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Abstract

Background: Some individuals Parkinson’s Disease (PD) experience working memory and 

inhibitory difficulties, others learning and memory difficulties, while some only minimal to no 

cognitive deficits for many years.

Objective: To statistically derive PD executive and memory phenotypes, and compare PD 

phenotypes on disease and demographic variables, vascular risk factors, and specific neuroimaging 

variables with known associations to executive and memory function relative to non-PD peers.
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Methods: Non-demented individuals with PD (n=116) and non-PD peers (n=62) were recruited 

to complete neuropsychology measures, blood draw, and structural magnetic resonance imaging. 

Tests representing the cognitive domains of interest (4 executive function, 3 memory) were 

included in a k-means cluster analysis comprised of the PD participants. Resulting clusters were 

compared demographic and disease-related variables, vascular risk markers, gray/white regions of 

interest, and white matter connectivity between known regions involved in executive and memory 

functions (dorsolateral prefrontal cortices to caudate nuclei; entorhinal cortices to hippocampi).

Results: Clusters showed: 1) PD Executive, n=25; 2) PD Memory, n=35; 3) PD Cognitively 

Well; n=56. Even after disease variable corrections, PD Executive had less subcortical gray matter, 

white matter, and fewer bilateral dorsolateral-prefrontal cortex to caudate nucleus connections; PD 

Memory showed bilaterally reduced entorhinal-hippocampal connections. PD Cognitively Well 

group showed only reduced putamen volume and right entorhinal cortex to hippocampi 

connections relative to non-PD peers. Groups did not statistically differ on cortical integrity 

measures or cerebrovascular disease markers.

Conclusion: PD cognitive phenotypes showed different structural gray and white matter 

patterns. We discuss data relative to phenotype demographics, cognitive patterns, and structural 

brain profiles.
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Introduction

Non-demented individuals with idiopathic Parkinson’s Disease (PD) subjectively report 

attention and memory changes [1]. From a neuropsychological standpoint, these reports are 

consistent with recent research demonstrating that nondemented individuals with PD can 

present with reduced executive function and declarative memory relative to age matched 

peers[2–4]. Executive function weaknesses are often observed on measures of processing 

speed, working memory, and inhibitory functions (e.g., Digit Symbol Coding, Trail Making 

Test, Stroop Color Word Test) [3, 5, 6], while learning and memory difficulties are typically 

shown on unstructured list learning tasks (e.g., Hopkins Verbal Learning Test) [3, 5, 6] and, 

at times, story recall tests (e.g., Logical Memory Test) [6, 7]. The severity of executive and 

memory impairment varies as well; some individuals may show progressive decline in 

executive functions, others may show executive and memory difficulties, while others show 

minimal to no cognitive weaknesses for many years [8].

Researchers are attempting to differentiate the neuroanatomical and biomarker contributions 

to these executive and memory profiles within PD, but clear profile differences remain 

inconclusive. The most prominent theory, known as the dual syndrome hypothesis, proposes 

that working memory and executive dysfunction in PD are caused by dopaminergic 

denervation due to pathology in substantia nigra, while memory and accompanying 

visuospatial deficits are caused by cholinergic denervation due to pathology in basal 

forebrain [9]. However, there are other possible mechanisms underlying cognitive deficits in 
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PD. Vascular disease and white matter disease changes associated with vascular 

insufficiency are potential contributors to the executive difficulties of PD [10], although 

some researchers show this pattern to be more prominent for non-PD than PD [11]. Reduced 

temporal cortex volume, particularly in the mesial structures, may also contribute to reduced 

encoding and retrieval in PD [4, 12]. For example, some hypothesize increased alpha-

synuclein pathology in the anterior temporal cortex, which is typically detected as early as 

Braak Stage 4 [13]. Amyloid deposition in temporal lobes has also been associated with 

poor recall in PD, with selective vulnerability of the hippocampus in early PD patients 

without dementia [14]. There are also questions regarding differences in specific gray-white 

matter connectivity [6]. Building upon original circuitry research proposed by Alexander 

Delong and Strick [15], it is theorized that individuals with executive difficulties, 

specifically in working memory or processing speed, and difficulties on unstructured word-

list learning tests may be experiencing disruptions to frontostriatal circuitry. The neural 

circuit between the caudate nucleus and the dorsolateral prefrontal cortex is particularly 

relevant to this dysfunction[7, 15]. By contrast, individuals with prominent episodic memory 

difficulties may have reduced connectivity or integrity within the perforant pathway or 

hippocampal-retrosplenial regions [4, 14, 16], as these pathways are well known to be 

involved in memory formation.

Collectively, these theories suggest that individuals with idiopathic PD with primary 

weaknesses in executive functioning should have distinct profiles from their peers with 

primary memory weaknesses. To date, however, we know of no study that has strategically 

examined demographics, vascular, gray-white matter, and a priori connectivity tractography 

neuroimaging profiles in PD executive and memory phenotypes. Towards this effort, our 

research team designed the current study.

Borrowing from recent statistical approaches examining cognitive phenotypes in prodromal 

profiles Alzheimer’s disease-vascular dementia spectrum disorders, (see [17–19]), we 

prospectively created empirically derived PD cognitive phenotypes among non-demented 

older adults with idiopathic PD. Clusters were based on neuropsychological measures 

assessing processing speed, working memory, inhibitory function, and declarative memory. 

We hypothesized that individuals would classify into three phenotypes: those with primary 

frontal-striatal (heretofore called ‘executive’) weakness, those with primary declarative 

memory weakness, and those with no cognitive weaknesses relative to non-PD peers. We 

then compared these statistically defined phenotypes in terms of demographic and cognitive 

behavioral features that have known significance to cognitive constructs (i.e., depression, 

apathy [20]), other cognitive domains (i.e., language, visuospatial) relevant to the dual-

syndrome hypothesis [7], PD-related variables (disease severity, duration and dopaminergic 

medication dose), vascular risk profiles and white matter disease markers, gray and white 

matter neuroimaging parameters, and specific white-gray matter tracts associated with 

executive and memory function. Considering progression of the disease through Braak 

stages and considerations for the dual-syndrome hypothesis, we hypothesized individuals 

defined with an executive weakness would show the most reduction in cortical thickness in 

the dorsolateral prefrontal region, reduced white matter globally, and reduced connectivity 

between the dorsolateral prefrontal cortex (heretofore DLPFC) to caudate nucleus (CN). By 

contrast, individuals with memory weaknesses were hypothesized to show reduced cortical 
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thickness within the entorhinal cortex (ERC) and reduced structural connectivity between 

hippocampus and entorhinal cortex (HIPP-ERC).

Methods

Participants with PD were recruited through movement disorder clinic referrals and 

advertisements to local MDC support groups affiliated with the movement disorder clinic. 

Idiopathic PD was confirmed by a fellowship-level movement disorder specialist, using UK 

Parkinson’s Disease Society Brain Bank Clinical Diagnostic Criteria[21]. Individuals with 

early, mild to moderate PD with a Hoehn and Yahr scale[22] score between 1-3 were 

included. The predominant motor PD phenotype; i.e., tremor dominant vs. postural 

instability-gait difficulty was assessed clinically based on the first presenting symptom or 

predominant symptomatology on initial and subsequent exams (and also of primary concern 

to the patient). Non-PD participants were recruited through 1) mailings to demographically 

similar individuals in two counties, 2) community fliers, and 3) free community memory 

screenings. Exclusion criteria included other neurodegenerative disorders, significant disease 

that could limit lifespan, major psychiatric disorder, or dementia determined from structured 

telephone interview and medical record review. Depression and apathy were not exclusion 

criteria due to high prevalence in PD[23, 24]. This study was conducted through the Fixel 

Institute for Neurological Sciences, approved by the UF Institutional Review Board, 

required consent, and complied with the Declaration of Helsinki.

Procedures involved 1) a structured background interview for demographics (sex, age, years 

of education), comorbidity (Charlson Comorbidity Index[25]), handedness inventory [26], 

disease variables (PD duration, age at onset, first symptoms), medications (Magellan 

Anticholinergic Risk Scale[27] and levodopa dose[28]); 2) Mini-Mental Status Exam[29]; 3) 

Beck Depression Inventory, Second Edition (BDI-II[30]); Apathy Scale (AS[31, 32]); 4) a 

comprehensive research neuropsychological protocol; 5) Unified Parkinson’s Disease Rating 

Scale (UPDRS[33, 34]) completed on-medication at time of cognitive testing by trained staff 

and double scored by a trained rater blinded to diagnosis; 6) fasting blood draw for 

homocysteine and uric acid; and 7) a brain MRI conducted within 24 hours of the cognitive 

assessment. Individuals blinded to diagnosis double-scored and double-entered data. All 

procedures were completed by a trained movement disorder specialty neuropsychologist 

(CP, JT) and with review by a trained neurology movement disorder specialist (MF).

Neuropsychological Protocol

Participants were assessed in a private room, and all PD participants were on prescribed PD 

medication(s) at the time of testing in order to be comfortable and provide best performance. 

The comprehensive research assessment targeted processing speed, working memory, 

inhibitory function, language, visuospatial function, declarative memory, reasoning, and fine 

motor function. Seven neuropsychology outcome variables of interest were a priori selected 

for cluster analysis: executive function [Wechsler Adult Intelligence Scale-III Digit Symbol 

(total score)[35, 36] and Letter Number Sequencing (total score)[37]; Trail Making Test Part 

B (total time)[38–40]; Stroop Color-Word Test (total correct in 45)[41]] and declarative 

memory [Wechsler Adult Intelligence Scale-III (WMS-III) Logical Memory Total Recall 
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[42], Hopkins Verbal Learning Test, Revised (HVLT-R) delay free recall [43], HVLT-R 

recognition discriminability]. We selected executive function measures known for the 

assessment of processing speed, working memory, and cognitive flexibility. Individuals with 

idiopathic PD (no dementia) show reduced performance on these measures [6, 44], and these 

measures associate with frontal-striatal regions [45] altered in earlier (no dementia) disease 

stages of PD [6]. We created composites for both domains (executive and memory, 

respectively) by averaging the standardized scores. This allowed us to compare the cognitive 

phenotypes for performance differences after cluster analysis. We assess the cognitive 

phenotypes and non-PD peers on additional external measures of reasoning [Wechsler 

Abbreviated Scale of Intelligence Matrix Reasoning (total score)[46], Delis-Kaplan 

Executive Function System - Tower Test (total achievement score)[48]], and learning/

memory (Philadelphia Repeatable Verbal Learning Test; delay score controlling for initial 

recall[4, 49, 50]). Additionally, we provide scores on measure of language (Animal 

Fluency[51], Boston Naming Test[39, 52], total scores) and visuospatial function(Judgement 

of Line Orientation, total correct[53]) to guide future research and assist those interested in a 

more comprehensive cognitive profile for the PD cognitive phenotypes in the current study. 

For missing values on the Stroop Color-Word test due to color blindness, regression 

imputation was used to replace the missing variable[54]. Neuropsychology outcome 

variables were standardized using z-scores based on published normative age based 

references. Normative references for the Trail Making Test Part B corrected for age and 

years of education [55].

Neuroimaging Protocol

Participants were scanned on a Siemens 3T Verio scanner and 8-channel head coil with 1) 

one T1-weighted scan (TR: 2500 ms; TE: 3.77 ms; 176 sagittal 1 mm slices; 1 mm isotropic 

resolution; 256x256x176 matrix) optimized for gray/white matter segmentation, 2) two 

separate single-shot EPI diffusion scans, with gradients applied in 6 directions (b =100s/

mm2) and 64 directions (b =1000s/mm2) (TR: 17300 ms; TE: 81 ms; 73 transversal 2mm 

slices; 2 mm isotropic resolution; 256x256x146 matrix); and 3) a Fluid Attenuated Inversion 

Recovery (FLAIR) scan (TR: 6000 ms; TE: 395 ms; TI: 2100ms;176 sagittal 1mm slices, 1 

mm isotropic resolution; 256x256x176 matrix).

Gray/White Matter Volume/ Thickness: A trained rater (JJT) applied FreeSurfer 

(Version 6.0; http://surfer.nmr.mgh.harvard.edu/)[56–59] for T1-weighted cortical 

reconstruction and volumetric segmentation of total gray matter volume, total cortical gray 

matter volume, total subcortical gray matter volume, and total white matter volume, 

hippocampus volume, putamen volume, caudate nucleus volume, and thalamus volume. This 

program also estimated ERC thickness and DLPFC thickness. Total intracranial volume 

(TICV)[60] served as a control variable for all structural metrics. Leukoaraiosis (LA)[61] 

was quantified as a marker of vascular disease.

White Matter Tract Connectivity: Two a priori regions of interest (ROIs) were 

examined: 1) DLPFC-CN with DLPFC quantified by a reliable rater (DSC intra-rater range 

= 0.80–0.95; mean±SD=0.89±0.05; Inter-rater range=0.83–0.99; mean±SD=0.97 ± 0.04) in 

ITK-SNAP (www.itksnap.org)[62] following published guidelines[63]; 2) ERC-HIPP 
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connectivity with regions extracted from FreeSurfer. ROI tractography was acquired through 

edge weight connectivity by first interpolating the diffusion data to an isotropic resolution of 

1 x 1 x 1 mm3. Diffusion tensor imaging (DTI)[64] was performed on each data set to 

extract a fractional anisotropy (FA) image. This FA image was used to create a seed mask of 

each brain where voxels with an FA larger than .05 were seeded with 125 seed points. To 

inform tractography, the data were modeled to calculate the water probability density 

function (PDF) in each voxel using the Mixtures of Wishart tensor distribution model[65]. 

Up to 5 maxima of the PDF were identified, and peak directions were used to lead the 

tractography algorithm. Deterministic tractography was performed using a fiber step-size of 

half a voxel and step-to-step track deviation less than 50°. The tractogram was filtered by 

keeping only tracts that connected the ROI pairs.

To analyze the strength of connectivity between the ROI pairs, a normalized edge weight 

analysis was performed to bypass biases from standard tract counting techniques[66]. The 

normalized edge weight representing the connection strength between two ROIs is defined 

as:

W eij =
V voxel
Pvoxel

2
Ai + Aj f ni nj

1
I f

Vvoxel is the volume of a voxel, Pvoxel is the number of seed points per voxel, A is the 

surface area of the connected nodes, ni and nj, and l(f) is the length of the fibers, f, 

connecting the nodes.

Vascular Marker Considerations

To consider the relative contribution of vascular factors to the white matter and cognitive 

profile differences in the PD phenotypes we acquired the following: 1) Fasting Blood Draw–

for cardiovascular risk markers (homocysteine, uric acid); 2) Leukoaraiosis (LA[61])– a 

marker of small vessel vascular disease linked to executive function in non-demented older 

adults.[67] White matter abnormalities were quantified by a reliable rater (DSC intra-rater 

range=0.84–0.93; mean±SD= 0.84 ± 0.12; Inter-rater range = 0.80–0.83) using an in-house 

macro within ImageJ[68, 69] on FLAIR scans and associating highly with segmentation via 

FLAIR and T1 images using a k-nearest neighbor algorithm with high reliability manual 

segmentations[70]. Dependent variables = LA mm3 and LA relative to TICV.

Statistical Analyses

Analyses completed with SPSS v25. Using only individuals with PD, a principal component 

analysis (PCA) was used on neuropsychological outcome variables with both orthogonal and 

oblique rotations to confirm memory and executive cognitive constructs. As per Kasier 

(1960) [71], components of eigenvalue greater than 1 were retained. The regression scores 

derived from the factor loadings for the retained components were used in subsequent cluster 

analyses. A hierarchical cluster analysis with Ward’s method determined the optimum 

number of clusters, followed by a k-means analysis for final cluster determination. To test 

the reliability of the PD cluster solution, we applied a cross-validation approach in which a 

k-means procedure was completed on a random sample of 50% of the participants five 
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times. These new classifications were then compared to the original k-means analysis 

solution. Generally, 90% or greater agreement is considered very stable, 80-90% agreement 

is considered stable, and 75-80% is considered somewhat stable[72]. One-way analyses of 

variance (ANOVAs) compared group differences on cognitive composite scores. Individual 

z-scores from the seven tests used within the cluster analyses were also compared between 

PD phenotypes and non-PD peers. We report how covarying for Wechsler Adult Intelligence 

Scale-III Digit Symbol (total score) changed group comparisons on the inhibition and set-

switching measures (Stroop Color Word Test and Trail Making Test, Part B). ANOVAs 

compared the groups on the external validation measures of reasoning, memory, language, 

and visuospatial function.

Non-PD peers were used as a reference group in all comparative analyses, as it is clinically 

useful and assists with rigor and reliability to compare deviation from age matched non-PD 

peer group. One-way analyses of variance (ANOVAs) compared PD cognitive phenotypes 

and non-PD peers on age, education, disease duration, and mood scores (BDI-II, AS) and 

were followed up with pair-wise independent samples t-tests. Kruskal-Wallis analyses 

compared UPDRS-III, CCI, Magellan score, and MMSE, as these variables were not 

normally distributed. A MANCOVA controlling for age, education, and TICV compared 

MRI volumes of interest (total brain volume, cortical gray matter volume, subcortical gray 

matter volume, and total white matter volume) between groups. This MANCOVA was 

repeated controlling for disease duration. ANCOVAs controlling for age, education and 

TICV compared volume of caudate nucleus, putamen, and thalamus and thickness of 

DLPFC and ERC between groups. ANCOVAs compared groups in edge weight strength 

controlling for age and sex. The DLFPC-CN edge weight analysis controlled for TICV, as 

this edge weight was significantly correlated with TICV. DLPFC-CN edge weights were log-

transformed to achieve normality. Alpha level set at 0.05 for all comparisons. Partial Eta 

squared (ηp
2) provides an estimate of effect size with small (ηp=0.01), medium (ηp

2=0.06), 

and large (ηp
2=0.14).

Results

Of 211 individuals screened, 181 completed cognitive testing (116 PD, 65 non-PD peers; 

mental Table 1 for demographic information), and 174 of these completed the full 

neuroimaging protocol (2 missing diffusion scans; 5 did not complete due to 

claustrophobia). Six participants had to have regression imputation for the Stroop Color-

Word test due to color blindness. Cluster analyses were conducted on the 116 PD 

participants. The PCA of the seven cognitive outcome measures showed 2 factors with 

eigenvalues greater than 1 (eTable 2). Hierarchical cluster analysis showed the greatest 

reduction in squared Euclidian distance between two and three clusters (Supplemental 

Figure 1). K-means cluster analysis with three clusters yielded three PD cognitive phenotype 

clusters: 1) PD Executive (n=25); 2) PD Memory (n=35), and PD Cognitively Well (n=56). 

Cross-validation agreement with the full PD sample ranged from 86.7% to 96.7%, with an 

average agreement of 92.3%. (eTable 3).
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External Validation of PD Cognitive Phenotypes (eTable 2,4,5)

PD phenotypes and non-PD peers differed on the neuropsychological composites for 

executive function (F[3,177]=65.35, p<.01, ηp
2=.526) and memory (F[3,177]=60.65, p<.01, 

ηp
2=.507). PD Executive scored lowest on the executive composite, while the PD Memory 

scored lowest on the memory composite. This pattern was present for each individual test 

even when correcting for Wechsler Adult Intelligence Scale-III Digit Symbol (total score) 

performance [Stroop (F[3, 174]=5.962, p<.01, ηp
2=.097) and Trail Making Test Part B (F[3, 

174]=19.968, p<.01, ηp
2=.160). Groups also differed on the standardized external reasoning 

measures (Matrix Reasoning; F[3,177]=13.38, p<.01, ηp
2=.185; PD Executive<PD 

Cognitively Well, non-PD; Tower Test F[3,177]=4.431, p<.01, ηp
2=.070, PD Executive < 

non-PD), and an external memory measure (PrVLT; F[3,173]=5.98, ηp
2=.094, p’s<.01; PD 

Memory<all other groups).

Other cognitive domains: Groups differed on a language test composite (F[3,177]=10.585, 

p<.01, ηp
2=.106) such that PD Executive and PD Memory had significantly lower scores 

than PD Cognitively Well and non-PD peers (p<.01 in all cases). Groups differed in 

visuospatial function (F[3,177]=7.098, p<.01, ηp
2=.107) such that PD Executive had 

significantly lower scores than PD Cognitively Well and non-PD peers (p<.01 in both cases).

Demographic and Clinical Comparisons (Table 1)

Demographics: Demographic analyses included all participants regardless of their 

completion of the neuroimaging protocol. Groups were significantly different in years of 

education (F[3,177]=4.84, p=.02, ηp
2=.056) with PD Executive having two years less than 

PD Cognitively Well (p<.02) and non-PD peers (p<.01). Age and sex ratio were not different 

between groups. All participants were Caucasian. A second set of demographic analyses 

were completed with only individuals containing a full neuroimaging protocol (eTable 6). 

Results show the same pattern of findings.

Disease and Medication: PD phenotypes differed in disease duration (F[2,113]=3.41, 

p=0.04, ηp
2=.057; PD Executive>PD Memory, p=.01; PD Executive>PD Cognitively Well, 

p<.05). PD phenotypes did not differ in UPDRS-III or levodopa equivalency dose. 

Anticholinergic load was higher for PD relative to non-PD (p<.01), but not within PD 

phenotypes (p=.56). Comorbidity severity was not significantly different between PD 

phenotypes or to non-PD peers.

Mood/General Cognition: Groups differed in depression (F[3,177]=16.30, p<.01, 

ηp
2=.216) and apathy (F[3,177]=2.95, p=.03, ηp

2=.048) with PD Executive highest in both 

(Depression: PD Executive>PD Memory, PD Cognitively Well; p’s<.04; Apathy: PD 

Executive>all other groups, p’s<.01). MMSE was significantly lower than non-PD peers for 

both low cognition phenotypes (PD Executive and PD Memory<non-PD; p’s<.01; no 

difference within PD phenotypes).

Vascular Marker Considerations (eTable 7): There were no significant differences 

between phenotypes in homocysteine (F[3,175]=1.84, p=.14, ηp
2=.031) or uric acid 
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(F[3,176]=0.06, p=.98, ηp
2=.001). There was no significant difference in overall LA after 

controlling for TICV (F[3,169]=1.48, p=.22, ηp
2=.026).

General Brain Volumetrics (Figure 1; Table 2)

In the MANCOVA controlling for age, education, and TICV, the groups differed in the 

multivariate analysis (F[15,495]=2.92, p<.01, ηp
2=.081). The follow-up univariate analyses 

showed group differences for total brain (F[3,167]=7.97, p<.01, ηp
2=.125), ventricle (F[3, 

167]=11.20, p<.01, ηp
2=.167), cortical gray matter (F[3,167]=5.10, p<.01, ηp

2=.084), 

subcortical gray matter (F[3,167]=3.51, p=.02, ηp
2=.059), and total white matter (F[3, 

167]=3.99, p=.09, ηp
2=.067) volumes. Post-hoc pairwise analyses showed that PD Executive 

had lower volumes in total brain, subcortical gray matter, white matter, and higher 

ventricular volume than all others (p<.01 in all cases) with less cortical gray matter volume 

than PD Cognitively Well and Non-PD peers (p<.01 in both cases). The differences in total 

brain, ventricular, subcortical gray, and white matter volumes remained significant after 

controlling for disease duration. Cortical gray matter was no longer significant after 

controlling for disease duration. There were no significant group differences in ERC 

thickness or DLPFC thickness.

Region of Interest Volumetrics (Figure 1; Table 2)

After controlling for age, years of education and TICV, groups differed significantly in 

putamen volume (F[3,167]=3.795, p=.01, ηp
2=.064) such that PD Executive and PD 

Cognitively Well had significantly smaller volume than non-PD peers (p=.03 and p<.05, 

respectively). Groups differed significantly in thalamus volume (F[3,167]=2.849, p=.04, 

ηp
2=.049) such that PD Executive had significantly smaller volume than PD Cognitively 

Well (p=.01). Groups did not differ in caudate volume, DLFPC thickness or ERC thickness.

A Priori Tractography (Figures 1&2; eTable 8)

DLPFC-CN: Groups differed in bilateral DLFPC-CN connectivity (F[3,165]=3.00, p=.03, 

ηp
2=.052; PD Executive<all groups, p’s≤.02). Exploratory hemispheric follow-up analyses 

found group differences in right DLPFC-CN connectivity (F[3,165]=2.70, p<.05, ηp
2=.047; 

PD Executive < PD Cognitively Well, Non-PD, p’s <.05), but not left DLPFC-CN 

(F[3,165]=1.69, p=.17, ηp
2=.030). These patterns were unchanged after correcting for 

disease duration.

ERC-HIPP: Bilateral ERC-HIPP connectivity differed between groups (F[3,165]=4.09, 

p<.01, ηp
2=.069; non-PD>all PD phenotypes, p’s<.01). Exploration of hemisphere showed a 

group difference was present for the left hemisphere (F[3,165]=4.24, p<.01, ηp
2=.071) but 

only PD Memory was lower than non-PD peers (p<.01), while all three PD phenotypes 

differed from non-PD peers in the right hemisphere (p’s ≤.03). These findings were 

unchanged after correcting for disease duration.

Discussion

The present study reliably separated individuals with idiopathic PD into three cognitive 

phenotypes, which differ in a manner consistent with prior literature relating cognition, 
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disease duration, and mood variables. Even after correcting for disease duration, the 

cognitive phenotypes differed in gray and white matter volume and showed different 

structural white matter connectivity, with particularly pronounced and lower connectivity 

between the dorsolateral prefrontal cortex and the caudate nucleus only for PD individuals 

with executive dysfunction. Each PD group had reduced bilateral white matter connectivity 

between the entorhinal cortices and hippocampi relative to non-PD peers. Exploratory 

hemispheric analyses suggests this reduction for PD is largely based on right HIPP-ERC 

weaknesses; only the PD Memory phenotype had lower connectivity in both the left and 

right hemisphere. Collectively, these findings provide convincing evidence that individuals 

with PD can be differentiated into cognitive phenotypes based on performance on executive 

and memory measures, and that these phenotypes warrant additional neuroscientific 

investigation. In the paragraphs below we discuss the data relative to phenotype 

demographics and cognitive profile patterns, brain volume and vascular disease findings, and 

white matter connectivity results.

Cognitive and Behavioral Profile Differences by PD Phenotype:

The PD phenotype cluster shows that approximately 48% of our participants with PD were 

classified as cognitively well, with remaining classified as PD Executive (~22%), and PD 

Memory (~30%). These two cognitive phenotypes performed almost 1.5 standard deviations 

below their peers in respective executive or memory domains. Although the PD Executive 

and Memory phenotypes also showed significantly lower language and visuospatial 

composites relative to the non-PD peers, we note the scores are in the average range 

suggesting these cognitive functions were not a dominant area of weakness at the time of 

testing. The PD Cognitively Well group did not statistically differ from the non-PD peers in 

terms of cognition and performed average or higher in all domains.

Cognitive phenotypes differed in disease duration and mood symptoms, with findings 

consistent with expectations. PD Executive averaged nine years of disease duration – 

approximately three years longer than PD Memory and two years longer than PD 

Cognitively Well. Longer disease duration is associated with increases in a number of motor 

and nonmotor symptoms, including worsening bradykinesia and rigidity, more frequent 

freezing of gait, declining balance, increased sleep disturbances, and reduced heart rate 

variability [73]. This association between longer disease duration and motor symptoms is 

reflected in our data; the PD Executive phenotype averaged 4 points higher on the on-

medication UPDRS motor subscore than the PD Cognitively Well phenotype, reflecting a 

23.8% difference in on-medication motor symptom severity. This difference was not 

significant (p=.08), but nonetheless suggests a possible association between disease duration 

and motor symptom severity for our PD Executive phenotype sample. Furthermore, 

executive function also declines with longer disease duration [74]. Therefore, the PD 

Executive phenotype’s disease-related variables are largely consistent with the existing 

literature. The PD Memory, however, had relatively similar disease duration to the PD-Well 

with an average of 6 and 7 years, respectively. Despite this, the PD Memory phenotype has 

dominant memory weaknesses (~ 1.5 standard deviations below the PD Cognitively Well 

and non-PD peers). Research to date has limited information on individuals with PD and a 
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primary memory deficit, but has noted that memory deficits in PD associate with 

abnormalities in temporal regions [4, 75].

In contrast to the PD Executive and Memory cognitive phenotypes, the PD Cognitively Well 

phenotype is notable for cognitive performance on par with non-PD peers despite similar 
disease duration to PD Memory peers and comparable levodopa dosage to other phenotypes. 

They showed milder motor symptoms than the other phenotypes, with the on-medication 

UPDRS III four points lower than both other phenotypes. Some of this may be due to their 

higher level of education, as PD Cognitively Well averaged almost one additional year of 

education than the other two phenotypes. This suggests higher cognitive reserve [76, 77]. 

Education is a major component of cognitive reserve, and higher education in PD associates 

with better global cognition, attention, visuospatial functioning, executive functioning and 

memory [78], as well as less severe PD motor symptoms [79], which may explain the lower 

symptom severity within this phenotype. This underscores the importance of considering 

degree of education when assessing current cognitive function and prognosis of individuals 

presenting with PD.

In addition to varying disease duration, the phenotypes differed in mood symptom severity. 

This is important to mention given the relevance of this symptom to cognition and brain 

profiles. The PD Executive phenotype had significantly more severe depressive and apathy 

symptoms than other phenotypes, though all three phenotypes had significantly more severe 

depressive symptoms than non-PD peers. These findings are consistent with the extant 

literature, which consistently finds associations between apathy and executive function, as 

well as associations between depression and both executive function and memory [80]. In 

addition, given that the PD Executive phenotype also had the highest disease duration, this 

finding is consistent with prior literature reporting depressive and apathy symptoms increase 

over the disease course [81]. Thus, the findings in both disease duration and mood variables 

are consistent with prior research, lending further validity to the derived cognitive 

phenotypes.

Phenotype Structural Neuroimaging Profiles

As expected, phenotypes showed distinct subcortical white matter, subcortical gray matter 

volume, and gray-white matter connectivity differences even after correcting for disease 

duration. PD Executive had less overall subcortical gray than non-PD peers and the lowest 

putamen, thalamus, and white matter volumes as well as the largest ventricles of the three 

phenotypes. This pattern was present without significant group differences in vascular 

disease risk markers, dopaminergic medication or anticholinergic medication dosages. These 

findings, combined with the cortical gray matter volume differences, suggests that the PD 

Executive phenotype has a unique subcortical gray and white matter profile differentiating 

them from their PD Memory and PD Cognitively Well peers. This is consistent with prior 

research, which has demonstrated an association between white matter integrity and 

executive function performance in PD [82, 83].

It is important to emphasize that while PD Executive had lower executive function than the 

other phenotypes, their cognitive impairments are generally mild; some individuals within 

the group might not be classified as impaired within clinical settings. However, given that 
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they display significant subcortical and white matter volume reduction, this group may be 

more likely to convert to PD dementia than other phenotypes. Prior research has shown that 

PD pathology in subcortical regions and white matter generally predates cortical atrophy 

[84]; cortical atrophy is more typical of individuals with PDD [85]. Therefore, the Executive 

participants may be at the most risk for further cognitive decline. Follow-up analyses should 

determine whether those in this phenotype convert to PDD at a higher rate than other 

phenotypes. In addition to widespread volumetric differences, PD Executive had 

significantly lower DLPFC-CN white matter structural connectivity than other phenotypes. 

This is consistent with established theory suggesting structural abnormalities in 

corticostriatal circuits influence executive dysfunction in PD [15, 82].

In contrast to the widespread brain abnormalities in PD Executive, the PD Memory 

phenotype showed lower left ERC-HIPP connectivity relative to non-PD peers, with no 

evidence of significantly reduced cortical gray, subcortical gray, or white matter volumes. 

This suggests focal white matter neurodegeneration in the area of the perforant pathway 

without broader apparent atrophy in adjacent gray matter – a finding consistent with 

previous reports of lower temporal lobe white matter connectivity for non-demented PD with 

memory weaknesses (e.g., retrosplenial to entorhinal cortex [4]). Previous studies have 

shown ERC atrophy largely in those with PD dementia [12], although one group showed 

reduced right entorhinal thickness over time in PD MCI [86]. This reduced connectivity may 

be secondary atrophy caused by cholinergic denervation, as proposed by the dual syndrome 

hypothesis [9], or the result of direct synuclein pathology in anterior temporal lobe, which is 

typically the first region of cortex to show Lewy bodies [13]. If this is the case, our findings 

suggest that individuals with PD presenting with primary memory deficits might have more 

temporal synuclein pathology than individuals of other phenotypes. It is also important to 

note that the nature of the memory deficits in this phenotype might vary between 

participants, as some individuals with PD show deficits in memory encoding, while others 

show deficits in memory retrieval [4, 43]. Further investigations of memory deficits in PD 

should focus on comparisons in temporal region and differentiate deficits in retrieval verses 

recall.

The PD Cognitively Well group had lower putamen volume and lower connectivity between 

the right entorhinal cortex and hippocampus than non-PD peers. We previously reported on 

extensive putamen and hippocampal morphometric differences in a subgroup of this sample 

[87]. Thus, the differences from non-PD peers in putamen and hippocampal regions for the 

PD Cognitively Well group are not surprising. It is possible these regions serve as sensitive 

markers of Parkinson’s disease without cognitive phenotype specificity.

Other Considerations

It is useful to compare our group findings relative to the dual syndrome hypothesis. This 

hypothesis proposes that dopaminergic denervation contributes to working memory and 

inhibitory difficulties in PD, while cholinergic denervation contributes to learning/memory 

and accompanying visuospatial difficulties. While we do report two distinct executive and 

memory phenotypes in PD, there is no compelling difference between these two groups on 

measures of language or visuospatial function. Relative to the non-PD and PD Cognitively 
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Well, only the Executive phenotype performed significantly worse on a measures of 

visuospatial function. Perhaps participants in the PD Executive group are experiencing some 

of the cholinergic denervation proposed to drive the visuospatial and semantic fluency 

deficits suggested in the dual syndrome hypothesis [9]. Prefrontal cholinergic activity is 

associated with executive function [88], and cortical cholinergic denervation is associated 

with executive dysfunction in PD [89]. The Memory phenotype, by contrast, may reflect 

temporal dysfunction not directly driven by the cholinergic system, different levels of 

amyloid-β and tau [90], or altered levels of alpha-synuclein [91–93]. These are areas for 

future research.

It is also useful to consider the possible relationship between motor and cognitive 

phenotypes in our sample, as some researchers show relationships between motor profiles 

and cognitive weaknesses e.g.,[94] and cognitive change over time e.g.,[95]. To address 

topic, we report here on a post-hoc analysis of motor phenotype classification using our on-

dopaminergic medication UPDRS cluster scores for tremor dominant (TD) and postural 

instability/ gait difficulty (PIGD) [34, 96]. Our participant sample classified as 31.6%TD, 

28.9% intermediate, and 39.5% PIGD classification. Motor groups did not significantly 

differ in memory or executive profile composites (all p’s > .80) or by edge weight structural 

measurements (all p values > .21). These post-hoc findings suggest on-medication motor 

type does not predict the cognitive phenotypes defined in this investigation.

While we do recognize limitations for assessing cognition in PD while on dopaminergic 

medication, we planned this approach so that participants would be more comfortable and 

able to provide best effort. Being on-medication, however, may have stabilized executive 

function subdomains (processing speed, working memory, inhibitory function) without 

improving memory function [97]. This might explain why the PD Executive phenotype was 

the smallest of the three, despite executive dysfunction being the most typical deficit in PD 

[6]. It might also explain our higher percentage of participants in the Cognitively Well 

phenotype. For these reasons, we encourage future research to consider if cognitive 

phenotypes differ on versus off dopaminergic medication and if these profiles relate to motor 

type presentation and disease progression.

Other considerations include the homogeneous demographics, standardization approach, 

focus on structural imaging only, and need for replication. Our sample is highly educated 

and Caucasian and so the sample findings cannot be extended to other demographic samples. 

Regarding our cognitive metrics, our memory measures were verbally biased, limiting our 

appreciation for memory for more visual based information. This may be particularly 

important to the right ERC-HIPP connectivity role in our PD phenotypes. In addition, the 

cluster analysis used z-scores from published normative test sources which may not reflect 

sociodemographics of the current study sample. Due to our concern for normative referenced 

potential bias on our cluster analyses, we replicated (post-hoc) the cluster analyses using age 

and education corrected z-scores based on our local non-PD sample. These post-hoc 

analyses show adequate agreement to our original normative reference clusters (102/116 

clustered in the same domains; 87.9% agreement). We encourage future researchers to 

consider the value of published versus local normative reference groups for their sample of 

cognitive phenotypes[98]. For imaging methodology, we exclusively examined structural 
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brain variables. There is extensive literature, however, demonstrated resting state network 

dysfunction in PD [99]. Future analyses should examine differences in resting state function 

between these phenotypes, particularly the interaction between established resting state 

networks such as the default mode network and salience network. Finally, although we used 

an a priori hypothesis approach and report results with effect sizes, we recognize the 

findings need replication.

Despite limitations and the need for follow-up research, the current study has many design 

strengths. These include the prospective and hypothesis driven nature of the investigation, 

recruitment of individuals who received the same cognitive and neuroimaging protocols to 

strategically examine gray-white matter connectivity regions of interest using tractography 

methods, and the comprehensive neuropsychological test protocol providing opportunity to 

assess cognitive phenotypes even among individuals with largely average cognition. 

Cognitive phenotypes were also considered relative to demographic and clinical 

characteristics, vascular markers, dopaminergic medication dose, anticholinergic 

medications, and depressive and apathy symptoms. The results provide convincing evidence 

that individuals with idiopathic non-dementia PD can be differentiated into cognitive 

phenotypes based on performance on executive and memory measures, and that these 

phenotypes present with unique neuroimaging profiles at least from a structural standpoint.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Volumetric and Structural Connectivity Measures by PD Cognitive Phenotype Referenced to 

Non-PD Peers

Left: Brain Volume Measures; Right: ROI to ROI Structural Connectivity (Edge Weight) 

Measures normalized by Non-PD peers (n=62). Bars demonstrate the raw z-scores after 

normalizing for non-PD peers, and are uncorrected for age or total intracranial volume. Error 

bars display unadjusted standard error. TICV=Total Intracranial Volume. *PD Executive 

significantly different from PD Cognitively Well and Non-PD (p<.05). **PD Executive 

significantly different from PD Memory and PD Cognitively Well (p<.05) †Non-PD 

significantly different from all phenotypes. ‡Non-PD significantly different from PD 

Memory. All volume analyses controlled for age, education, and TICV. DLPFC/Caudate 

controlled for age, education and TICV. ERC/Hippocampus controlled for age and 

education.
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Figure 2. 
Region of interest Raw Edge Weights by PD Cognitive Phenotype (Executive = 25; Memory 

= 35; Well n=56) and Non-PD Peers (n=62)

Left hemisphere shown only. To create this image, FA images from all datasets were first 

aligned to the FMRIB58_FA template using nonlinear registration. This nonlinear 

registration was applied each participants’ diffusion data and region of interest masks. 

Voxel-wise diffusion data averaging was then performed across subjects for each subgroup 

to create a group-wise averaged diffusion dataset. Deterministic tractography was performed 

using the parameters and methodology listed above to create a group-wise average 

tractogram. Registered ROI masks of the dorsolateral prefrontal cortex (DLPFC), caudate 

nucleus (CN) Hippocampus, (HIPP) and entorhinal cortex (ERC) for each phenotype group 

were superimposed and thresholded to create group-wise averaged ROI masks. The 

tractogram of each group was then filtered using the corresponding ROI masks to obtain the 

tracts connecting the DLPFC to CN, and the ERC to HIPP.TOP ROW: DLFPC in orange, 

CN in blue. Bilaterally, PD Executive < all groups after controlling for age, sex, and TICV. 

BOTTOM ROW: ERC in orange, HIPP in blue. Non-PD > all cognitive PD phenotypes in 

bilaterally and in right hemisphere; PD < Non-PD the left hemisphere.
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Table 1.

Demographic and General Cognition Characteristics Between PD Cognitive Phenotypes and Non-PD Peers

Variable PD Executive (n=25) PD Memory (n=35) PD Cognitively Well 
(n=56) Non-PD (n=65) p-value

Gender (M:F) 19:6 27:8 37:19 48:17 .63

Age (yrs) 69.08±6.30, 55/81 66.48±6.19, 55/84 68.84±6.01, 56/82 68.23±5.4, 55/80 .25

Education (yrs) 15.58±2.37, 12/21 16.06±2.37, 10/20 17.11±2.71, 11/23 17.19±2.23, 12/22 .02*

Handedness 20.20±4.53 21.46±3.18 19.75±5.45 20.88±4.84 .35

Disease Duration (yrs) 8.92±6.89, 1/26 5.74±3.22, 1/12 6.64±4.33, 1/23 -- .04

UPDRS III 22.84±9.31, 5/44 22.36±11.26, 4/57 18.45±10.70, 2/46 4.13±4.62, 0/18 .08**

l-Dopa Equiv. Score 665.95±371.29, 0/1232 648.83±416.57, 0/1800 661.55±277.12, 100/1450 -- .98

Magellan Score 0.81±1.39, 0/6 0.76±1.15, 0/3 0.89±1.15, 0/4 0.25±0.82, 0/5 <.01

Charlson Comorbidity 
Index 0.33±0.57, 0/2 0.17±0.38, 0/1 0.44±0.76, 0/4 0.33±0.66, 0/2 .34

MMSE Total 28.16±1.57, 24/30 28.20±1.49, 24/30 28.95±1.00, 26/30 29.20±0.98, 25/30 <.01

BDI-II* 11.00±5.64, 3/23 8.11±5.64, 0/28 7.46±5.75, 0/24 3.12±4.63, 0/27 <.01*

Apathy Scale 13.09±5.94, 4/26 9.43±5.42, 2/26 9.80±5.80, 0/24 9.35±4.87, 1/30 .03*

This sample represents Caucasian non-Hispanic individuals within Florida, United States, at time of study. All values presented as Mean±SD, Min/
Max. p-value represents overall between group (PD Executive, PD Memory, PD Well, Non-PD) comparison difference;

*
indicates significant difference between PD phenotypes.

**
p-value when comparing PD phenotypes only. Apathy scale[32]; BDI-II = Beck Depression Inventory-2[30]; Handedness = Modification of 

Annette (1976) inventory with range −24 to 24 (higher positive = right-side dominance; [26]; l-Dopa Equiv. Score = Levodopa Equivalent Sore = 
Total Daily levodopa dosage intake in milligrams[28]; MMSE = Mini-Mental State Exam[29]; UPDRS III = United Parkinson’s Disease Rating 
Scale III [33].
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