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Abstract
Background Isolated focal dystonia (IFD) is a heterogeneous group of potentially invalidating movement disorders. The
etiopathogenesis is complex, both genetic and environmental factors playing a role, but remains elusive. The CACNA1B gene
codes for the N-type neuronal voltage-gated calcium channels CaV2.2, which may play a role in the development of some IFD.
Methods We analyzed samples from the GENDYS cohort for mutations in CACNA1B gene, using targeted next-generation
sequencing (NGS).
Results The GENDYS cohort consists of 120 people with adult-onset IFD (cervical dystonia 47.5%, blepharospasm 47.2%,
others 8.3%). Of these, 35% had subsequent topographical extension. Average age at onset was 42 and average disease durations
8 years. Targeted NGS revealed a novel frameshift mutation c.2291AGG >A, in exon 19, and a previously reported variant,
c.6834T >G, in exon 47.
Conclusion Our findings suggest that disease-causing mutations in CACNA1B gene may be involved in the development of
some adult-onset IFD. To our knowledge, this is the first study that identified a disease-causing CACNA1B gene mutation in
association with adult-onset IFD.
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Introduction

Isolated dystonia is a heterogeneous group of under-
diagnosed movement disorders [1]. The main clinical findings

are the dystonic movements and postures, defined by
“sustained or intermittent muscle contractions causing abnor-
mal, often repetitive, movements, postures, or both” [1, 2].
Depending on the body distribution, isolated dystonia is clas-
sifiable as focal, segmental, multifocal, generalized, and uni-
lateral [2]. In those with adult-onset, the most common form is
isolated focal dystonia (IFD), torticollis, and blepharospasm
being the typical phenotypes, sometimes with subsequent pro-
gression to other regions [1].

Since the discovery that mutations in the TOR1A gene (i.e.,
DYT1) are responsible for most of the early-onset isolated
dystonia cases, a growing number of genes linked to
Mendelian forms of dystonia have been identified [3]. The
etiopathogenesis of adult-onset dystonia is known to a lesser
degree, both genetic predisposition and environmental factors
probably playing a role [2, 3].

To date, a total of 26 loci symbolized as DYTs (i.e., DYT1
to DYT25) are known to be involved in dystonia syndromes
[4]. Of these, three causative genes have been extensively
validated in different populations, namely TOR1A (DYT1),
THAP1 (DYT6), and GNAL (DYT25) [1, 4]. Other genes
found to be associated with isolated or combined dystonia
include ANO3 (DYT24), TUBB4A (DYT4), GCH1
(DYT5a), TH (DYT5b), TAF1 (DYT3), PRKRA (DYT16),
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ATP1A3 (DYT12), SGCE (DYT11), KCTD17, and
CACNA1A [4–8].

The CACNA1B gene (chromosome 9, q34.3) codes for the
pore-forming α1B subunit of the CaV2.2 N-type voltage-gat-
ed calcium channels, which are essential for neurotransmitter
release from cerebral neurons [6, 9, 10]. Common variants in
CACNA1B were linked to the risk of cerebral infarction [9],
bipolar disorders [10], and schizophrenia [10, 11]. Recently,
CACNA1B mutations were also found in association to a
particular myoclonus-dystonia syndrome [12] and progressive
epilepsy-dyskinesia [13]. The former association was not rep-
licated in a large European cohort, but the study focused only
on the previously reported R1389H variant, the CACNA1B
gene not being extensively screened [14]. Targeted next-
generation sequencing (NGS) can help identify and investi-
gate genes with a great number of exons, such as CACNA1B.
Considering its putative role in some primary dystonia syn-
dromes, we screened the CACNA1B gene for disease-causing
variants using targeted NGS Ion Torrent PGM in a large co-
hort of patients with adult-onset IFD. To our knowledge, this
is the first study that used targeted NGS to identify potentially
predisposing variants in CACNA1B gene.

Methods

The research was conducted in accordance with the Helsinki
declaration, with approval from the Research Ethics
Committee at Colentina Clinical Hospital (Bucharest,
Romania), as part of a more extensive project on the genetics
of adult-onset IFD (i.e., GENDYS-UEFISCDI, PN-III-P4-ID-
PCE-2016-0696). All patients signed a dedicated written in-
formed consent prior to enrolment.

Patients and DNA extraction

The present work is based on the GENDYS cohort that con-
sists of 120 people with adult-onset IFD (36 males and 84
females), with or without subsequent topographical extension.
Of these, most have torticollis and other cervical dystonia
syndromes (i.e., 47.5%) and blepharospasm (47.2%)—for fur-
ther details, please see Table 1. The cohort was recruited from
patients diagnosed and treated at Colentina Clinical Hospital,
based on predefined inclusion and exclusion criteria. The IFD
diagnosis was made by a senior neurologist with international
expertise in the field, in agreement with current guidelines and
consensus [1, 2, 15]. In order to minimize ethnicity-related
genetic findings, only patients affirming Romanian descent
were included.

Oral mucosa swabs were collected from all patients en-
rolled in the GENDYS cohort. Genomic deoxyribonucleic
acid (DNA) was extracted from the oral mucosa cells using
the PureLink Genomic DNA kit according to the protocol of

the manufacturer. Prior to analysis, the genomic DNA con-
centration was quantified by Qubit dsDNA BR Assay kit, and
the DNA integrity was checked by agarose gel.

Library preparation, emulsion PCR, and sequencing

The primers for target region comprising all coding exons,
intron-exon boundaries flanking sequences (padding + 10 base
pairs), and untranslated regions (UTR) of CACNA1B gene were
automatically generated by Ion AmpliSeq designer software.
Library preparation was performed using the Ion AmpliSeq
Library kit 2.0 (Thermo Fisher Scientific Inc. TM, Waltham,
USA) according to the manufacturer’s procedures. Ten nano-
grams of gDNA was used for library preparation. DNA was
amplified with 21 amplification cycles using primers and
AmpliSeq HiFi mix.

Following polymerase chain reaction (PCR) amplicon diges-
tion with FuPa reagent, the libraries were indexed using the Ion
Xpress Barcode Adapter 1-16 Kit. The libraries were then puri-
fied using the Agencourt AMPure XP Reagent (Beckman
Coulter Genomics, Danvers, MA, USA). The concentration of
the final libraries was quantified by fluorescent measurement on
Qubit 2.0 instrument using the QubitTM dsDNA HS Assay Kit
(Life Technologies, CA, USA). After quantification, the
amplicon libraries were diluted to 100 pM.

A maximum of 16 amplicon libraries were pooled for
emulsion PCR (ePCR) on an Ion OneTouch2 System using
the Ion PGM HI-Q View OT2 Kit. Following ePCR, template
positive ion sphere particles (ISP) were enriched using the Ion
OneTouch ES (Thermo Fisher). Sequencing of the template
positive ion sphere particles was performed on the Ion PGM
with Ion 318v2 BC Chip and the Ion PGM Hi-Q View
Sequencing kit (Life Technologies, CA, USA) using 500
flows.

Sequence variants were confirmed by resequencing the se-
lected samples using targeted NGS.

Bioinformatics analysis

Raw sequence data analysis was performed using Torrent
Suite Software v.5.6 (Life Technologies), to generate good
quality reads by base calling, trimming adapter and primer
sequences, and filtering out low-quality reads. The reads were
demultiplexed according to the barcode sequence.

The ion torrent sequence data were than aligned and
mapped to the hg19/GRCh37 human reference genome using
the Torrent Mapping Alignment Program using the default
parameters. The generated BAM files with aligned reads were
processed using Variant Caller plugin included in the Torrent
Suite Variant Caller TVC program.

Called variants aligned to the reference genome were visu-
alized using Tablet (James Hutton Institute, Scotland, UK)
[16] to view the rescaled binary alignment map (BAM) files
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in order to confirm the variant calls and check the discordant
results. Following variant calling, the variants in Variant
Calling Format file were annotated with ANNOVAR. The
scripts included in ANNOVAR allowed to include in the anal-
ysis multiple public genomic database such as ClinVar,
dbSNP, Exome Variant Server (esp6500), Exome
Aggregation Consort (ExAC), and 1000 Genomes Project.

We compared all detected variants using human gene mu-
tation database (HGMD) and predicted the effect of identified
variants on the protein function by three in silico prediction
software PolyPhen-2 [17], Mutation Taster [18], and SIFT
[19].

Results

We analyzed samples from 120 adult-onset IFD patients for
mutations in CACNA1B gene, using targeted NGS. Amplicons

ranged from 120 to 310 pb, with a mean amplicon length of
237 pb and at least 110-fold depth covering 100% of the bases
of the targeted gene. The sequence analysis by NGS revealed a
novel frameshift mutation c.2291AGG>A (Fig. 1), in exon 19,
and a previously reported variant, c.6834T >G (Fig. 2), in exon
47. The mutation/variants are named according to the nomencla-
ture of Human Genome Variation Society. Segregation analyses
were not performed for the mutation because paternal DNA was
unavailable for testing. The mutation was not found in 120 un-
related control individuals from the same ethnic origin.

For predicting the impact of the novel frameshift mutation, we
used three in silico programs: PolyPhene-2, SIFT, and Mutation
Taster PolyPhene 2, damaging; SIFT, damaging; Mutation
Taster, disease causing. The novel mutation was not reported in
the control databases gnomAD, 1000 Genomes, and Exome
Variant Server or in any other single-nucleotide polymorphism
database. The online software tools predict that c.6834T >G
causes the deleterious leucine acid to arginine substitution at

Table 1 Demographic and phenotypic characteristics of the GENDYS IFD cohort

Characteristics/phenotypes Cervical dystonia Blepharospasm Other IFD All IFD

Total number (%) 57 (47.5%) 53 (47.2%) 10 (8.3%) 120

Male (%) 38 (66.7%) 41 (77.4%) 5 (50%) 36 (30%)

Female (%) 19 (33.3%) 12 (22.6%) 5 (50%) 84 (70%)

Average age at onset (years) 42 53 34 46

Disease duration (years) 8 8 8 8

Number with progression to other regions 5 (8.8%) 26 (49.1%) 4 (40%) 35 (29.2%)

Fig. 1 CACNA1B sequencing reads viewed using Tablet software showing the c.2291AGG >A mutation
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position 2215, pLeu2215Arg (PolyPhene 2, unknown; SIFT,
tolerated; Mutation Taster, disease causing) in one of two iso-
forms of CACNA1B. The c.6834T >G variant is predicted as
“disease causing” by Mutation Taster, but it can be classified as
likely benign, considering that allele frequency is greater than
that expected for a disorder. The two variants/mutation were
found recurrently; thus, c.6834T > G pLeu2215Arg
(rs2278973) was detected in 38 (31.7%) of our 120 IFD patients
in homozygous and heterozygous state, and the novel
c.2291AGG>A frameshift mutation was present in 6 (5%) un-
related cases in heterozygous state.

Discussion

TheCACNA1Bgene codes for theN-type neuronal voltage-gated
calcium channels CaV2.2, which may play a role in the develop-
ment of some movement disorders, including IFD. Prior to our
study, genetic analysis of the CACNA1B gene in patients with
movement disorder was performed in a limited number of studies,
by methods not suited for wide gene screening. Mutations were
found only in patients with myoclonus-dystonia, a rare form of
combined dystonia [3, 12]. The targeted NGS approach allowed
us to quickly screen for disease-causing variants of CACNA1B
gene in a cohort of 120 patients with adult-onset IFD. We identi-
fied a novel frameshift mutation (i.e., c.2291AGG>A) that may
have damaging effects on the CaV2.2 N-type voltage-gated calci-
um channels. To our knowledge, this is the first study that

identifies a disease-causing mutation with loss of function effect
in the CACNA1B gene association with adult-onset IFD.

Conclusion

Considering the lack of this mutation in the control group and the
putative pathogenicity estimated by the in silico prediction tools,
our results support a causal association between c.2291AGG>A
variant and IFD. The effect of this frameshift mutation should be
further analyzed by functional studies.
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