coefficient (Dm, chamber 2)e m2/h 1.62 × 10−11 8.20 × 10−12 N/A
Material/air partition coefficient (Kma, Chamber 1)e 7.27 × 107 1.98 × 107 N/A
Material/air partition coefficient (Kma, Chamber 2)e 6.66 × 107 1.42 × 107 N/A
Parameters at 55°C (328 K)
Ventilation rate (Q)a m3/h 1.17 × 10−2
Air change rate (ACH)a h−1 265
Initial material-phase concentration in foam (C0)a μg/m3 1.08 × 109 5.69 × 108 3.45 × 109
Mass transfer coefficient (hm, hs)c m/h 5.47 4.99 4.75
Chamber surface/area partition coefficient (Ksa)f m 0 0 0
Steady-state gas-phase concentration ± STD (yss, after 200 h, Chamber 1)a μg/m3 59.90 ± 3.1 27.35 ± 4.9 8.99 ± 1.04
Steady-state gas-phase concentration ± STD (yss, after 200 h, Chamber 2)a μg/m3 56.18 ± 4.2 28.69±6.7 8.38 ± 1.37
Material-phase diffusion coefficient (Dm, Chamber 1)e m2/h 1.81 × 10−11 9.38 × 10−12 9.86 × 10−12
Material-phase diffusion coefficient (Dm, chamber 2)e m2/h 1.62 × 10−11 8.20 × 10−12 1.04 × 10−11
Material/air partition coefficient (Kma, Chamber 1)e 7.27 × 107 1.98 × 107 2.20 × 109
Material/air partition coefficient (Kma, Chamber 2)e 6.66 × 107 1.42 × 107 2.20 × 109
a

Measured in the test.

b

Air velocity measured following the method in Liang et al. (2018b).

c

Calculated with the measured air velocity in microchamber using program PARAMS (Guo, 2005). hm and hs in Equation (6) have the same value at a temperature as a result of the same measured air velocity in microchamber.

d

Obtained from Liang et al. (2018b).

e

Determined in this study.

f

Because the adsorption of SVOCs with low volatility (i.e. phthalates) to stainless steel surface decreased greatly as temperature increased (Clausen et al., 2012), partitioning of TCEP and TCIPP between microchamber wall and air was ignored at 35 and 55 °C.