
On the Robustness of Deep Learning based Lung Nodule 
Classification for CT Images with respect to Image Noise

Chenyang Shen1,2,†,*, Min-Yu Tsai1,2,3, Liyuan Chen2, Shulong Li2, Dan Nguyen2, Jing 
Wang2, Steve B. Jiang2, Xun Jia1,2,*

1innovative Technology Of Radiotherapy Computations and Hardware (iTORCH) Laboratory, 
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 
75235

2Medical Artificial Intelligence and Automation (MAIA) Laboratory, University of Texas 
Southwestern Medical Center, Dallas, TX, 75235

3Department of Computer Science & Information Engineering, National Taiwan University, Taipei, 
Taiwan

Abstract

Robustness is an important aspect when evaluating a method of medical image analysis. In this 

study, we investigated robustness of a deep learning-based lung nodule classification model for CT 

images with respect to noise perturbations. A deep neural network (DNN) was established to 

classify 3D CT images of lung nodules into malignant or benign groups. The established DNN 

was able to predict malignancy rate of lung nodules based on CT images, achieving the area under 

the curve (AUC) of 0.91 for the testing dataset in a 10-fold cross validation as compared to 

radiologists’ prediction. We then evaluated its robustness against noise perturbations. We added to 

the input CT images noise signals generated randomly or via an optimization scheme using a 

realistic noise model based on a noise power spectrum for a given mAs level, and monitored the 

DNN’s output. The results showed that the CT noise was able to affect the prediction results of the 

established DNN model. With random noise perturbations at 100 mAs, DNN’s predictions for 

11.2% of training data and 17.4% of testing data were successfully altered by at least once. The 

percentage increased to 23.4% and 34.3%, respectively, for optimization-based perturbations. We 

further evaluated robustness of models with different architectures, parameters, number of output 

labels etc., and robustness concern was found in these models to different degrees. To improve 

model robustness, we empirically proposed an adaptive training scheme. It fine-tuned the DNN 

model by including perturbations in the training dataset that successfully altered the DNN’s 

perturbations. The adaptive scheme was repeatedly performed to gradually improve DNN’s 

robustness. The numbers of perturbations at 100 mAs affecting DNN’s predictions were reduced 

to 10.8% for training and 21.1% for testing by the adaptive training scheme after two iterations. 

Our study illustrated that robustness may potentially be a concern for an exemplary deep learning-

based lung nodule classification model for CT images, indicating the needs for evaluating and 
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ensuring model robustness when developing similar models. The proposed adaptive training 

scheme may be able to improve model robustness.

1. INTRODUCTION

Deep learning (DL) methods (LeCun et al., 2015; Shen et al., 2020) have gained increasing 

interest in a wide spectrum of machine learning problems (Szegedy et al., 2013; Yu et al., 
2013; Simonyan et al., 2013; Mnih et al., 2013; Mnih et al., 2015; Silver et al., 2016; Wang, 

2016; Goodfellow et al., 2014; Zhu et al., 2016). One of the major groundbreakings is in 

natural image classification, where DL has been shown to obtain superhuman performance 

(Russakovsky et al., 2015; Krizhevsky et al., 2012). The success of DL has also been 

extended to healthcare regime. A number of studies incorporating DL for diagnosis and 

outcome prediction (Hua et al., 2015; Kumar et al., 2015; Sturm et al., 2016; Nie et al., 
2016; Che et al., 2016; Li et al., 2016; Kallenberg et al., 2016; Cheng et al., 2016; Zhen et 
al., 2017) have achieved superior performance compared to traditional machine learning 

algorithms, comparable or even better than experienced clinicians in some applications 

(Rajpurkar et al., 2017; Wang et al., 2017).

The main idea of DL is to employ a deep neural network (DNN), a large-scale hierarchical 

model using a multi-layer architecture, to approximately represent a distribution by learning 

from data. A typical DNN contains a large number of linear/non-linear numerical operations 

to connect different layers. The complex function form allows a DNN to flexibly 

approximate a complex data distribution compared to traditional machine learning methods. 

However, the complex functions also post a technical barrier for the theoretical analysis of a 

DNN to fully understand its mathematical properties, such as approximation accuracy, 

robustness, etc. Investigating these properties is necessary to warrant a safe application of 

DL techniques to a broad scope of real problems with confidence.

Robustness of a DL-based prediction model refers to its ability to tolerate perturbation/noise 

to the network input. Recent studies in natural image processing have revealed that 

robustness of DL-models is a concern, as the output can be easily affected by small-scale 

perturbations added to the input (Yuan et al., 2019; Su et al., 2019; Akhtar and Mian, 2018; 

Evtimov et al., 2017; Madry et al., 2017). Given the fact that noise inevitably exists in real 

medical data, robustness is of particular importance for medical applications (Shen et al., 
2020), since poor robustness may mislead clinical decision making and generate severe 

consequences to patients. For instance, the noise level in clinical diagnosis CT images is on 

the order of 10–60 HU depending on the specific imaging protocols for different 

applications (Christianson et al., 2015). For models making predictions based on CT images, 

it is critical to achieve a robust performance with respect to the noise in the input images. A 

model with poor robustness can have instable performance, potentially influencing diagnosis 

decision and treatment outcome.

In this paper, we studied the robustness of an example problem of DL-based lung-nodule 

classification for CT images. While theoretical robustness analysis remains challenging, we 

investigated this empirically through numerical studies. Specifically, we examined the 

performance of a DL-model that classifies CT images of lung nodules into benign and 
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malignant classes by injecting noise perturbations to the input images and observing the 

effects on the model output. The studies revealed that robustness of this DL model may be a 

concern. To mitigate this issue, we also proposed a training scheme that potentially 

improved robustness.

2. MATERIALS AND METHODS

2.1 Network training

We formulated the problem of predicting benignity or malignancy of a lung nodule based on 

a CT image as a DNN-based binary classification problem. The structure of the DNN is 

depicted in Fig. 1. Input of the DNN was a 3D CT image cube containing the nodule. Four 

3D convolutional layers were incorporated in the first half of the network, each followed by 

a rectified linear unit (ReLU) (Nair and Hinton, 2010), to extract comprehensive features 

from the input image. These features were then passed through four fully connected layers to 

perform classification. The last fully connected layer utilized a sigmoid activation function 

for the classification purpose. We trained the DNN by solving the following optimization 

problem:

θ* = argminθ∑i ∈ Tr D xi ∣ θ − yi* 2
2, (1)

where xi ∈ Rn×n×n indicates the i-th CT image cube of size n in the training dataset Tr 
consisting of in total Ntrain training samples. yi* ∈ {0, 1} gives its corresponding ground truth 

label. yi* = 1 if xi is malignant and yi* = 0 otherwise. D(·|θ*) is the DNN function with θ 

representing the set of network parameters to be determined through the training process. 

This optimization problem was solved via the widely used adaptive moment estimation 

method (Kingma and Ba, 2014).

2.2 Robustness analysis

After the DNN model was trained, we evaluated its robustness against CT image noise, see 

Fig. 2. In this study, we focused our investigations on the impacts of noise signals under 

different mAs levels, one the most important parameters in CT scans. A useful prediction 

model should be robust against such perturbations of noise in CT. Let us denote predicted 

label under the original image and the image with noise added by y and y. For a robust 

model, y = y should hold. On the other hand, if a model predicts inconsistent labels for the 

same nodule with and without adding a noise signal, the prediction is unreliable, since noise 

is unavoidable in real clinical settings.

In the following sections, we will investigate robustness of the deep learning-based model 

against noise perturbations of different mAs levels generated randomly and by an 

optimization method.

2.2.1 Robustness with respect to randomly sampled attacks—In this study, we 

considered a wide range of mAs levels, including 10, 50, 100, 200, and 500 mAs. The 

purpose is to perform comprehensive evaluations on the robustness of the DNN model 

against noise in a wide range of scanning protocols (Bhalla et al., 2019; Yanagawa et al., 
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2014), from the low-dose CT regime (10 and 50 mAs), to normal dose levels commonly 

used in clinic (100 and 200 mAs), and a high dose scenario (500 mAs).

For each mAs level, given an input CT image cube xi, we implemented a noise power 

spectra (NPS) based approach (see Appendix) to generate realistic noise perturbations pi ∈ 
Rn×n×n (Divel and Pelc, 2020; Dolly et al., 2016; Hsieh, 2003) with its amplitude and texture 

following the corresponding NPS. We repeatedly generated random perturbations for K 
times for each input CT cube and fed the perturbed CT cube into the DNN to compute the 

new output, i.e. yi = D xi + pi ∣ θ* . This was termed as attacks under the perturbation. The 

attack was called successful if yi is different from yi = D xi ∣ θ* , the predicted label of the 

original CT cube xi. A clinically desired model would predict consistent output labels, i.e. 

yi = yi.

2.2.2 Robustness with respect to purposely selected attacks via an 
optimization approach—In this step, for each input data xi, we aimed at purposely 

looking for perturbations pi* ∈ Rn × n × n following the NPS at the specified mAs level, such 

that the predicted label of the perturbed input was altered. This goal could be achieved by 

solving the following optimization problem:

pi* = argmaxpi∑i D xi + pi ∣ θ* − D xi ∣ θ* 2
2,

s.t.E ϕ, z, i F pz, i (f, ϕ) = S(f)NxNy
ΔxΔy

1/2
, p = p1, p2, … .

(2)

Here we use p to denote the goup of all 3D noise signals generated for all samples. pz,i is the 

z axial slice of pi. F[.] denotes the Fourier transform and f and ϕ are radial and angular 

coordinate in the Fourier domain. E{ϕ,z,i}[.] represents an average operator over all angles ϕ 
on each 2D axial slide, all axial slices z, and all data samples. S is the NPS for the given 

mAs, which is a function of f because of rotational symmetry. Δx and Δy are pixel sizes, and 

Nx and Ny are numbers of pixels along the x and y directions. The constraint ensured the 

optimized perturbations on average following the noise properties specified by the NPS. 

Following the same setup as in the random perturbation study, we considered different NPS 

for 10, 50, 100, 200, and 500 mAs. We solved the optimization problem via the projected 

gradient ascent algorithm expressed as

pi
t − 1

2 = pit − 1 + 2δ D xi + pi ∣ θ* − D xi ∣ θ* ∂D xi + pi ∣ θ*
∂pi pit − 1, (3)

pt = Projτ pt − 1
2 , S , (4)

where pt − 1
2 = {p

1
t − 1

2 , p
2
t − 1

2 , …}. t is the index of iteration and δ is the step size of the 

gradient ascend algorithm. Projτ(∗, S) is the projection operator to ensure the result 

following the NPS,
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Projτ az, i, S = F−1 F az, i (f, ϕ)
E ϕ, z, i F az, i (f, ϕ) S(f)NxNy

ΔxΔy
1/2

. (5)

The iteration stopped, when 
pt − pt − 1 2

pt − 1 2
≤ ϵ or the maximum iteration number Niter was 

reached.

Moreover, D(·|θ*) is a highly non-convex function and so is the optimization problem in Eq. 

(2). As such, the obtained solution varies depending on the initial solution. In this regard, for 

each DNN input data xi, we repeatedly solved the problem of Eq. (2) for K times with 

different random initializations. The detailed algorithm is summarized in Algorithm 1.

Algorithm 1.

Generating optimization-based attack.

for i = 1, 2, …, Ntrain do

 for k = 1, 2, …, K do

 1. Initialize perturbation p0 randomly; set t = 0;

  while t ≤ Niter do

 2. Update pt following equations (3) and (4);

 3. If 
pt − pt − 1 2

pt − 1 2
≤ ϵ or t = Niter, set pi*(k) = pt, set t = Niter;

  Otherwise, set t = t + 1, go to step 2;

  end while

 end for

end for

Output pi*(k) ∣ i = 1, 2, …, Ntrain , k = 1, 2, …, K

2.3 Robustness for networks with different setups

To study if the robustness is caused by the specific network setup, we also evaluated the 

impact of different architectures. We adjusted the architecture of the proposed DNN model 

to build new models for different scenarios, including 1) adding batch normalization layers, 

2) adding drop-out layers of different rates (0.1 and 0.2), 3) constructing deeper, shallower, 

wider, narrower models, and 4) building a model to directly predict rates ranging from 1 to 5 

characterizing the malignancy suspiciousness with 1 being the least suspicious and 5 

indicating the most of malignancy. The detailed architecture of models built for all these 

scenarios are shown in Fig. 3. Specifically, for scenarios 1) and 2), batch normalization and 

drop-out layer were introduced, respectively, after each convolution and fully connected 

layers. For scenario 3), the deeper network was constructed by inserting a 3D convolution 

layer consisting of 1024 convolutional kernels of size 3 × 3 × 3, and a fully connected layer 

of size 1024 between the last convolution layer and the first fully connected layer of the 

original DNN, while the shallower network was formed by simply removing the these two 

layers. In addition, the number of neurons in each layer were increased and decreased by a 
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factor of two, respectively, to generate the wider and narrower networks. Finally, for 

scenario 4), the network architecture was not modified except for removing the sigmoid 

function activation function to output a value from 1 to 5 representing the predicted rate of 

malignancy. For all these scenarios, random attack of 100 mAs was performed to evaluate 

the robustness.

2.4 Visualizing attention of DNN

To have a better understanding on the DNN and its robustness, we openned the established 

model and visualized extracted features. More specifically, given an input sample, we first 

forward evaluated the DNN and saved the features computed after several typical network 

layers. These features are essentially the information captured by the DNN in order to 

determine whether a nodule is malignant or benign. Moreover, we have also generated an 

attention map of DNN by integrating the extracted features. It highlighted the regions in a 

CT image where the DNN paid the most attention to achieve the classification of lung 

nodules. By doing so, we could have a better understanding on how image noise changed the 

classification behavior of the DNN.

2.5 An empirical approach to improve robustness

We empirically propose an adaptive training scheme that could potentially improve the 

network’s robustness. Generally speaking, a DNN robust to perturbations should be trained 

via an optimization model

θ* = argminθ∑i ∈ S ∑p ∈ A, 0 D xi + p ∣ θ − yi* 2
2, (6)

where the set A contains all the noise perturbations. Summation over p explicitly enforces 

the consistency between the output labels of the perturbed inputs and that of the original 

input. Yet enumerating all perturbations when solving the problem in Eq. (6) is impractical 

due to the high dimension of the input data, e.g. 323 in the lung-nodule classification 

problem here. To overcome this problem, we proposed a workflow in Fig. 4 that adaptively 

improves robustness.

More specifically, after performing the optimization-based attacks, the perturbed samples of 

training data that were found vulnerable were further included into an enlarged training 

dataset, based on which the network was finely tuned. The goal of the fine-tuning step was 

to improve the robustness by having the network observe those data attacking the network 

successfully. This process repeated, until we were satisfied with the robustness of the 

network. In Algorithm 2, we have summarized the detailed adaptive training scheme.

Algorithm 2.

Adaptive training scheme.

1. Train DNN for θ* by minimizing the loss function in equation (1);

for i = 1, 2, …, Nadapt do

2. Run Algorithm 1 for pi*(k) ∣ i = 1, 2, …, Ntrain, k = 1, 2, …, K ;
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3. Find a set of perturbed samples P ⊂ xi + pi*(k) ∣ i = 1, 2, …, Ntrain, k = 1, 2, …, K  that were found 

vulnerable;

4. If P = ∅, set i = Nadapt;

 Otherwise, Set S = S ∪ P, update θ* over enlarged S by minimizing the loss function in equation (1);

end for

Output θ*

2.6 Dataset and implementation

The DL-based classification network was trained using Lung Image Database Consortium 

(LIDC) of Image Database Resource Initiative (IDRI) (Armato et al., 2011) from The 

Cancer Imaging Archive (TCIA)(Clark et al., 2013). In this data set, the CT images were 

collected from seven academic centers and eight medical imaging companies. The dataset 

contains nodules of different sizes and all the nodules were rated from 1 to 5 by multiple 

radiologists based on their malignancy suspiciousness with 1 being the least suspicious and 

5 indicating the most. In our study, we considered only those nodules with the size larger 

than or equal to 3 mm. For each selected nodule, the average value of all ratings given by all 

radiologists was utilized to indicate the level of malignancy suspiciousness. We further 

removed those ambiguous nodules rated at 3, yielding a set of CT images containing 1,226 

nodules with 431 malignant (rating >3) and 795 benign ones (rating <3). All CT images 

were interpolated to a resolution of 1 mm along all three dimensions. For each nodule, a 3-D 

image cube of size 32×32×32 voxels was extracted from the CT image as the model input. 

We show in Fig. 5 three orthogonal views of image cubes extracted from two representative 

cases, one benign case and one malignant case.

Within 1263 CT cubes in our dataset, 80% (981) were randomly picked for training and 

validation, and the remaining (Ntest=245) were saved for testing purpose. During the training 

process of the DNN model, a 10-fold cross validation strategy was implemented. The 981 

samples selected for training was randomly split into 10 groups of approximately the same 

size. For the training of each fold, we picked one group as validation set (Nval = 98) while 

the remaining samples were used for model training (Ntrain =883). As an independent testing 

dataset, all the testing data samples were left out during the training process and hence never 

utilized in the 10-fold cross validation process. Performance of the model in each fold was 

not evaluated on the testing data until the training for the 10 folds was completed. Data 

augmentation was also performed to enlarge the training dataset by randomly shifting 

(maximally five pixels in each direction) and rotating (maximally 15 degrees about each 

axis) the images.

Our study was implemented using Python with TensorFlow (Abadi et al., 2016) on a desktop 

workstation equipped with eight Intel Xeon 3.5 GHz CPU processors, 32 GB memory and 

two Nvidia Quadro M4000 GPU cards. We trained the network with 500 epochs with a 

batch size of 64 and a learning rate of 1 × 10−5. To address the imbalanced malignant (345) 

and benign (636) samples in the training set, we adjusted sampling rates to make them 

contribute evenly in the training process. The model with the best validation performance for 

each of the 10 folds was selected for the subsequent robustness analysis.
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In the robustness study, for both the random attacks and the optimization-based attacks, the 

number of attacks K for each sample was 50. When solving the optimization problem in Eq. 

(2), the step size δ of the gradient ascend algorithm was 1. The gradient of the DNN with 

respect to pi, i.e. 
∂D xi + pi ∣ θ*

∂pi
, needs to be evaluated at each iteration, which was achieved 

using TensorFlow backend function library. The stopping criteria was ∊ = 10−3 and Niter = 
10. In each iteration of the adaptive training process, we performed the optimization-based 

attack only once for each training sample and included the successfully attacked samples in 

the training dataset to finely tune the network. We still chose to repeatedly attack the tuned 

network for K = 50 times to evaluate robustness and hence effectiveness of the adaptive 

training scheme. The number of epochs used for network fine-tuning at each adaptive 

training step was 10.

2.7 Evaluation studies

To evaluate classification performance of the network, receiver operating characteristic 

(ROC) curves (Green and Swets, 1966) were plotted and area under curve (AUC) was used 

as the metric. In addition, we also used accuracy, sensitivity, and specificity to assess 

performance of the binary classifier from different aspects. Specifically, accuracy, sensitivity, 

and specificity are defined as follows:

accuracy = TP + TN
TP + TN + FP + FN ,

sensitivity = TP
TP + FN ,

specificity = TN
TN + FP ,

(7)

where TP, FP, TN, and FN are numbers of true positive cases, false positive cases, true 

negative cases, and false negative cases, respectively.

As for the evaluation of robustness, we first defined that a sample is called successfully 

attacked, if its label predicted from the deep learning model is altered after applying the 

perturbation. Then we considered two metrics to quantify DNN’s robustness in different 

angles. The first one was successfully attacked samples number (SAN). SAN was simply the 

number of samples that were successfully attacked by at least once among the K attempts. It 

quantified the robustness of the DNN as evaluated on the dataset. Second, among all the 

samples that were successfully attacked, some were more vulnerable than others. Hence, we 

computed successful attack rate (SAR) for the i-th sample as

SAR = nsucci

K (%) (8)

to measure its vulnerability, with nsucci ≤ K being the number of successful attacks for the i-

th sample. A higher SAR indicated a higher vulnerability. We plotted the curve of 

percentage of samples that have SAR exceeding certain levels. Although the DNN was 

trained using the training dataset, we evaluated robustness on both the training and the 

testing datasets.
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During the iterative adaptive training process to improve robustness, we monitored 

robustness of the network with the aforementioned metrics. Since prediction performance is 

of top priority for model development, we also monitored AUC during this process. The 

adaptive training process was performed using only the training dataset. However, we also 

evaluated robustness on the testing dataset in this process to observe generalizability of the 

trained model in terms of robustness. Note that successfully attacked testing samples were 

never involved in the adaptive training process.

3. RESULTS

3.1 Classification performance

The AUC, accuracy, sensitivity, and specificity of the proposed method on training, 

validation and testing dataset in the 10-fold cross validation process are reported in Table 1 

(average ± standard deviation). The standard deviation was computed using results in 

different folds. Note that accuracy, sensitivity and specificity were computed based on a 

threshold value of 0.5, as it generally gave acceptable classification performance. We fixed 

this value for the rest of this paper. To benchmark, we compared the performance evaluated 

on the testing dataset with that of Multi-crop Net (Shen et al., 2017), a recently developed 

DL-based lung nodule classification model, which has been demonstrated to outperform the-

state-of-the-art methods. Our network achieved a comparable performance to the Multi-crop 

Net. These classification results validated the proposed model as an effective deep learning-

based model for lung nodule classification. Net. We would like to emphasize that it is not 

our focus to develop a new DNN architecture for lung nodule classification to outperform 

state-of-the-art methods. Instead, we focus on the robustness issue of this DNN model built 

with a representative structure for classification problems and trained to achieve a reasonable 

performance.

3.2 Robustness evaluation

We first report in Table 2 SANs under random and optimized perturbations for all the 10 

DNN models generated in the 10-fold cross validation. Averaging over the 10 models, there 

were 439, 219.4, 98.7, 26.1, and 7.5 training samples (49.7%, 24.8%, 11.2%, 3.0% and 

0.9%) were successfully attacked by at least once for 10, 50, 100, 200, and 500 mAs, 

respectively under random perturbations. When it came to optimization-based attacks, there 

were 523.7, 306.8, 206.4, 120, and 58.2 samples (59.2%, 34.7%, 23.4%, 13.6%, and 6.6%) 

attacked successfully. As for the testing dataset, on average over the 10 models, 128.1, 71.4, 

42.6, 23.6, and 11.1 samples (52.3%, 29.1%, 17.4%, 9.6% and 4.5%) were successfully 

attacked by at least once for 10, 50, 100, 200, and 500 mAs, respectively, while the 

optimization-based attack successfully altered the predicted label of 151.1, 108.7, 84.1, 62.2, 

47.3 testing samples (61.8%, 44.4%, 34.3%, 25.4%, and 19.3%).

We visually inspected the images of successful attacks to confirm that they were noise-like 

and did not contain spatial structures that may add features to the input CT image. Examples 

of successfully attacked CT images and their corresponding perturbations with 500 mAs are 

shown in Fig. 6. As the noise amplitude was small, the perturbed and the original images 
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were visually indistinguishable in a standard display window, and hence were expected to 

generate the same prediction results. However, the outputs from the network were different.

Figure. 7 and 8 plot the percentage of samples with SAR exceeding certain levels under 

random and optimized attacks for training and testing datasets, respectively. In general, the 

curves were higher for lower mAs levels, since the amplitude of noise increases when 

reducing the mAs level. The curves for the optimization-based perturbations were 

consistently higher than those for the random perturbations, because the optimization-based 

approach tried to deliberately attack the network.

3.3 Robustness of networks with different architectures

Table 3 reports the robustness evaluated for networks of different architectures trained for 

different scenarios under random attacks at 100 mAs level as an example. The results 

revealed that batch normalization and drop-out layers, which are commonly used layers 

incorporated to regularize model training, did not help much to improve the network 

robustness. In addition, we evaluated robustness of networks with different model sizes. It is 

well known that the networks of larger sizes, e.g. deeper/wider networks, are expected to fit 

the training data more accurately compared to the original network due to their larger 

network capacities, while smaller networks, e.g. shallower/narrower networks, are less 

capable in data fitting. In contrast, the impact of model size to network robustness is still 

unclear in the deep learning regime. According to our numerical experiments, adding/

removing layers and neurons did affect the model robustness. The network robustness was 

slightly degraded for the deeper and narrower networks, while it was improved a little for 

shallower and wider networks. Overall speaking, the robustness of all these models was still 

on the similar level. The impact of reformulating the binary classification into malignance 

rate prediction seemed to have the largest influence on the model robustness among all the 

adjustments, substantially deteriorating the model robustness. Compared to the original 

binary classification problem, the complexity of the new task was increased substantially 

while the amount of training data available remains unchanged. Giving the limited number 

of available training samples, it is a particularly challenging problem to figure out accurate 

and robust way to differentiate samples especially for those receiving close rates, for 

instance, to distinguish nodules rated as 1 from those rated as 2. Hence, it is expected that 

the resulting network is not as robust as the one established for binary classification, while 

even a small perturbation may have a large chance to affect the labeling process of the 

established model.

3.4 Attention of DNN

The DNN in Fig. 1 can be generally divided into two parts for feature extraction (Layers 1–

4) and for decision making (Layers 5–8) based on extracted features. We fed into the DNN a 

CT cube with and without noise, and visualize the values processed by the network after the 

first layer, namely the information at the upstream of convolutional layers for feature 

extraction. We chose a case, such that the added noise signal was able to alter the network 

output. The result is shown in Fig. 9. There are 64 groups of images, corresponding central 

axial slices of the 64 extracted features. In each group, the left image is the one for the CT 

cube without noise, whereas the right one corresponds to the CT with noise added. It was 

Shen et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed that there are some features that are very sensitive to noise and hence the feature 

images were changed dramatically by the input noise, such as those highlighted by the 

boxes. Hence, it seems the trained network contained some feature extraction components 

that are relatively sensitive to the input noise.

Moreover, we generated an attention map for this case, see Fig. 10. The colored regions 

highlighted in the images indicate the regions where the established DNN paid attention to. 

As we can see, the DNN focused on a larger area beyond the nodule on the attacked image 

while the region of importance matches with nodule quite well on the original training 

sample.

3.5 Adaptive training to improve robustness

Robustness, as quantified by SAN/Ntrain (%), as well as AUC evaluated on the training 

dataset during the adaptive training process are summarized in Table 4. By including 

perturbed samples that successfully attacked the trained network in the training dataset, 

model robustness was improved. We also observed that the model AUC also gradually 

increased in this process. This could be ascribed to the fact that adding the optimization-

based perturbations may also serve as a data augmentation scheme.

When evaluating the adaptively trained network on testing data, we surprisingly found that 

the robustness was also improved and so was the AUC, as shown in Table 5. Fig. 11 depicts 

how the percentage of samples with SAR exceeding certain levels evolved along the 

adaptive training steps. As attacks at different mAs levels share the similar behavior, we only 

show the curves for the 50 mAs case with optimization-based attacks on both training and 

testing datasets. In both scenarios, the ratio of successfully attacked training samples was 

consistently reduced. For the testing dataset, applying the adaptive training scheme once was 

able to improve the model robustness. Repeating the scheme for more time seemed to further 

improve robustness, but the improvement was small.

4. CONCLUSION AND DISCUSSIONS

In this study, we illustrated that robustness may potentially be a concern for a DL-based lung 

nodule classification model for CT images. Following a standard strategy to train the 

classification model, the established network was able to classify nodules accurately, but the 

prediction may be vulnerable against noise in CT images. At 100mAs level, on average 

11.2% and 23.4% of training dataset and 17.4% and 34.3% of testing dataset were 

successfully attacked by random and optimization-based attacks in our 10-fold cross 

validations. To mitigate this issue, we employed an empirical scheme that included those 

vulnerable training samples to fine tune the model. After two iterations, rate of successful 

attacks reduced to 10.8% for the optimization-based attacks in the training dataset and to 

21.1% in the testing set.

Using a representative example problem of DL-based lung nodule classification, we 

illustrated the potential concern of robustness. The observed vulnerability may degrade 

practical values of the DL model in real clinical applications, as noise signals are inevitable 

in a real clinical context, and model performance under noise perturbations should be stable 
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to warrant a safe clinical implementation. We hope our study could shed some lights to this 

robustness issue. When developing a new model for medical applications, robustness 

evaluation is an important aspect and should be examined.

The optimization-based attack was analogous to adversarial attack (Yuan et al., 2019; Su et 
al., 2019; Akhtar and Mian, 2018; Evtimov et al., 2017; Madry et al., 2017), which has 

already been studied extensively for DL-based models in the context of natural image 

classification. In this work, we specifically target on medical image analysis, where the 

demand for robustness is high because of potential impacts on patient care. We also 

employed a relatively realistic noise model specific to the CT context.

Training, testing, and robustness evaluation of DNN models in the proposed study were 

performed using LIDC dataset from TCIA. This dataset consists of CT images of lung 

nodules with different dimensions and malignancy rates. The CT images were acquired on a 

number of scanners from seven academic centers and eight medical imaging companies 

under a variety of imaging protocols. Hence, the diversity in dataset with respect to CT 

scanners and protocols is expected, which is strongly desired especially when building 

models to solve real-world problems.

Generalizability is a central topic in machine learning (Michie et al., 1994), including DL 

(LeCun et al., 2015; Zhang et al., 2016). It refers to the fact that model performance 

observed in the training dataset can be extended to testing dataset that were not seen in the 

training process. In our study, robustness, as well as robustness improvement through the 

adaptive training process, were both found to be generalizable from training to testing. Yet, 

these facts were concluded based on empirical studies and theoretical reasons are still 

missing.

The current study has several limitations. First, as an initial study to investigate the 

robustness issue, we specifically focused on a typical DNN with a structure commonly used 

for classification and trained following standard settings using a dataset with a modest size. 

Although we have studied a variety of different network setups, such as adding batch 

normalization and drop-out layers, adding/removing layers, increasing/decreasing neurons in 

each layer, and formulating the problem directly as nodule malignancy prediction other than 

binary classification, the conclusion drawn here may be still limited only to the setups 

investigated in this study. Comprehensive evaluations of robustness on a wide range of 

different applications with different types of network architectures are necessary and will be 

our future study. Second, although a mixed dataset acquired from different institutions was 

employed in the proposed study, the impact of vendor/scanner and imaging protocol was not 

investigated. To systematically evaluate their influences to the robustness of a DNN, a 

number of comprehensive datasets need to be collected on scanners from different vendors 

under a variety of imaging protocols. It is our future work to collect such datasets and 

perform dedicated in-depths investigations on their impacts to DNN robustness. Third, the 

study only revealed the robustness issue for a DNN model, but the reason causing the 

problem is still unclear. Our preliminary finding (e.g. Fig. 9 and 10) indicates that some 

features extracted by the DNN were sensitive to the noise in the input. While this fact may 

account for the observed robustness problem, subsequent studies are necessary to confirm it 
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and to have a complete understanding about it. Fourth, one drawback of the noise generation 

approach was that it ignored the spatial variance of NPS in a CT image. It is known that CT 

noise is not stationary, and NPS depends on the CT cube location. We ignored the position 

information, because the input to the DNN was a CT image cube containing a lung nodule, 

rather than an entire CT image. Hence, the generated noise can be considered as following 

the average behavior of noise statistics in a CT image. It is our ongoing study to perform 

experimental evaluations on this robustness issue in a CT-based classification task using 

phantoms, which will overcome this drawback in the current study. Fifth, although they have 

been employed as reference in many previous studies (Lei et al., 2020; Li et al., 2019; Xie et 
al., 2019; Al-Shabi et al., 2019; Liao et al., 2019; Shen et al., 2017; Ren et al., 2020), the 

labels of the nodules used in this study are given by radiologists, not based on pathological 

assessments. Therefore, validity of the labels may not be guaranteed. However, the major 

goal of this work is to evaluate how vulnerable a trained neural network is to noise 

perturbations in the CT images, but not the classification performance of the neural network. 

For this purpose, we expect that it is unlikely for the issue in data labeling to affect the 

validity of the robustness analysis, as long as a reasonably accurate model was studied. Of 

course, to develop a model that can be applied in real clinic, training using pathologically 

confirmed data as reference is necessary to ensure the prediction validity, which is beyond 

the scope of this study.
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APPENDIX.: ADDING NOISE TO CT IMAGES

It is well known that CT image noise is not stationary. Hence, we employed the concept of 

local Noise Power Spectrum (NPS) to describe noise statistics in a 2D axial image patch 

(Riederer et al., 1978). The NPS S(kx, ky) is defined as

S fx, fy = ΔxΔy
NxNy

〈F[p(x, y)]2〉, (A.1)

where fx, fy are frequencies in the Fourier space, Δx and Δy are pixel sizes, and Nx and Ny 

are numbers of pixels along the x and y directions. p(x, y) is the noise signal. F[.] denotes 

the Fourier transform, and 〈.〉 is ensemble average. To generate a noise signal for a patch, we 

first took the known form of the NPS corresponding to a reference setup of 120 kVp and 250 

mAs as described in (Dolly et al., 2016) and linearly scaled the NPS amplitude based on the 

specific mAs level in our study. We then generated an image in the Fourier space with 

uncorrelated standard Gaussian white noise I(fx, fy). Finally, the noise image was computed 

as

p(x, y) = F−1 S fx, fy
NxNy
ΔxΔy

1
2I fx, fy , (A.2)

where F−1 denotes inverse Fourier transform.
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We demonstrate the validity of this approach by repeatedly generating 1000 noisy signals for 

a given NPS and estimating the NPS using Eq. (A.1). The results are shown in Fig. A1. The 

noise image shows a certain texture and the estimated NPS matched well with the given 

NPS.

Figure A1. 
(a) The given NPS. (b) One example of generated noise images. (c) Estimated NPS. (d) 

Comparison between the given NPS (curve) and estimated NPS (dots) plotted along a radial 

line.

For the 3D CT image cube used in this study, a noise signal in each axial slice was generated 

independently following the algorithm described above.

As the CT noise is nonstationary, the noise variance and NPS of a CT image patch in fact 

depend on the position of the patch in the entire CT image. Hence, one apparent drawback of 

the above algorithm approach is that it ignored the position-dependent noise statistics. The 

generated noise can be considered as following the average behavior of noise statistics in a 

CT image.
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Figure 1. 
Structure of the deep neural network classifier in this study.

Shen et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An example of model robustness analysis. Realistic noise in CT image domain will be added 

to a lung nodule CT image with a predicted label y from a DNN. The perturbed sample is 

also fed into the DNN, receiving a label y. The DNN is robust against the perturbation, if 

y = y.
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Figure 3. 
Different network architectures for a comprehensive robustness evaluation.
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Figure 4. 
Workflow of the adaptive training scheme. The dashed line indicates one-time operation to 

train the network initially. The solid lines show an iterative process.
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Figure 5. 
Three orthogonal views of extracted lung nodule cubes from one benign (top) and one 

malignant case (bottom).
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Figure 6. 
By adding the optimization-based perturbations with 500 mAs, the perturbed images were 

misclassified.
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Figure 7. 
Percentage of samples with successful attack rate (SAR) exceeding certain levels on training 

data. Shaded region around each curve shows range computed over the 10 models.
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Figure 8. 
Percentage of samples with successful attack rate (SAR) exceeding certain levels on testing 

data. Shaded region around each curve shows range computed over the 10 models.
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Figure 9. 
Comparison of information at position 1 between input CT with and without noise added.

Shen et al. Page 26

Phys Med Biol. Author manuscript; available in PMC 2021 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Attention map for a nodule without noise added (left) and with noise that successfully 

attacked the network (right). The maps are overlaid on CT images.
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Figure 11. 
Evolution of percentage of samples with successful attack rate (SAR) exceeding certain 

levels during the adaptive training process. Shaded region around each curve shows range 

computed over the 10 models.
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Table 1.

Classification performance on training, validation, and testing datasets (values in bold font indicate better 

testing performance).

Dataset Model AUC Accuracy Sensitivity Specificity

Training Our model 0.97±0.004 0.97±0.004 0.98±0.005 0.94±0.008

Validation Our model 0.87±0.084 0.84±0.059 0.88±0.062 0.82±0.098

Testing

Our model 0.91±0.008 0.85±0.011 0.90±0.007 0.77±0.024

Multi-crop Net 0.89 0.83 0.81 0.83
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Table 2.

Average and standard deviation of percentage of successfully attacked samples computed over 10 models 

generated in the 10-fold cross validation.

SAN/Ntrain ± std (%)

10 mAs 50 mAs 100 mAs 200 mAs 500 mAs

Random attacks
Training 49.7±4.9 24.8±4.2 11.2±4.1 3.0±2.1 0.9±0.4

Testing 52.3±2.9 29.1±5.0 17.4±4.3 9.6±2.7 4.5±1.3

Optimized attacks
Training 59.2±6.3 34.7±6.3 23.4±6.6 13.6±6.5 6.6±4.2

Testing 61.8±5.5 44.4±6.3 34.3±7.5 25.4±6.4 19.3±5.1
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Table 3.

Percentage of samples attacked successfully at 100 mAs level for different network architectures.

SAN/Ntrain (%)

Training Testing

100 mAs Random attacks

Original 11.2±4.1 17.4±4.3

Scenario 1 Batch-Norm 10.6±3.7 15.7±4.4

Scenario 2
Drop-out (0.1) 13.4±4.8 27.4±5.1

Drop-out (0.2) 10.2±4.0 20.0±4.5

Scenario 3

Deeper 12.0±5.2 23.2±5.6

Shallower 9.1±3.7 17.9±4.2

Wider 9.6±3.9 15.8±3.6

Narrower 12.7±4.7 28.5±4.6

Scenario 4 Five-class 26.2±6.9 86.5±15.3
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Table 4.

DNN AUC and robustness evaluated on training dataset during adaptive training. Average and standard 

deviations are computed over the 10 models.

AUC±std
SAN/Ntrain ± std (%)

10 mAs 50 mAs 100 mAs 200 mAs 500 mAs

w/o adaptive training 0.97±0.004 59.2±6.3 34.7±6.3 23.4±6.6 13.6±6.5 6.6±4.2

1 step adaptive training 0.98±0.003 37.0±6.7 20.3±2.2 15.2±2.5 10.4±2.4 6.4±1.4

2 steps adaptive training 0.99±0.008 33.5±7.6 17.4±2.2 10.8±1.7 7.7±1.8 4.7±1.2
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Table 5.

DNN AUC and robustness evaluated on testing dataset during adaptive training. Average and standard 

deviations are computed over the 10 models.

AUC±std
SAN/Ntrain ± std (%)

10 mAs 50 mAs 100 mAs 200 mAs 500 mAs

w/o adaptive training 0.91±0.008 61.8±5.5 44.4±6.3 34.3±7.5 25.4±6.4 19.3±5.1

1 step adaptive training 0.90±0.011 39.9± 11.6 29.8±6.3 27.8±7.5 20.7±6.5 16.5±6.7

2 steps adaptive training 0.90±0.013 33.9±8.5 25.6±5.2 21.1±2.6 12.4±5.8 16.1±5.3
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