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Assessing the influence of climate on wintertime
SARS-CoV-2 outbreaks
Rachel E. Baker 1,2✉, Wenchang Yang 3, Gabriel A. Vecchi 1,3, C. Jessica E. Metcalf 2,4 &

Bryan T. Grenfell2,4,5

High susceptibility has limited the role of climate in the SARS-CoV-2 pandemic to date.

However, understanding a possible future effect of climate, as susceptibility declines and the

northern-hemisphere winter approaches, is an important open question. Here we use an

epidemiological model, constrained by observations, to assess the sensitivity of future SARS-

CoV-2 disease trajectories to local climate conditions. We find this sensitivity depends on

both the susceptibility of the population and the efficacy of non-pharmaceutical interventions

(NPIs) in reducing transmission. Assuming high susceptibility, more stringent NPIs may be

required to minimize outbreak risk in the winter months. Our results suggest that the

strength of NPIs remain the greatest determinant of future pre-vaccination outbreak size.

While we find a small role for meteorological forecasts in projecting outbreak severity,

reducing uncertainty in epidemiological parameters will likely have a more substantial impact

on generating accurate predictions.
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The SARS-CoV-2 virus has spread across all geographic
regions irrespective of local climate. Cases have continued
to climb in both hot, humid conditions, such as the

southern United States in summer and India during the south-
west monsoon, and cold, dry conditions such as Wuhan province
in China in the winter. High susceptibility has likely limited the
role of climate in the early pandemic such that the signature of
seasonality is not yet visible1. However, as susceptibility starts to
decline, particularly in regions with high numbers of cases, the
extent to which the climate may determine the future pandemic
trajectory remains unclear.

Many directly transmitted infectious diseases display seasonal
cycles of incidence2. For several viral infections, including var-
icella, influenza, and respiratory syncytial virus (RSV), these
cycles have been shown to be dependent on climate3–7 (along
with seasonal population aggregation such as school terms).
Specific humidity, in particular, has been shown to be important
for influenza and RSV transmission3,4,7, with low specific
humidity correlated with increased virus survival for influenza.
Evidence suggests that humidity may also play a role in deter-
mining airborne droplet size and hence residence time in the air8.
Endemic coronaviruses have also demonstrated sensitivity to the
climate in both laboratory studies9 and at the population level1,10.
While the novel coronavirus, SARS-CoV-2, also appears to be
sensitive to the climate in laboratory settings11,12, case data have
yet to reveal a clear environmentally driven trend13.

In a recent study, we used an epidemiological model to explore
the subtleties of pandemic seasonality1. We showed that the cli-
mate plays a secondary role compared to high susceptibility in
determining early pandemic trajectories, yet we identified
potential climate impacts as susceptibility waned. Thus, a more
detailed investigation of possible wintertime effects is important,
especially given the major, locally variable impacts of non-
pharmaceutical interventions (NPIs). Here we consider how cli-
mate conditions in the coming months, and pre- any major roll
out of vaccines, may influence the future trajectory of the pan-
demic as susceptibility declines.

We probe the possible effect of climate while varying two
factors: the level of depletion of susceptibles and the relative
efficacy of NPIs in reducing transmission. Building on our prior
work1, we use a climate-driven Susceptible-Infected-Recovered-
Susceptible (SIRS) model to simulate the disease dynamics under
these different scenarios and across different climates. The model
is based on the estimated climate sensitivity of endemic beta-
coronavirus HKU1 (results for betacoronavirus OC43 are shown
in Supplementary Figs. 6 and 7). This betacoronavirus was found
to be more sensitive to climate in our recent work and so our
simulations reveal the upper bound on a possible climate effect.

A key question is the extent to which the upcoming northern
hemisphere winter climate may exacerbate future cases numbers.
To address this, we first consider possible case trajectories for
New York City (results for select other northern hemisphere
locations are shown in Supplementary Figs. 1–3).

Results
Wintertime outbreaks in the northern hemisphere. In Fig. 1a
we use case data (see “Methods”) to estimate the effective
reproductive number of infection for New York City from the
start of 2020 to the present (July 2020)14. Estimated values of
Reffective peak early in the outbreak and then settle close to 1 in the
summer months as NPIs act to lower transmission. We assume
the Reffective values approximate R0 and compare them to the
predicted seasonal R0, derived from our climate-driven SIRS
model. The model assumes the climate sensitivity of betacor-
onavirus HKU1 and that seasonal variations in transmission are

driven by specific humidity. Current rates (average over second
and third weeks of July) of Reffective in New York city are found to
be approximately 35% below the R0 levels predicted by our
climate-driven model. We assume this 35% decline is due to the
efficacy of NPIs. To project future scenarios we assume that R0
remains at either the current levels (constant) or a relative 35%
decrease in our climate-driven R0, which means R0 oscillates with
specific humidity (Fig. 1a, top plot).

In Fig. 1a (lower plots) we show the proportion infected over
time using the climate-driven and constant R0 values. We also
vary the reporting rate of observed cases relative to modeled
cases; while this accounts for under-reporting it also allows us to
vary the proportion susceptible over a feasible range (see
“Methods”). In the middle figure, the reporting rate is 10%
(estimates for US reporting rates are <10%15), which implies a
relatively small reduction in susceptibility based on case data pre-
July. In this case, a small boost to transmission, driven by low
specific humidity in the winter months, results in a relatively large
secondary outbreak in the climate scenario. In the constant
scenario, R0 stays below 1 and there is no outbreak in the winter
months. We also consider a scenario where the reporting rate is
3% (Fig. 1a, lower plot). In this case the lower reporting rate
means more cases (relative to the observed case counts) and a
greater reduction in susceptibility. This results in a smaller
wintertime outbreak in the climate scenario.

In Fig. 1b we consider a scenario where NPI measures are
relaxed further such that R0 is reduced 15% below non-control
values as of the last week in July. In this case R0 > 1 for both the
climate and constant scenario and case numbers begin to grow
exponentially. With a 10% reporting rate a large secondary
outbreak is observed in both the constant and climate scenarios
(Fig. 1b, middle plot). With a 3% reporting rate, meaning a larger
depletion of susceptibles, the secondary outbreak appears much
larger in the climate scenario: this supports the hypothesis that
the disease will become more sensitive to climate as the
susceptible proportion declines, much like the seasonal endemic
diseases.

In Fig. 1c–h we simulate model outcomes across a broad range
of parameter space varying the proportion susceptible (in July)
and the reduction in R0 due to NPIs. The proportion susceptible
is varied by initializing the epidemic with different sizes of the
infected population (initializing with a large number results in a
relatively larger outbreak and initializing with a small number
results in a smaller outbreak). We vary this starting number over
a feasible range given the case data, i.e., such that observed cases
never exceed modeled cases or that the reporting rate never drops
below 1%. Over this range, the model plausibly tracks the
observed case data.

Figure 1e shows the change in winter peak size (max
proportion infected between September–March) due to climate.
Peak size results for the constant and climate scenarios are
shown in Fig. 1c and d, respectively. When the susceptible
proportion is high and the effect of NPIs are minimal (relative
R0 given NPI= 1), large outbreaks are possible in both the
climate and constant R0 scenarios meaning the relative effect of
climate on peak size and timing is close to 0 (top right Fig. 1e).
As the proportion susceptible declines (moving left along the x-
axis of Fig. 1e), case trajectories become more sensitive to the
wintertime weather resulting in larger peaks in the climate
scenario. However, sufficiently strong NPIs, in combination
with low susceptibility, reduce incidence to zero in both the
climate and control scenarios (bottom left Fig. 1e). NPIs are not
as effective at reducing cases when susceptibility is higher
(bottom right Fig. 1e).

We also consider the effect of climate on secondary peak
timing. Figure 1f, g shows the peak timing in years (relative to
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July 2020) in the constant and climate scenarios, respectively. In
the climate scenario, peak timing for New York is clustered in the
winter months (Fig. 1a, b). In the constant R0 scenario, secondary
peaks can occur at a wide range of times over the next 1.5 years.
As in the peak size results, high susceptibility and limited NPIs
reduce the effect of climate and peak timing is matched for both
the climate and control scenarios (top right Fig. 1h). Gray areas
represent regions where there is no secondary peak in either the
climate or control scenario.

Climate effects on global risk. We next consider the relative
effect of climate on peak size for nine global locations (Fig. 2b).
In this case, as opposed to using estimated Reffective values
(given case data are not available for several of the global cities),
we simulate the epidemic from July 2020 using a fixed number
of infecteds and vary the starting proportion of susceptibles

(example results from select global locations, using estimated
Reffective, are shown in Supplementary Figs. 1–3). Results from
the New York surface in Fig. 2b qualitatively match our tailored
simulation in Fig. 1. Locations in the southern hemisphere are
expected to be close to their maximum wintertime R0 values in
mid-2020 (Fig. 2a), meaning that secondary peaks in the cli-
mate scenario are lower than the constant R0 scenario for these
locations (Fig. 2b). Tropical locations experience minimal dif-
ference in the climate versus constant R0 scenario given the
relatively mild seasonal variations in specific humidity in the
tropics. Broadly, the results across hemisphere track the earlier
results from New York: high susceptibility and a lack of NPIs
lead to a limited role of climate, but an increase in NPI efficacy
or a reduction in susceptibility may increase climate effects.
This result is more striking in regions with a large seasonality in
specific humidity (e.g. New York, Delhi and Johannesburg).

Fig. 1 Wintertime outbreaks in New York City. Estimated and projected R0 values (top plot) assuming a 35% and b 15% reduction in R0 due to NPIs.
Corresponding time series show the simulated outbreaks in the climate (blue) or constant (black/dashed) scenarios, with middle row plots assuming
a 10% reporting rate and bottom row plots assuming a 3% reporting rate. Corresponding susceptible time series are shown in orange (susceptibles=
S/population= N). Case data from New York City are shown in gray. Surface plots (top) show the peak wintertime proportion infected (infected=
I/population= N) in the scenarios with c the constant R0 and d the climate-driven R0. e shows the difference between the climate and constant
R0 scenario. The timing of peak incidence in years from July is shown for the f constant and g climate scenarios. The difference between climate and
constant scenario is shown in h. Points in c–h show the scenarios is a, b. Dashed line shows estimated susceptibility in New York based on ref. 24.
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Drivers of variability in secondary outbreak size. Our results
suggest that climate may play an increasing role in determining
the future course of the SARS-CoV-2 pandemic, depending on
levels of susceptibility and NPIs. We next evaluate the extent to
which interannual variability in specific humidity could influence
peak size. We simulate separate New York pandemic trajectories
using 11 years (2008–2018) of specific humidity data. Figure 3a
shows the variability in R0 and secondary peak size based on these
runs (with 35% reduction in R0 due to NPIs and 10% reporting
rate—the same as Fig. 1a). While a relatively large peak occurs in
all years, the largest peak (0.038 proportion infected) is almost
double the smallest peak year (0.020 proportion infected). In
Fig. 3b we calculate the coefficient of variation of the peak size for
different susceptible proportions and NPI intensities. These
results qualitatively track Fig. 1e. Sensitivity to interannual var-
iation appears most important when the susceptible population
has been reduced by at least 20% and minimal controls are in
place.

Many factors, including weather variability, determine the size
of a possible secondary outbreak. Another factor that may play an
important role is the length of immunity to the disease. While the
length of immunity may not affect the dynamics in the early stage
of the pandemic, it could have complex and uncertain outcomes
for future trajectories16. In our main results, we assume a length
of immunity equal to betacoronvirus HKU1, based on prior
estimates1. We also assume a climate sensitivity based on
estimates for HKU1. However parameters for SARS-CoV-2, such
as immunity length and climate sensitivity, are still fundamentally
uncertain.

We consider the possible contribution of uncertainty in
parameters to the variance in the wintertime peak size following
the method developed by Yip et al.17 (see “Methods”). We run
our simulation for New York while varying parameter values for
the efficacy of NPIs, the length of immunity to the disease, the
reporting rate of prior cases (which defines susceptibility in July),

the climate sensitivity of the pathogen (in terms of the strength of
the relationship with specific humidity), and the weather
variability (interannual variability determined by historic weather
observations from a particular year, 2009–2018). We then
perform an analysis of variance (ANOVA) on the determinants
of wintertime peak size.

Figure 4 shows contribution to variance in wintertime peak size
of these five parameters: NPIs efficacy, immunity length,
reporting rate, climate sensitivity of the virus, and interannual
weather variability. We find that climate sensitivity is an
important factor but secondary to the efficacy of NPIs and
immunity length in determining peak transmission. Uncertainty
in immunity length and reporting together influence suscept-
ibility and collectively account for the second largest portion of
total uncertainty. Uncertainty in interannual variability, i.e.
weather, has a smaller impact on peak size. NPIs contribute the
largest proportion to total variance in peak size. It is important to
note that while other parameters are external features of either the
virus, climate, or disease trajectories to date, the efficacy of NPIs
is determined directly by policy interventions and therefore the
size of future outbreaks is largely under human control.

Discussion
Our results suggest that NPIs remain the primary determinant of
future SARS-CoV-2 outbreak size. However, in a highly suscep-
tible population, with NPIs in place that keep R0 just below 1, a
small boost to transmission due to wintertime climate conditions
could be sufficient to drive a large outbreak. In this case, more
stringent NPIs may be required in winter months to limit such an
outbreak. In all cases, if susceptibility is high, and NPI measures
are reduced, large outbreaks will occur no matter the climate
conditions.

There are several caveats to our results. First, the precise
mechanism by which climate modulates seasonal transmission

Fig. 2 Climate sensitivity of outbreaks across global locations. a The climate effect on R0 assuming a 35% reduction due to NPIs shown for August and
December. b The effect of climate, changing susceptibility, and NPIs on peak proportion infected (infected= I/population= N), post July 2020, for nine
global locations.
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rates for viruses is currently unknown. While virus survival and
changes to the immune system are expected to fluctuate with the
weather, changes to human behavior, such as grouping indoors
during cold weather, may partly determine the seasonal effect.
Given the broad societal disruptions of the COVID-19 pandemic,
these latter behaviors are likely to be reduced, such that total
climate-driven fluctuations to transmission may be modified.
Further, additional seasonal behaviors that may have also driven
transmission, such as population aggregation through schooling,
will also be reduced by NPIs.

Second, we do not directly estimate the climate sensitivity of
SARS-CoV-2. Studies exploring this relationship using case data
have yet to find a definitive result; however, there is growing
consensus that the virus is moderately affected by cold, dry
conditions12,13. Instead our model relies on estimates of the
climate-sensitivity of another betacoronavirus, HKU1. HKU1 was
the most sensitive out of the two betacoroanviruses explored in
our earlier work1, so our results likely present the upper bound of
a possible climate influence. Simulations using the less climate-
sensitive coronavirus, OC43, suggest a smaller effect of climate on
wintertime peak size (Supplementary Fig. 6). In the OC43 sce-
nario, R0 remains high throughout the year with less of a decline
in the summer months. This means the measured NPI efficacy is

greater in the OC43 scenario: NPIs reduce R0 by 55% below what
it would have been in the summer months to reach R0≃ 1, as
opposed to the 35% reduction in the HKU1 scenario. In Sup-
plementary Fig. 7 we run simulations using OC43 parameters
over this larger range of NPI efficacy (0–55%) and recover a
qualitatively similar pattern to our HKU1 results, although with a
reduced maximum climate effect (ΔI/N= 2% as opposed to 5%
for HKU1).

Third, evidence from other respiratory viral pathogens implies
that tropical locations may experience distinct climate drivers and
dynamics of infection7,18,19. Given our model is parameterized by
fitting to US data, we may not have captured the full suite of
possible climate drivers in these locations. While data from tro-
pical climates are limited, evidence from Malaysia suggests per-
sistent year-round infections for the endemic
betacoronaviruses20, a feature our model is able to capture
(Supplementary Fig. 9). However, possible secondary climate
drivers will not be accounted for the model and could bias our
results for tropical locations. We also note the US betacoronavirus
data are at a course spatial resolution with a short time horizon,
limiting our ability to identify the signal of interannual specific
humidity variability on cases. A high correlation in the season-
ality of specific humidity and temperature (Supplementary
Fig. 10) limits our ability to separately identify the effect of these
two variables. Fitting our model to temperature data would like
give similar results.

Our results imply that meteorological and climate forecasts
could be helpful in predicting future outbreak size (Supplemen-
tary Fig. 5). However, this information will likely be secondary to
epidemiological monitoring such as estimates of the efficacy of
active control measures in reducing transmission and serological
surveys to determine susceptibility21. Titrating the impact of
ongoing and future vaccination programs on susceptibility, and
hence climate, will be important in the coming months. Current
data from serological surveys suggest a minimal reduction in
susceptibility in many locations22, with New York City towards
the upper bound in terms of total reduction in susceptibility23,24.
For many other locations, susceptibility may be much closer to 1,
meaning the efficacy of NPIs will be a key determinant of winter
outbreak size. While our model assumes a constant reduction in
R0 due to NPIs, in reality policy makers likely adapt to rising case
numbers by enforcing stricter measures. For instance, we

Fig. 4 Contribution to uncertainty in New York wintertime 20/21 peak
size. The relative importance of NPI efficacy [0–35%], immunity length
(10–60 weeks), reporting (1–100%), climate sensitivity of the virus [−32.5
to −227.5], and interannual weather variability [10 years] in determining
wintertime peak size. Immunity length and reporting rate collectively
determine susceptibility, S.

Fig. 3 Climate variability and wintertime cases in New York. a Climate-driven R0 and corresponding infected time series (infected= I/population= N)
based on the last 10 years of specific humidity data for New York, assuming a 35% reduction due to NPIs. b The effect of changing susceptibility and NPIs
on the coefficient of variation of peak incidence for simulations using specific humidity data from 2008 to 2018. Dashed line shows estimated susceptibility
in New York based on ref. 24.
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estimated an R0 > 1 in Victoria, Australia in July and projected a
much larger outbreak than has been observed to date (Supple-
mentary Fig. 4). A second lockdown, enacted in Australia in
August, substantially curbed this outbreak. Our results therefore
suggest that more stringent NPIs may be required during the
winter months to minimize total risk.

Methods
Data. Global COVID19 case data come from the Johns Hopkins coronavirus
resource center (https://github.com/datasets/covid-19, country-level data)25.
County-level coronavirus cases data, including estimates for New York city, come
from the New York Times (https://raw.githubusercontent.com/nytimes/covid-19-
data/master/us-counties.csv, US county-level data). Specific humidity data come
from ERA5 (ref. 26). The shapefile used for map outlines in Fig. 2a comes from
thematicmapping.org and is available under Creative Commons Attribution-Share
Alike License 3.0.

R0 estimates. We use the EpiEstim package in the R programming language to
estimate Reffective from coronavirus cases data assuming an uncertain serial interval
with a mean of 4.7 days and a standard deviation of 2.9 days. We calculate Reffective
estimates from the first date in 2020 where case numbers are greater than zero for a
particular location. Reffective is estimated until 21 July 2020 (the date we first
accessed the data). After 21 July 2020 we use an R0 value modulated by climate and
NPI efficacy. The climate-driven R0 values are based on the climate-driven SIRS
model1. Specifically, climate-driven values of R0 are given by

R0ðtÞ ¼ expða � qðtÞ þ logðR0max � R0 minÞÞ þ R0min ð1Þ

where R0max and R0min are the maximum and minimum reproductive numbers,
respectively, set at 2.5 and 1.5 (refs. 1,27). Most estimates of R0 for SARS-CoV-2 lie
in the range of 2–3 (refs. 28–30), though some studies have estimated an R0 as high
as 6.49 and as low as 1.44 (ref. 28). We set R0max= 2.5 as a conservative upper
bound. In prior work we set R0min= 1.5 to reflect the 40% reduction in trans-
mission observed due to climate in studies of other viruses1,27. We find this value
matches lower bound estimates of R0 (ref. 28); however, the strength of the climate
effect for SARS-CoV-2 remains uncertain. Results using a higher R0max are shown
in Supplementary Fig. 8.

q(t) is specific humidity and a is the climate dependence parameter (set at
−227.5) based on model fits for the HKU1 betacoronavirus1. We test sensitivity of
our results to different values of parameter a in Fig. 4 and Supplementary Figs. 6
and 7. Importantly, the short time series available on the endemic coronaviruses
and course spatial resolution of the data limits our ability to identify the effect of
interannual variation in specific humidity on interannual variation in cases. We fit
our model to the mean seasonality in specific humidity which follows a sinusoidal
pattern tightly correlated with temperature (Supplementary Fig. 10). Fitting to
temperature would likely give similar results (though with scaled values of a).
Other climate variables seasonally correlated with specific humidity, such as
patterns of ultraviolet radiation, may have a similar effect. However, we retain
specific humidity as a driving variable due to prior understanding of its role in
respiratory pathogen transmission3,4,7.

We define the NPI efficacy as a percentage reduction in R0 below the levels
predicted by Eq. (1). For example, in New York in July we estimate an average R0 of
1.04. In comparison Eq. (1) predicts an R0 of 1.61 for this time period. Therefore,
we assume NPIs have 1− 1.04/1.61= 35% efficacy. In the climate scenario we
project R0 forward at a 35% reduction of the calculated value of Eq. (1). In the
constant scenario, we assume R0 remains constant at 1.04. We repeat this exercise
while varying percentage reduction, i.e., NPI efficacy, in Fig. 1c–h.

SIRS model. Our R0 estimates are incorporated into an SIRS model where R0(t)=
β(t)D. D is the mean infectious period (set at 5 days) and β(t) is the contact rate.
The SIRS model is directly dependent on β(t) and is given by

dS
dT

¼ N � S� I
L

� βðtÞIS
N

ð2Þ

dI
dT

¼ βðtÞIS
N

� I
D

ð3Þ

where S is the number of susceptibles, I is the number of infecteds, and N is the
population size. N= S+ I+ R, where R is the number of individuals in the
recovered category.

We initialize the model on the first day cases are observed. In order to capture
different possible trajectories, we initialize varying the proportion infected on the
first day. Over a finite range, models initialized with different infected proportions
are able to track observed cases to a scaling constant, i.e., the reporting rate (Fig. 1a,
b). We tune the range of starting proportion infected such that the reporting rate
stays between 1 and 100%, though results for specific trajectories are shown for 3
and 10% in Fig. 1a, b, reflecting prior estimates on reporting rates15.

Uncertainty decomposition. We run our model for New York using ten discrete
values of non-pharmaceutical intervention, immunity length, reporting rate
(determined by the initial proportion infected), climate sensitivity, and weather
variability (determined by using historic weather observations from 2009 to 2018):
a total of 10,000 model runs. For each model run, we record the wintertime peak
size. We then use ANOVA on a fixed effect regression model where the dependent
variable is wintertime peak size and the fixed effects are the factorial contribution
of each parameter. The total sum of squares is calculated for each parameter across
factors. A similar approach has been used to decompose uncertainty in climate
model projections17. Using fixed effects allows us to recover some of the non-
linearity in possible parameter dependence.

To create Fig. 4, we divide the sum of squares attributable to each parameter by
the total explained sum of squares. Parameters were varied over a plausible range,
i.e., NPI efficacy [0–35%], immunity length [10–60 weeks], reporting (1–100%),
climate sensitivity (OC43 climate sensitivity of −32.5 to HKU1 climate sensitivity
of −227.5 (ref. 1)) and weather variability (based on 2009–2018 weather). However,
it is important to note that expanding the range of a particular parameter would
likely increase the importance of its predicted effect. As such, this method only
provides a proxy for considering possible contributions to uncertainty.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Coronavirus case data, for estimating Reffective, were downloaded from the New York
Times (https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv,
US county-level data) and Johns Hopkins coronavirus resource center (https://github.
com/datasets/covid-19, John Hopkins, country-level data)25. Specific humidity come from
ERA5 [https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5]26.

Code availability
Code for recreating the main results is available via github at https://zenodo.org/record/
4323552 (ref. 31).
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