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SARS-CoV-2, which causes COVID-19, was first identified in humans in late 2019 and is a coronavirus
which is zoonotic in origin. As it spread around the world there has been an unprecedented effort in
developing effective vaccines. Computational methods can be used to speed up the long and costly pro-
cess of vaccine development. Antigen selection, epitope prediction, and toxicity and allergenicity predic-
tion are areas in which computational tools have already been applied as part of reverse vaccinology for
SARS-CoV-2 vaccine development. However, there is potential for computational methods to assist fur-
ther. We review approaches which have been used and highlight additional bioinformatic approaches
and PK modelling as in silico methods which may be useful for SARS-CoV-2 vaccine design but remain
currently unexplored. As more novel viruses with pandemic potential are expected to arise in future,
these techniques are not limited to application to SARS-CoV-2 but also useful to rapidly respond to novel
emerging viruses.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
which causes Coronavirus disease 2019 (COVID-19), was first iden-
tified in Wuhan in December 2019 and by December 2020 had
spread to 191 Countries or Regions and infected over 75 million
people, causing more than 1.5 million deaths [1]. Effects of SARS-
CoV-2 infection in patients with COVID-19 can range from asymp-
tomatic to life-threatening [2], with most symptomatic patients
having moderate symptoms.

This pandemic has impacted wider society around the world,
leading to restrictions on travel and severely disrupting global
economies and many health services. In the absence of effective
treatments to prevent the development of acute respiratory dis-
tress syndrome (ARDS) in COVID-19 patients, a vaccine is the
fastest and most promising way to stop the spread of SARS-
CoV-2 and bring the pandemic under control. Like Severe Acute
Respiratory Syndrome (SARS-CoV) and Middle East Respiratory
Syndrome coronavirus (MERS-CoV), SARS-CoV-2 is a coronavirus
with a zoonotic origin, and it is likely that further zoonotic
viruses with pandemic potential will emerge, making additional
crises of this kind probable in the future [3]. To respond effec-
tively to novel emerging infectious diseases, it is necessary to
refine and establish technologies that can develop effective, safe
vaccines, rapidly.

Vaccines provide adaptive immunity to disease and are a form
of preventative medicine. Generally, vaccines are made of an atten-
uated (live, but weakened) or inactivated (killed with heat or
chemicals) pathogen, or a specific subcomponent or subcompo-
nents of the pathogen which are antigenic (subunit and conjugate
vaccines). The first vaccine, verified by Edward Jenner, was the use
of cowpox to prevent smallpox infection [4]. Vaccines have
improved since Jenner’s day in step with new scientific discoveries
and the technology used to develop them. For instance, Goodpas-
ture’s invention of methods to propagate viruses in chicken eggs,
led to mass production of vaccines including for typhus [5,6]. More
recently, use of recombinant DNA technology led to the subunit
vaccine for hepatitis B [7]. The ability to engineer synthetic RNA
aided the current development of mRNA vaccine approaches [8].
mRNA vaccines encode an antigen of interest for translation in
the body where an immune response is generated against it. The
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first mRNA vaccines approved in history, BNT162b2 and mRNA-
1273, have been recently approved for SARS-CoV-2.

Reverse vaccinology is an application that aids the development
of new vaccines, initiated with pathogen genomic sequencing
[9,10]. It was first applied successfully to meningococcus B to pre-
dict alternative antigens to develop a vaccine [11,12]. After 4 dec-
ades of unsuccessful attempts with conventional vaccine design,
reverse vaccinology facilitated successful vaccine development
through overcoming the challenge of molecular mimicry between
the meningococci capsular polysaccharide and human protein
[13]. Reverse vaccinology can be used to select an antigen for a
novel vaccine which can generate an immune response through
epitope selection and screening vaccine candidates in silico, speed-
ing up the process of vaccine design and reducing its cost. An anti-
gen is a molecule capable of producing an immune response, while
an epitope is a site on an antigen which is recognised by the
immune system. There are two types of epitopes, B cell epitopes
and T cell epitopes. B cell epitopes are recognised by antibodies,
whereas T cell epitopes are recognised by T cell receptors. The full
SARS-CoV-2 genome was released in January 2020 allowing
reverse vaccinology approaches to be applied in the development
of a vaccine for SARS-CoV-2 as the virus was spreading around
the world.

Modern vaccine design aims to maximise efficacy while min-
imising potential serious adverse effects, such as inducing an aller-
gic reaction or toxic effects causing damage to the organism. To
this end, newer approaches have shifted away from early live-
attenuated and inactivated whole-pathogen vaccines, towards
purified antigens (subunits), as these come with improved safety
profile [14]. Funk et al. [15] in a snapshot of the global race for a
SARS-CoV-2 vaccine, report that ‘‘protein-based” (subunit) vacci-
nes represent the largest platform of development. However, sub-
unit vaccines lack sufficient immunostimulatory capabilities on
their own and are typically paired with adjuvants, which are com-
pounds or formulations capable of providing the inflammatory
cues needed to elicit the desired immune response [14].

Surprisingly, the knowledge that is currently available on vac-
cine absorption, distribution, metabolism, and excretion (ADME)
processes is very limited [16]. However, a few PBPK models of
adjuvants do exist in the literature and they may have relevance
to the COVID-19 vaccine development process.



Table 1
COVID-19 severity studies.

Study Omics Moderate Severe Cell types Data DEG analysis Ref

Overmyer et al. Bulk RNA-seq 51 55 PBMC Available EBSeq [35]
Jain et al. Bulk RNA-seq 10 3 PBMC Available DESeq2 [245]
Liu et al. scRNA-seq 3 6 PBMC NA NA [248]
Xu et al. scRNA-seq 5 8 PBMC Available Seurat [249]
Silvin et al. scRNA-seq 1 2 PBMC NA NA [250]
Arunachalam et al. Bulk RNA-seq 4 12 PBMC Available DESeq2 [251]
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In this review, we focus on computational techniques applied at
the very early stage of the vaccine development pipeline for SARS-
CoV-2. We explore computational approaches to antigen selection,
epitope prediction, adjuvant selection, toxicology and allergenicity
prediction and immune response modelling in the context of
COVID-19.

2. Antigen selection

2.1. SARS-CoV-2 proteins targeted

The SARS-CoV-2 is made up of four structural proteins E (en-
velope), M (membrane), N (nucleocapsid), and S (spike), and sev-
eral non-structural proteins (nsps) [17]. The S protein is an
attractive vaccination candidate because it is involved in viral
entry and elicited an immune response in the case of SARS-CoV
and MERS-CoV studies [18]. An early study searching for vaccine
candidates for SARS-CoV-2 used in silico methods to compare the
sequence of the N and S proteins of SARS-CoV-2 to B and T cell epi-
topes derived from SARS-CoV which have been experimentally
determined [18]. BNT162b2 [19], mRNA-1273 [20] and AZD1222
[21] are three recently approved vaccines for SARS-CoV-2, all of
which use the S protein. BNT162b2 and mRNA-1273 are mRNA
vaccines, both of which generate a prefusion-stabilised S protein
and AZD1222 is a replication-deficient viral vector vaccine which
uses a chimpanzee adenovirus as a vector with the S protein.

Most in silico epitope prediction studies also focused on the
spike protein, although several studies focused on multiple struc-
tural proteins [22–24]. One study focused exclusively on the E pro-
tein [25]. Ong et al. proposed a ’cocktail’ vaccine using both
structural and non-structural proteins [26].

2.2. Antigen prediction based on viral genomic sequences

Virus replication only happens within cells, so blocking viral
entry prevents the virus proliferating within the host. The S protein
of SARS-CoV-2 is the part of the virus that enables it to enter our
cells. If a person has antibodies that can recognise the S protein,
this stops the virus in its tracks. That is why most of the vaccine
candidates are focusing on the S protein as an antigen. The focus
on the S protein is logical, however mutations have already arisen
which affect the function of this protein [27]. If further such muta-
tions arise which affect vaccine efficacy, antigens based on other
viral proteins will be required. Since such an outcome isn’t unli-
kely, we need to identify alternative antigen candidates as a
backup to respond in a timely manner if such problematic muta-
tions arise. In addition to the S protein, other proteins, such as
the N protein, M protein, nsps, open-reading frames (ORFs) and
accessory factors, may have the potential to serve as antigens.

It is key to identify an antigen which can bind with the T or B
cell receptors which are recognised and can induce an immune
response. VaxiJen, a publicly available server for prediction of pro-
tective antigens, tumour antigens and subunit vaccines [28], is
based on properties of principal amino acids, which are generated
from protein sequences by autocross covariance transformation.
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VaxiJen predicts protective antigens without relying on sequences
of previously known antigens and has been used for this purpose
by several papers investigating SARS-CoV-2 [22,25,29]. Vaxign-
ML [30] is an analysis system based on reverse vaccinilogy which
predicts protective antigens for vaccine targets using the machine
learning (ML) algorithm extreme gradient boosting, trained on data
from Protogen, a database of protective antigens [31].
2.2.1. Antigen prediction based on cellular immune response
In searching for antigens beyond the S protein, alternative

approaches not solely based on the genomic sequence of the virus
could be considered. One such approach could be to search for
antigens related to cellular immune response. Cellular immune
response is activated for protection against pathogens which enter
and inhabit the host cells during infection, as viruses including
SARS-CoV-2 do. Although antigen properties which are important
for this type of immunity are not yet well characterized, it is an
area worth exploring for COVID-19 vaccine development [32].
Gene expression (transcriptomic) data from host and virus and
virus-host interaction data could be combined to build a virus
infection network to predict antigens based on their relation to
host cellular immune response. SARS-CoV-2 proteins and their
interactions with host factors were associated with imbalanced
host immune responses, such as elevated proinflammatory cyto-
kine levels [33]. Elevated proinflammatory cytokine levels can lead
to progression of severe COVID-19 [34].

To understand which SARS-CoV-2 proteins are associated with
imbalanced host immune responses, computational biology can
be used to identify genes coding proteins associated with COVID-
19 severity. Differential gene expression analysis using data from
COVID-19 patient and non-COVID-19 infected controls has shown
that neutrophil activation is significantly associated with COVID-
19 status and severity [35]. We investigated this further by per-
forming a meta-analysis on four transcriptomics datasets from
COVID-19 severity studies (Table 1) and created a protein interac-
tome network to test the hypothesis that other computational
approaches may be useful in identifying alternative antigens
(Fig. 1). We used EBSeq [37], an R package for gene and isoform dif-
ferential expression analysis of RNA-seq data, to identify differen-
tially expressed genes in patients with 1) moderate and 2) severe
COVID-19 as defined by the World Health Organisation (WHO)
standards [36]. By performing gene ontology (GO) enrichment
analysis using g:Profiler, a webserver developed for this purpose
[37], we identified significantly enriched biological functions of
the differentially expressed genes, such as exocytosis, wound
healing, and neutrophil degranulation, which are related to viral
replication [38] and adaptive immune system [39].

To investigate which, if any, SARS-CoV-2 proteins are associated
with an imbalanced immune response, protein interactome net-
works [40] for each SARS-CoV-2 protein can be created to capture
protein interactions between each SARS-CoV-2 protein-host pro-
tein interactions (SHPs) and the up-regulated differentially
expressed genes in the severe COVID-19 group. By using this tech-
nique, we found that the integration host factors of nsp16 are clo-
sely connected to the up-regulated differentially expressed genes
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that are differentially expressed genes in the severe group. (D) Protein interactome network between the up-regulated DEGs and SHPs of nsp16.

W. Hwang, W. Lei, Nicholas M Katritsis et al. Advanced Drug Delivery Reviews 172 (2021) 249–274
that play a key role in neutrophil degranulation and immune sys-
tem (Fig. 1C and D). Direct interactions and the proteins of differ-
entially expressed genes can be visualised using STRING [42], an
online tool to create protein–protein interaction networks. Nsp16
252
has been suggested as a target for SARS-CoV and MERS-CoV vac-
cine because it encodes ribose 20-O-methyltransferase and this
methylation helps coronavirus avoid the activation of type I
interferon-dependent innate immune response by viral RNA [41].
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Taken together, we suggest this methodology shows promise in the
identification of antigens based on cellular immune response.
3. Epitope prediction

3.1. B cell epitope prediction tools

Upon infection, B cell immune response is initiated by
recognising free-floating antigens through B cell receptors (BCR),
a membrane-bound immunoglobulin. Such an event activates B
cells to differentiate into memory B cells or antibodies-secreting
plasma cells in mediating adaptive humoral immunity. Antibodies
from plasma cells can function in neutralizing toxins, opsonising
pathogens, and further activating CD4+ T cells by acting as an
antigen-presenting cell (APC) [42]. Memory B cells can retain
antigen-specific immune memory and different immunoglobulin
memory B cells distinct functions [43]. Amongst them, the
IgG+ sub-class is most heavily studied in vaccinology as they
preferentially differentiate into plasma cells [43].

B cell epitopes are parts of an antigen, which may contain a
solvent-exposed region and range from 5 to 20 amino acids (AA)
in length. They are further divided into continuous (linear) or dis-
continuous (conformational) epitopes. Whilst continuous epitopes
are made up of consecutive solvent-exposed residues, discontinu-
ous epitopes are formed by solvent-exposed residues that may
not be sequential. Consequently, continuous epitopes, but not dis-
continuous epitopes, can be recognized by B cells even when the
antigen is denatured. Although an estimated 90% of B-cell epitopes
are discontinuous, more tools are available and utilised in predict-
ing continuous epitopes than discontinuous epitopes. This is also
reflected in the case of designing the COVID-19 vaccine.

Traditional methods in mapping B cell epitopes vary drastically,
including 3D structure study of the antigen–antibody complexes
[44], antibody-binding peptide library screening [45], and func-
tional assays with mutagenesis approach [46]. Although these epi-
tope selection methods are more accurate than in silico prediction
methods [47], epitope mapping experiments are restricted by their
costs and feasibility. In silico epitope prediction is faster and can
greatly improve the success rate by filtering promising candidates.
3.1.1. Continuous B cell epitope prediction in SARS-CoV-2
Earlier established prediction tools for continuous B cell epi-

topes were based on smaller datasets and their AA propensity
scales that characterise the epitopes physicochemical features.
For example, Parker and Hodges have developed a hydrophilicity
parameter using high-performance liquid chromatography data
with smoothing values in a seven-residue window [48] which
has been used singly in the SARS-CoV-2 epitope design study
[49]. Other parameters including surface accessibility by Emini,
flexibility prediction on the mobility of protein segments by Kar-
plus and Schulz [50] and b-turn prediction in the Chou-Fasman
method [51]. Rahman et al. [52] also utilised additional structural
prediction models including the RaptorX Property server for 2�
structures and the Phyre2 server for 3� structures [53]. The rela-
tively poor performance of AA propensity scales prompted the
developments of ML-based methods [54,55]. These ML-based tools
were trained on feature vectors capturing the selected properties
of experimentally validated B-cell and non-B-cell epitopes [56–
61]. Specifically, some tools trained the data with Support-Vector
Machine classifiers (SVM), whilst others preferred the uses of Ran-
dom Forests algorithms (RF) or artificial neural networks (ANN).
Their accuracies and applications to SARS-CoV-2 have been sum-
marised in Table 2.

Multi-parametric algorithms on AA propensity scales have also
been developed, such as PREDITOP (based on 4 propensity scales),
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PEOPLE (based on 5 propensity scales), and BEEPro (based on 19
propensity scales) [55,62,63]. Despite the indication of increased
accuracy, these tools are not as popular as the easily accessible
IEDB server that acts as a single platform providing the methods
by Emini (surface accessibility), Parker (hydrophilicity), Kolaskar
and Tongaonkar’s (AA frequencies), Karplus and Schulz (flexibility),
and Chou and Fasman (b-turn propensity) as a multi-parametric
filter, as seen in multi studies [64–67]. Some SARS-CoV-2 epitope
design studies also integrated both the ML-based approaches and
the propensity scales in predicting the epitope from their targets
[68–73]. Similarly, some studies filtered epitopes that were mutu-
ally found in two or more ML-based tools [74–76]. It is unclear
whether a specific combination is superior to others, further inves-
tigation maybe needed to provide more guidance on which tool
should be integrated or not.

3.1.2. Discontinuous B cell epitope prediction in SARS-CoV-2
In contrast, discontinuous B cell epitope prediction is more

challenging than continuous B cell epitope prediction mainly due
to two reasons: 1) limited 3D-structural information of antigen–
antibody complex; 2) difficulties in isolating the discontinuous epi-
tope for selective antibody production. Early computational tools
rely on the identification of specific AA regions such as CEP (resi-
due exposed to solvent) [77], DiscoTope1.2 (solvent accessibility
and spatial information of AA) [78], and ElliPro (protruding region
on antigen surfaces) [79]. In the latest version of DiscoTope2.0, a
DiscoTope method was incorporated with spatial neighbourhood
definition and half-sphere exposure and has achieved significant
improvement in prediction accuracy (AUC from 0.791 to 0.824)
[80]. Another approach classed as mimotope-based methods, iden-
tify conformational B cell epitope in proteins with known 3D struc-
tures. These include MIMOX [81], PEPITOPE [82], EpiSearch [83],
MimoPro [84], and PEPMAPPER [85]. However, additional informa-
tion including the 3D structure of the selected antigen and the
antibody-affinity of the peptide is required for optimal prediction
performances.

Advances in computational power also led to development of
ML-based prediction tools for discontinuous B cell epitopes. Specif-
ically, EPSVR used the Support Vector Regression (SVR) method to
integrate six epitope physiochemical properties and has been
applied [86]. In the same publication, the authors also combined
EPSVR with DiscTope2.0 [78], PEPITO [87], SEPPA [88], Epitopia
[89], and EPCES [90] to construct EPMeta, which was reported to
have a significantly higher performance than PEPITO and Disctope
[86]. In contrast, BepiPRED-2.0, another version of the above-
mentioned tools, has used a RF algorithm trained on the dataset
of the antibody-antigen protein structures of conformational epi-
topes [60]. Although its reported accuracy for discontinuous B cell
epitopes was fair, it is more commonly applied on linear epitope
predictions in SARS-CoV-2 vaccine studies. Instead, most studies
utilised DiscoTope2.0 or ElliPro in their discontinuous epitope pre-
dictions (see Table 2).

In addition to continuous/discontinuous B cell epitope predic-
tion tools, an alternative tool, IgPred, enables the prediction of
which immunoglobulin subclass the B cell epitope is capable of
[91]. The tool was trained on over 14,000 epitopes using the SVM
method and can be used to identify epitopes with preference for
inducing IgG and IgA antibodies [92].

3.2. T cell epitope prediction tools

Beside humoral immune response, circulating T follicular helper
(TFH) cells and other T lymphocytes are important in inducing
antibody-producing plasma cells and long-lived memory B cells
[93]. A recent report also indicated that antibody level in COVID-
19 patients is correlated with the level of circulating TFH cells



Table 2
Common B-cell epitope prediction tools.

Tool Method Accuracy Utility in SARS-CoV-2 vaccine design
publications

Continuous B-cell epitope prediction tools
Parker

(Accessible on IEDB)
Single AA propensity scale
AA sequence hydrophilicity with smoothing values in a
seven-residue window

61.21 AUC with epitopes of
16 AA length [Liu et al.,
2020] [252]

[Rakib et al., 2020] [49]: applied to filter B-cell
epitopes predicted by BepiPred, Emini, and
Klaskar and Tongaonkar methods

Kolaskar and Tongaonkar
(Accessible on IEDB)

Single AA propensity scale
Based on physicochemical properties and frequencies
of AA in experimentally determined B-cell epitopes

Self-reported optimal
accuracy of 75%
55.76 AUC with epitopes
length of 16 AA [Liu et al.,
2020] [252]

[Rakib et al., 2020] [49]: identified 15 epitopes
in N protein
[Rahman et al., 2020] [52]: Identified 5
epitopes in the RBD regions of S,M, and E
proteins
[Abdulhameed Odhar et al., 2020] [253]:
Identified 5B cell epitopes on chain A of S
protein
[Marino Gammazza et al., 2020] [254]: iden-
tified B cell epitope region in Replicase
Polyprotein 1ab

Emini
(Accessible on IEDB)

Single AA propensity scale
Surface accessibility

60.76 AUC with epitopes
length of 16 AA [Liu et al.,
2020] [252]

[Rakib et al., 2020] [49]: Identified 9 epitopes in
N protein
[Abdulhameed Odhar et al., 2020] [253]:
identified 3 epitopes on chain A of S protein
[Yazdani et al., 2020] [255]: identified B-cell
epitopcy of predicted CTL epitopes in S, M, N,
and E proteins
[Alam et al., 2020] [256]: identified 6B-cell
epitopes in S protein and transmembrane pro-
tein 199

Karplus and Schulz Single AA propensity scale
Flexibility Prediction on the mobility of protein
segments.

Unavailable [Rakib et al., 2020] [49]: applied to filter B-cell
epitopes predicted by BepiPred, Emini, and
Klaskar and Tongaonkar methods
[Alam et al., 2020] [256]: identified 6B-cell
epitopes in S protein and transmembrane pro-
tein 199

Chou and Fasman Single AA propensity scale
b-turn prediction

52.70 AUC with epitopes
length of 16 AA [Liu et al.,
2020] [252]

[Rakib et al., 2020] [49]: applied to filter B-cell
epitopes predicted by BepiPred, Emini, and
Klaskar and Tongaonkar methods
[Alam et al., 2020] [256]: identified 6B-cell
epitopes in S protein and transmembrane pro-
tein 199

PREDITOP Multiple AA propensity scales Based on AA
hydrophilicity, accessibility, flexibility, and secondary
structure property

Self-reported optimal
accuracy of 60%

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

BeePro Multiple AA propensity scales
Based on the antigenicity, hydrophilicity,
hydrophobicity, accessible surface area, flexibility,
interactivity, buriability, composition, polarity, volume
, charge transfer and donor capability, hydrogen-bond
donor capability, and secondary structure

Self-reported optimal
accuracy of 99.29%

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

AAP ML-based
SVM-based model trained on AA pair

Self-reported optimal
accuracy 71.09%

[Tohidinia and Sefid 2020] [205]: initial filter-
ing on S protein epitopes

ABCpred ML-based
ANN-based model trained on AA patterns

Self-reported optimal
accuracy of 66.41%

[Behmard et al 2020] [131]: Identified nine 16-
mer epitopes in S, E, M, and N proteins
[Dai et al 2020] [76]: Identified 11 16-mer
epitopes in N proteins
[Rahman et al., 2020] [52]: Identified 29
peptides in S, M, and E proteins
[Lon et al., 2020] [75]: 6 epitopes predicted in
S, M, and E proteins
[He et al., 2020] [132]: Predicting linear B-cell
epitopcy of 16 sequences of S protein
[Vashi et al., 2020] [257]: 24 epitopes pre-
dicted with various AA length from S protein

APCpred ML-based
SVM-based model trained on anchoring pair
composition

Self-reported optimal
accuracy of 72.94%

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

BepiPred (2.0)
(Accessible on IEDB)

ML-based
RF-based model trained on epitopes annotated from
antibody-antigen protein structures

Self-reported optimal
accuracy of 0.62 AUC

[Rahman et al., 2020] [52]: Predicted 14 epi-
topes of S, E, and M proteins
[Rakib et al., 2020] [49]: 11 epitopes identified
with various AA length in N protein
[Ayyagari et al., 2020] [112]: 3 epitopes
identified in M protein
[He et al., 2020] [132]: 25 epitopes identified
on S protein
[Khairkhah et al., 2020] [92]: 8 epitopes
identified on S and N proteins
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Table 2 (continued)

Tool Method Accuracy Utility in SARS-CoV-2 vaccine design
publications

LBEEP ML-based
SVM and AdaBoost-RF based model trained on
Dipeptide Deviation from Expected Mean (DDE) of
epitopes

Self-reported optimal
accuracy of 73%

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

Bayesb ML-based
Bayes Feature Extraction

Self-reported optimal
accuracy 68.50%

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

BCPRED ML-based
SVM-based model with various string kernels that
select representing sequence into length-fixed feature
vectors

Self-reported optimal
accuracy of 0.758 AUC

[Singh et al., 2020] [64]: Identified 12B-cell
epitopes in S protein
[Singh et al., 2020] [64]: identified 2 linear
epitopes in the structural glycoproteins
[Rahman et al., 2020] [52]: identified 4
epitopes shared with B-cells and T-cells
[Chauhan et al., 2020] [258]: 3B cell epitopes
identified in SARS-CoV-2 genome-associated
proteins

iBCE-EL ML-based
Combination Of 6 ML algorithms trained on epitope
sequences

Self-reported optimal
accuracy of 72.9%

[Dar et al., 2020] [238]: Identification of linear
B cell epitopes in selected HLA II class epitopes
in S protein
[Samad et al., 2020] [133]: identified 4B cell
epitopes in S protein
[Ahammad and Lira, 2020] [134]: identified
117 epitopes in S protein

SVMTriP ML-based
SVM-based model trained on length-fixed tripeptide
composition vectors

Self-reported optimal
accuracy of 0.702 AUC

[Banerjee et al., 2020] [259]: identification of B-
cell epitopes overlapping with CTL and HTL
epitopes in N, M, E, Orf6, Orf7a, and Orf10
proteins

COBEpro ML-based
SVM-based model predicting short peptide fragments
followed by epitopic propensity prediction

Self-reported optimal
accuracy of 0.829 AUC

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

EPMLR ML-based
Multiple linear regression-based model trained on
BEOracle dataset

Self-reported optimal
accuracy of 0.728 AUC

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

LBtope ML-based
Several models including SVM-based and nearest
neighbor based trained on the modified AAP profile of
epitopes

Self-reported optimal
accuracy of 86%

[Anand et al., 2020] [260]: identified 7B cell
epitopes in S, M, N, and Orf3a proteins

Discontinuous B-cell epitope prediction tools
CEP Algorithms using residue accessibility and spatial

distance cut-off
Self-reported optimal
accuracy of 75%

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

DiscoTope (2.0)
(Accessible on IEDB)

DiscoTope method incorporated with spatial
neighbourhood and half-sphere exposure information

Self-reported optimal
accuracy of 0.824 AUC

[Forni et al., 2020] [261]: identification of
immunogenicity of antigenic variation in S and
N proteins
[Arshad Dar et al., 2020] [238]: identification
of 77 epitopes on S protein
[Ayyagari et al., 2020] [112]: identified 25B-
epitopes on M protein
[Grifoni et al., 2020] [109]: Predicted discon-
tinuous epitope on 959 continuous epitopes on
surface glycoprotein

ElliPro
(Accessible on IEDB)

Thornon’s method integrated with residue clustering
algorithm, MODELLER program in predicting and
visualizing the epitope structures.

Self-reported optimal
accuracy of 91%

[Rajesh Anand et al., 2020] [260]: 10 confor-
mational epitopes identified on S, Orf3a, M, and
N proteins
[Dar et al., 2020] [238]: identification of 148
epitopcy residues on S protein
[Singh et al., 2020] [64]: Scoring discontinuous
epitope probability in 12 selected S proteins
[Sarkar et al., 2020] [234]: Identified 4 poten-
tial regions in S, N, M, and E proteins
[Wagas et al., 2020] [65]: identified 5 confor-
mational epitopes in S, N, M, and E proteins

PEPITO Incorporating AA propensity scale with side chain
orientation and solvent accessibility information of
epitope/non-epitope

Self-reported optimal AUC
of 75.38

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

SEPPA Scoring based on comparison to local spatial
information of surface residues of 82 antigen–antibody
protein complexes

Self-reported optimal
accuracy of 0.742 AUC

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

PepMapper Mimotope-based
An esemble of MimoPro and Pep-3D-search for epitope
mapping

Self-reported optimal
sensitivity of 1.00,
specificity of 0.839, and
precision of 0.256

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

(continued on next page)
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Table 2 (continued)

Tool Method Accuracy Utility in SARS-CoV-2 vaccine design
publications

Epitopia ML-based
Naïve Bayes classifier trained on 3D antigen–antibody
structures and epitope sequences

Self-reported optimal
accuracy of 89.4%

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

EPSVR ML-based
SVR-based model trained on residue epitope
propensity, conservation score, side chain energy score,
contact number, surface planarity score, and secondary
structure composition

Self-reported optimal
accuracy of 0.597 AUC

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

CBTOPE ML-based
SVM-based model trained on the physiochemical and
sequence featured of conformational B-cell epitopes

Self-reported optimal
accuracy of 86.6%

Not utilised/cited in any SARS-CoV-2 vaccine
design publications

BepiPred (2.0)
(Accessible on IEDB)

ML-based
RF-based model trained on conformational epitopes
annotated from antibody-antigen protein structures

Self-reported optimal
accuracy of 0.62 AUC on
conformational epitopes

Not utilised/cited in any SARS-CoV-2 vaccine
design publications for discontinuous B-cell
epitope prediction.

This table shows some of the common B-cell epitope prediction tools and their reported accuracy or evaluated accuracy, if available. Their utilities in SARS-CoV-2 vaccine
design papers are summarised briefly by the result they have indicated and their application on which protein on SARS-CoV-2, if mentioned. As seen, some tools with
relatively high accuracies are yet to be utilised for SARS-CoV-2 vaccine designs.
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[94]. Another study also reported a population of SARS-CoV-2-
specific T cells with a ‘stem-like memory phenotype’ is present
in the antibody-seronegative asymptomatic and mild COVID-19
patients [95]. Many more reports have highlighted the critical role
played by T cells in inducing effective SARS-CoV-2-specific
immune response [96–98].

T cells can be divided into 2 major types: CD4+ T cell (helper T
cell) and CD8+ T cell (cytotoxic T cell). Their activations rely on 3
signals: 1) Binding between the antigen present on the major his-
tocompatibility complex (MHC) of the antigen-presenting cells
(APCs) and the T cell receptor (TCR) on the T cell; 2) Binding of
CD80 or CD86 on APC by CD4+ T cells/binding of CD70 or CD137
on APC by CD8+ T cells; 3) Released cytokines in determining the
cell faith of CD4+ T cells (i.e., IL-12 for Th1 type, IL-4 for Th2 type,
and IL-6 and IL-23 for Th17) [99]. Specifically, MHC I is recognised
by CD8+ T cells and MHC II by CD4+ T cells. Hence, epitope map-
ping for T cell can be generally divided into 3 steps: 1) Antigen pro-
cessing by APC; 2) Peptide-binding to MHC molecules; 3)
Recognition by TCR. Here, we have listed some T cell epitope pre-
diction tools that can potentially accelerate epitope selection for
MHC multimer [100], lymphoproliferation [101], and ELISPOT
assays [102].
3.2.1. CD4+ T cell epitope prediction in SARS-CoV-2
CD4+ T lymphocytes and their associated cells recognise exoge-

nous antigens. When APCs encounter, exogenous antigens are
taken up by the APCs through phagocytosis into the endo/lysoso-
mal pathway. The antigens are then broken down by enzymes such
as cathepsins and proteases, and present on the class II MHC mole-
cule [103]. Current established CD4+ T cell epitope prediction
methods focus on the MHC II binding prediction. MHC II binding
peptides vary in length between 9 and 22 residues but only the
peptide-binding core with 9 AA in length sits in the binding groove
[104]. Compared to MHC I molecule, MHC II binding groove is
open, allowing ends of the peptide to extend beyond the groove,
and the pocket is shallower than MHC I. Such characteristics con-
stitute the cause of a lower accuracy in peptide-MHC II binding
prediction methods [105].

Table 3 shows a list of peptide-MHC II binding prediction tools,
their accuracy, and their applications in SARS-CoV-2 vaccine design
studies. Notably, NetMHCIIpan 4.0, available on IEDB, integrated
large-scale MHC II ligand mass spectrometry (MS) data for training
using the NNAlign_MA method [106,107]. Some SARS-CoV-2 vac-
cine design studies utilised MixMHC2Pred alternatively.
MixMHC2Pred is a predictor trained on the MS data with a motif
256
deconvolution algorithm of over 99,000 MHC-II peptides and has
been shown to outperform the earlier version of NetMHCIIpan
[108]. Another notable example is TepiTool, a pipeline for predict-
ing MHC I and II epitopes using a combined number of tools [109]
and have been used in several SARS-CoV-2 studies [29,76,80,110]
3.2.2. CD8+ T cell epitope prediction in SARS-CoV-2
CD8+ T lymphocytes are responsible for processing endogenous

antigens. Endogenous antigens are cleaved by the proteasome into
peptides and then transported by transporter-associated protein
(TAP) to the endoplasmic reticulum for the association to MHC I
molecules [103]. MHC I epitopes are usually shorter than MHC II
epitopes, ranging from 9 to 11 AA in length, and sit in the MHC I
groove delineated by two a-helices [104]. Although most predic-
tions only focused on the intermediate step of MHC I binding affin-
ity, tools are also available in predicting the proteasomal cleavage
site, TAP binding affinity, and TCR binding affinity, as mentioned
above. Additionally, a platform such as NetCTLpan [111] provides
end-to-end cytotoxic T cell (CTL) epitope predictions and has been
utilised in several SARS-CoV-2 vaccine studies [74,112,113].

Endogenous antigens are known to have proteasome cleavage
sites at their C-terminal for cleavage by immunoproteasomes
[114]. The cleavage specificities of the immunoproteasome are
determined by the residues located at the cleavage sites and neigh-
bouring positions [115]. Recently, ML classifiers have been trained
on cleavage and non-cleavage sites such as Pcleavage [116], PCPS
[117] and NetChop [118]. Following proteasomal cleavage, TAP
binding is also essential in ensuring transport to MHC I binding.
TAP transporters prefer to translocate peptides of 8–11 AA in
length, similar to the MHC I epitope lengths [119]. They also have
higher affinity to hydrophobic residues at specific positions [120].
Based on the TAP motifs, consensus matrix, and their subsequent
application to ML-techniques, several methods have been devel-
oped. A summary of all endogenous antigen processing prediction
tools is beyond the scope of this review. Instead, we present, in
Table 3, the accuracy of the listed tools and some examples of their
application on SARS-CoV-2 vaccine design.

Notably, some tools listed for MHC II binder predictions can also
be used for MHC I prediction due to the data used for their model
training. For example, RANKPEP [121,122] provides position-
specific scoring matrix for both MHC I and II binding peptides
and MHCnuggets [123] is a neural network-based model trained
on common and rare alleles trained on MHC binders. Some tools
are specific for MHC I peptide predictions, e.g., NetMHCpan-4.1



Table 3
Common T-cell epitope prediction tools.

Tool Method Accuracy Utility in SARS-CoV-2 vaccine design publications

MHC I/II binding prediction tools
ARB

(Accessible on
IEDB)

Average relating binding (ARB) matrix-based
prediction of binding propensity to MHC II

Self-reported optimal
accuracy of 83%

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

RANKPEP
(MHC I:
RANKPEP)

Position specific scoring matrix-based predicting of
MHC binding peptides

Self-reported optimal
accuracy of 0.96 AUC for
MHC II and 80% for MHC I

[He et al., 2020] [132]: used to predict MHC II epitopcy
in 28 epitopes from S protein
[Yazdani et al., 2020] [255]: identified MHC-II
immunogenicity of epitopes selected from S, E, N, and
M proteins

Tepitope
(Accessible on
IEDB as
Sturniolo)

A matrix-based method utilising pocket profiles of
MHC binding peptides

Self-reported optimal
sensitivity of 80%

[Dong et al., 2020] [69]: predicted MHC II epitopes in
combination of NN-align, SMM-align, and MetMHCII-
pan method of various SARS-CoV-2 proteins
[Martin and Cheng, 2020] [262]: predicted MHC II
epitopes in combination of NN-align, SMM-align,
CombLib and MetMHCIIpan method of glycan protein
on S protein
[Srivastava et al., 2020] [236]: predicted MHC I
epitopes of 11 ORF, structural and non-structural
proteins in combination with NN-align, consensus,
SMM-align, combinatorial library, and NetMHCIIpan

MHCAttnNet A deep neural model trained on amino acid sequences
of MHC epitopes

Self-reported optimal
accuracy of 94.18%

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

MHCnuggets A long short-term memory network trained on
common or rare alleles of MHC epitopes

Self-reported optimal
accuracy of 0.924 AUC

[Campbell et al., 2020] [126]: Predicted MHC-I epi-
topes with 5 other tools for HLA supertype covering
90% of the population in 57 countries

Combinatorial
library
(Accessible on
IEDB)

Heuristic method translating positional scanning
combinatorial library data of MHC I and II epitope data
into main and secondary anchor positions with
preferred residues for MHC binding peptide
predictions

Self-reported optimal
accuracy of 0.935 AUC

[Martin and Cheng, 2020] [262]: predicted MHC II
epitopes in combination of NN-align, SMM-align,
Tepitope and MetMHCIIpan method of glycan protein
on S protein
[Srivastava et al., 2020] [236]: predicted MHC I
epitopes of 11 ORF, structural and non-structural
proteins in combination with NN-align, consensus,
SMM-align, Tepitope, and NetMHCIIpan
[Yazdani et al., 2020] [255]: identified MHC-II
immunogenicity of epitopes selected from S, E, N, and
M proteins with ANN and SMM, applied as consensus
method
[Dong et al., 2020] [69]: Used as the ‘Combinatorial
library’ with other IEDB accessible methods for pre-
dicting MHC epitopes in all proteins

MHC II binding prediction tools for CD4+ T-cells epitopes
NetMHCIIpan 4.0

(available on
IEDB)

Indirect method
NNAlign_MA method trained on MHC II ligand MS data

Self-reported optimal
accuracy of 0.952 PPV

[Liu et al., 2020] [128]: predicted MHC class II peptides
in SARS-CoV-2 samples of different ethnic backgrounds
[Ayyagari et al., 2020] [112]: Predicted 27 MHC II
alleles in M protein
[Khairkhah et al., 2020] [92]: Predicted 20 MHC II
epitopes in S, N, and M proteins
[Requena et al., 2020] [263]: Predicted 30 MHC II
alleles with consideration of HLA frequencies by
country
[Liu et al., 2020] [264]: Filtered 22 potential MHC II
epitope candidates in S, M, and N proteins
[Dar et al., 2020] [238]: pan-MHC II binding prediction
of surface glycoprotein

EpiDock A peptide library of X-ray structure of HLA-DP2
proteins with prediction performed using AutoDock
[Morris et al., 2009] and Rosetta Dock [Lyskov and Gray
2008]

Self-reported optimal
accuracy of 0.900 AUC

[Can et al., 2020] [233]: used for filtering MHC II
epitopes with low IC50 docking to specific MHC II
allele

EpiTOP Quantitative matrix-based approach in predicting MHC
II binding based on proteochemometrics

Self-reported optimal
accuracy of 93%

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

HLA-DR4Pred SVM-based model in identifying HLA-DRB1*0401
binding peptides

Self-reported optimal
accuracy of 86%

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

PREDIVAC Specificity-determining residue (SDR) based MHC II
binding prediction integrated for 95% of MHC II allelic
variants

Self-reported optimal
accuracy of 0.872 AUC

[Dar et al., 2020] [238]: used to predict MHC II
supertype allele interaction following prediction by
NetMHCIIpan

SMM-align
(Accessible on
IEDB)

A stabilized matrix alignment method based on MHC II
epitope amino acids preferences by Gibs sampler and
predicting using SVRMHC predictions

Self-reported optimal
accuracy of 0.756 AUC

[Dong et al., 2020] [69]: predicted MHC II epitopes in
combination of NN-align, Tepitope, and MetMHCIIpan
method of various SARS-CoV-2 proteins
[Martin and Cheng, 2020] [262]: predicted MHC II
epitopes in combination of NN-align, Tepitope, Com-
bLib and MetMHCIIpan method of glycan protein on S
protein

(continued on next page)
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Table 3 (continued)

Tool Method Accuracy Utility in SARS-CoV-2 vaccine design publications

[Srivastava et al., 2020] [236]: predicted MHC I
epitopes of 11 ORF, structural and non-structural
proteins in combination with NN-align, consensus,
Tepitope, combinatorial library, and NetMHCIIpan
[Campbell et al., 2020] [126]: MHC binder identifica-
tion for epitope prediction targeting 90% populations
of 57 countries

NN-align
(Accessible on
IEDB)

ANN-based trained on MHC II binding epitopes with
binding core and affinity results available upon query

Self-reported average
accuracy of 0.855 AUC

[Behmard et al., 2020] [131]: utilised to identify MHC II
binding epitopes in S and N proteins
[Savafi et al., 2020] [74]: Predicted MHC II binding
epitopes with SMM-align, MHCpred and NetMHCIIpan
3.2 methods
[Rehman et al., 2020] [67]: Used for predicting T
helper cell epitopes in spike protein

Consensus
(Accessible on
IEDB)

Combination of NN-align, SMM-align, and the
combinatorial peptide scanning library methods on
IEDB

Self-reported average
accuracy of 0.89 ± 0.05 AUC

[Yazdani et al., 2020] [255]: identified MHC-II
immunogenicity of epitopes selected from S, E, N, and
M proteins
[Singh et al., 2020] [64]: used to predict 15-mer T-
helper cell epitope from S protein
[Mukherjee et la., 2020] [110]: used to filter MHC II
epitopes with lower than specified IC50 threshold

CD8+ T-cells epitopes Prediction Tools
vPcleavage Proteasomal cleavage site prediction tool.

A SVM-based classifier trained on amino acids of 7AA
in length with cleavage site represented in sequence
window

Self-reported optimal
accuracy of 0.805 AUC

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

NetChop3.1
(Accessible ovn
IEDB)

Proteasomal cleavage site prediction tool.
Neural network-based trained on sequence encoded
data

Self-reported optimal
accuracy of 0.85 AUC

[Shomuradova et al., 2020] [265]: Predicted proteaso-
mal cleavage score of C-terminal AA in S protein
peptides
[Safavi et al., 2020] [74]: Predicted proteasomal
processing in T cell epitope together with MAPP

PCPS Proteasomal cleavage site prediction tool.
Provides three models for predicting
immunoproteasome and proteasome cleavage site
each. Developed through training on residue fragments

Reported sensitivity of 0.88
and specificity of 0.57 in
Gomez-Perosanz et al.,
2019[117]

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

TAPPred Proteasomal fragement-TAP binding prediction tool
A cascade SVM-based method trained on quantitative
matrix of TAP binding regions

Self-reported optimal
accuracy of 0.81 Pearson’s
correlation coefficient

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

TAPhunter Proteasomal fragement-TAP binding prediction tool
A SVM-based model trained on TAP peptide fragments
and composition effects

Self-reported optimal
accuracy of 88%

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

TAPreg Proteasomal fragement-TAP binding prediction tool
SVM-based method trained on single residue positions
and residue combinations

Self-reported optimal
accuracy of 0.89 ± 0.03
Pearson’s correlation
coefficient

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

Peters et al., 2003
(Accessible on
IEDB as part of
MHC-I Processing
Predictions)

Stabilized matrix method (SMM) used to score
sequence position in distinguishing TAP-binding
epitopes

Self-reported optimal
accuracy of 0.89 AUC

[Srivastava et al., 2020] [236]: Used to predict Cyto-
toxic T cell epitopes in the ‘MHC-I Processing Predic-
tions’ pipeline
[Anand et al., 2020] [260]: Predicted 11 antigenic T cell
epitopes from structural proteins
[Banerjee et al., 2020] [259]: Predicted TAP binding
affinity as part of the IEDB server

MHCflurry2.0 MHC I binding prediction tool
A neural network-based model trained on MHC I allele
with affinity and MS data

Self-reported optimal
accuracy of 0.94 AUC

[Campbell et al., 2020] [126]: Predicted MHC-I epi-
topes with 5 other tools for HLA supertype covering
90% of the population in 57 countries

NetCTLpan1.1 MHC I binding prediction tool
Integrated MHC peptide binding with NetMHCpan,
with proteasome cleavage predicted with NetChop and
TAP transport prediction by Peters et al., 2003

Self-reported optimal
accuracy of 0.976 AUC

[Ayyagari et al., 2020] [112]: Identification MHC I
epitopes on M proteins
[Safavi et al., 2020] [74]: predicted MHC I epitopes on
6 non-structural proteins
[Mishra et al., 2020] [266]: predicted MHC I epitopes
with PickPocket 1.1 from structural and non-structural
SARS-CoV-2 proteins

NetMHCpan 4.1
(available on
IEDB)

MHC I binding prediction tool
NNAlign_MA method trained on MHC I ligand MS data

Self-reported optimal
accuracy of 0.8291 PPV

[Campbell et al., 2020] [126]: Predicted MHC-I epi-
topes with 5 other tools for HLA supertype covering
90% of the population in 57 countries
[Liu et al., 2020] [128]: MHC-I epitope prediction for
augmentation to increase vaccine population coverage
[Dearalove et al., 2020] [267]: 9-mer MHC-I epitope
prediction in S protein
[Liu et al., 2020][264]: Predicted MHC Class I epitope
with MHCflurry in ensemble.

DeepLigand MHC I binding prediction tool
A semi-supervised model trained on sequence features
correspond to secondary factors of MHC I binding
epitopes

Self-reported optimal
accuracy of 0.979 AUC

Not utilised/cited in any SARS-CoV-2 vaccine design
publications
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Table 3 (continued)

Tool Method Accuracy Utility in SARS-CoV-2 vaccine design publications

PickPocket1.1 MHC I binding prediction tool
A library of pocket-residues and corresponding binding
specificities with consensus to NetMHCpan method

Self-reported optimal
accuracy of 0.92 AUC

[Mishra, 2020] [113]: Predicted 921 cytotoxic T cell
lymphocyte epitopes in 10 SARS-CoV-2 proteins with
NetCTLpan1.1
[Yazdani et al., 2020] [255]: Predicted MHC-I epitopes
on IEDB server together with other listed tools
[Campbell et al., 2020] [126]: Predicted MHC-I
epitopes with 5 other tools for HLA supertype covering
90% of the population in 57 countries

HLA-CNN A convolutional neural network-based trained on HLA-
Vec, an AA distributed representation of epitopes

Self-reported average
accuracy of 0.836 AUC

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

HLA presentation coverage prediction
EvalVax (Unlinked/

Robust)
A combinatorial optimization from OptiVax tools
considering HLA allele frequencies
Unlinked: assume independence between HLA loci
Robust: considering linkage disequilibrium of HLA
genes between loci with halotype frequencies for
population coverage estimates

Unavailable [Liu et al., 2020] [128]: Used for ensuring high popu-
lation coverage in T cell epitopes

ShinyNap A visualization tool for predicting antigen
immunogenicity based on the HLA presentation

Unavailable [Yamarkovich et al., 2020] [24]: used to identify 65
peptide sequence with potential coverage to 99.4% of
population in the Bone Marrow Registry

TCR-peptide binding prediction
iPred Estimate baseline frequencies of TCR specificities by

database of TCR sequence with known antigen
specificities

Unavailable [Shomuradova et al., 2020] [265]: Used for motif
discovery for TCR repertoires in epitopes
[Lee, 2020] [268]: used for predicting immunogenicity
between the SARS-CoV-2 epitope and IEDB peptides

ERGO NLP-based methods in predicting CD4+ or CD8+ TCR
binders using large-scale TCR-peptide dictionaries

Self-reported optimal
accuracy of 0.98 AUC

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

NetTCR A CNN-based sequence-based predictor trained on AA
sequence of peptide and CDR3 region of TCR b-chain

Self-reported optimal
accuracy of 0.727 AUC

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

TcellMatch Multiple deep learning methods trained on data of
MHC binding and TCR sequences from multimodal
single-cell experiments

Self-reported optimal
accuracy of 0.87 AUC

Not utilised/cited in any SARS-CoV-2 vaccine design
publications

IFNepitope SVM-based classifier applied on AA composition and
length of IFN-c inducing MHC class II peptides

Self-reported optimal
accuracy of 81.39%

[Behmard et al., 2020] [131]: predicted of IFN-ɣ release
in selected epitopes
[Ayyagagari et al., 2020] [112]: predicted of IFN-ɣ
release in selected epitopes
[He et al., 2020] [132]: predicted IFN-ɣ inducing
property of MHC epitopes
[Samad et al., 2020] [133]: predicted IFN-ɣ inducing
property of MHC epitopes
[Ahammad et al., 2020] [133]: predicted IFN-ɣ
inducing property of MHC epitopes

IL4pred SVM-based classifier applied on IL4 inducing peptides
for Th2 helper cell epitope prediction

Self-reported optimal
accuracy of 75.76%

[Behmard et al., 2020] [131]: predicted of IL-4 release
in selected epitopes
[Sarkar et al., 2020] [234]: predicted IL-4 inducing
property of MHC epitopes
[He et al., 2020] [132]: predicted IL-4 inducing
property of MHC epitopes
[Samad et al., 2020] [133]: predicted IL-4 inducing
property of MHC epitopes
[Ahammad et al., 2020] [134]: predicted IL-4 inducing
property of MHC epitopes

IL10pred RF-based model trained on motif and residues of IL-10
inducing peptides

Self-reported optimal
accuracy of 0.88 AUC

[Behmard et al., 2020] [131]: predicted of IL-10 release
in selected epitopes
[Sarkar et al., 2020] [234]: predicted IL-10 inducing
property of MHC epitopes
[He et al., 2020] [132]: predicted IL-10 inducing
property of MHC epitopes
[Samad et al., 2020] [133]: predicted IL-10 inducing
property of MHC epitopes
[Ahammad et al., 2020] [134]: predicted IL-10 induc-
ing property of MHC epitopes

This table shows some of the common T-cell epitope prediction tools and their reported accuracy or evaluated accuracy, if available. Their utilities in SARS-CoV-2 vaccine
design papers are summarised briefly by the result they have indicated and their application on which protein on SARS-CoV-2, if mentioned. As seen, some tools with
relatively high accuracies are yet to be utilised for SARS-CoV-2 vaccine designs.
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[124]. Again, their utility in the SARS-CoV-2 study and reported
accuracy are summarised in Table 3.

3.2.3. HLA coverage
With the aim of inducing herd immunity on a global scale

against SARS-CoV-2, it is important that a vaccine candidate is
effective across the human population. Campbell et al. prioritised
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the HLA frequency data from Allele Frequency Net Database
(AFND) [125] to ensure their epitope candidates can bind
to greater than 90% of populations across 57 countries [126]. Other
computational tools accounting HLA allele subtype coverage can
estimate the immunogenicity of populations with different HLA
subtype backgrounds. Yarmarkovich et al. applied ShinyNap [127]
for scoring HLA presentation on a population scale for Cancer to
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predicted epitopes for SARS-CoV-2, additionally they calculated
their epitopes were not similar to endogenous human sequences
[24]. Liu et al. created two tools for the optimisation (OptiVax)
and evaluation (EvalVax) of population coverage of epitopes for
peptide vaccines [128]. Additional information can be found in
Table 3.

3.2.4. TCR binding prediction
Following binding prediction to MHC molecules, there are also

several direct methods used to predict whether the MHC-bound
peptides can be recognized by the T cells (see Table 3). For exam-
ple, ERGO is a Natural Language Processing (NLP) based method in
creating a large-scaled T cell receptor (TCR)-peptide dictionary for
TCR-peptide binding prediction and is applicable for both
CD4+ and CD8+ T cell eptiopes [129]. Furthermore, cell-type speci-
fic TCR-peptide binding predictions are also available, such as
IFNepitope for predicting epitope binding to IFN-ɣ-induced Th1
cells [130]. The combined utility of IL4pred, IL10preds and IFNepi-
tope are seen in several SARS-CoV-2 vaccine design studies to
check the corresponding cytokine inducibility of their MHC epitope
candidates [131–135].

3.3. Epitope prediction evaluation and challenges

Despite the exhaustive list in Table 2 and Table 3, there are still
many more tools available for epitope prediction. Even though
some models have similar or even better accuracy, only minorities
are utilised in the SARS-CoV-2 epitope design, possibly due to the
convenience introduced by the web servers. Furthermore, several
efforts are seen in benchmarking various tools but none when used
in combinations [60,135–138]. It is beyond our scope to conclude
the best epitope prediction pipeline for the purpose of this review.
However, we advise readers to refer to Sohail et al. [135] where the
performance of each T cell epitope prediction method used in
SARS-CoV-2 vaccine designs is reviewed. There is an additional
concern in the novelty of epitopes predicted in studies using the
same prediction methods. Alternatively, readers can refer to Pra-
char et al. [137] and Sohail et al. [135] to avoid utilising a subopti-
mal tool and additional guidance for other novel approaches.

SARS-CoV-2 is indicated to mutate 9.8 � 10�4 substitutions per
site per year [139] and at least 15 variants have been reported
throughout 2020 [140]. It is imperative that an epitope selected
for vaccine development is conserved across mutations as well as
across multiple populations. The IEDB conservancy tool [141] has
been used to do this against SARS-CoV-2 epitope candidates
[23,142]. Clustal omega, EBI’s sequence alignment tool was also
used [22,24]. Some studies have also screened for conservation
between SARS-CoV-2 and other coronaviruses such as SARS-CoV
and MERS-CoV [24,26].

In addition to the listed methodologies, Gupta et al. developed a
platform of potential vaccine candidate or epitopes from SARS-
CoV-2 proteins with predicted immunogenicity [91]. Similarly,
Ahmed et al. (COVIDep) [18] and Wu et al. (COVIEdb) [143] pre-
sented databases of potential T and B cell epitopes for SARS-CoV-
2. COVIEdb also provides SARS-CoV, and MERS-CoV with regularly
updated validation results [143]. These resources could be used
either for cross-validation or ensuring novelty of the epitope from
other studies.
4. Immunogenicity prediction

The ongoing pandemic of COVID-19 has urged the scientific
community to find answers, both in terms of repurposing existing
drugs and expediting development of new vaccine candidates [15].
Currently, immunogenicity predictions of most SARS-CoV-2 vac-
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cine studies focus on the static interaction between the antigen
and the immune system component. These predictions, although
useful, are unable to give specific knowledge about how the
immune system, as a whole, acquires the pathogen-specific
immune memory and fights off the pathogen. Such knowledge is
only acquired during the later in vivo studies and may increase
risks of failure, decrease productivity, and escalate costs. Addition-
ally, limited knowledge about genomic instability and immuno-
genicity of genome-based (i.e., DNA, RNA and mRNA) vaccines
encourage the development of novel strategies in studying the vac-
cine immune response dynamics [144].

Indeed, there is an increasing number of publications advocat-
ing the usage of relevant in silico modelling in vaccine design
[145–148]. In their review, Brown et al. [147] pointed out that
system-based approaches in biology and clinical medicine have
been almost entirely data-driven, despite the limited insight these
models give into the biological mechanisms involved. In contrast,
mechanistic models are constrained by prior knowledge, possess
greater predictive value under extrapolation, and can be iteratively
improved by comparison against newly acquired data—a process
that can lead to gradual model refinement. They mention three
aims mechanistic modelling is well aligned with: 1) gaining deeper
understanding of the protective immune responses mounted
against pathogens, 2) building a mechanistic context, which can
enable a more thorough interpretation of clinical data sets, and
3) designing better informed medical experiments and clinical tri-
als, with the potential to lead to lower rates of therapeutic failures.

Rhodes et al. [146] focused instead on the dose-finding practices
currently in place for new vaccines and proposed a novel in silico
method which they termed Immunostimulation/ Immunodynamic
(IS/ID) modelling. Typically, large dose ranges are first tested on
small animal models, such as rats and mice, until a maximum pla-
teau in response is reached. Allometric scaling assumes that phys-
iological parameters follow a power-law relationship with
biological measures, such as weight or height. Thus, allometric
scaling is applied, even in the case of interspecies ones, allowing
for effective human doses to be estimated. However, the applica-
bility of allometric scaling on cross-species translation is challeng-
ing, as the immunological relationships involved are not well
characterised. Additionally, dose escalation studies often rely on
the long-standing assumption that the dose-host response rela-
tionship is saturating (sigmoidal). However, in some cases, a
peaked dose–response curve has instead been observed. This
exposes the potential risk of making sub-optimal, higher than
needed, dosing decisions. The WHO has conducted retrospective
dose ranging studies on vaccines in the past, where fractional doses
were found to be equally, or in some cases more, immunogenic
than the full licensed ones for diseases such as yellow fever,
meningitis, and malaria [146].

The importance of informed dosing decisions cannot be over-
stated. In the case of Oxford/AstraZeneca’s COVID-19 vaccine
(AZD1222), an efficacy of 62.1% was reported for participants
who received two standard doses, while in those who received a
lower first dose, followed by a standard second dose, an increased
efficacy of 90% was observed [21]. In this context, in silico immuno-
genicity prediction can potentially be used to better inform first-
in-human dose selection, as studies transition from the preclinical
to the clinical setting.

4.1. Mathematical modelling on SARS-CoV-2 infection

Manymathematical models of the immune response exist in lit-
erature today, where the complex immune system is simplified
and defined in formalisms, the algorithmic or mathematical frame-
works. These often rely on ordinary differential equations (ODEs)
or partial differential equations (PDEs) or follow an agent-based



Table 4
Common formalisms used in modelling immunogenicity.

Formalism Advantages Disadvantages Application to SARS-CoV-2
Immune Response Studies

Ordinary differential equations
(ODEs) [190–192,269]

Admit analytical solution;
Can provide precise continuous-time dynamics of
networks with multiple entities

Has a finite dimensional state vector;
Unable to capture spatial dynamics;
Relatively low scalability

[155–158,160,163]

Partial differential equations
(PDEs) [270]

Admit analytical solution;
Allow derivatives of unknown function for dynamics
in time and space;
Has an infinite dimensional state

More complex than ODEs and DDEs;
Computationally demanding;
Relatively low scalability

[160,161]

Impulsive differential equations
(IDEs) [271]

Allow derivates with sudden changes in states over
continuous model;
Can be multi-parametric;

Relatively low scalability;
Most are fixed moments;
Traditional IDEs do not allow non-
instantaneous impulses

[163,272]

Cellular automata [273] Able to exhibit complex system-level behaviour
with qualitive results

Non-quantitative;
Low scalability;
Computationally demanding and
time consuming;
Difficult to transfer results into
biological interpretation

[274]

Agent-based modelling [153] Explores behaviour of individual entities;
Some agents are adaptive in their behaviour;
Depicts local interactions and environmental
heterogeneity

Non-quantitative and entities of
properties are discrete;
Not suitable for intracellular
networks

[159,161,275]
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modelling (ABM) approach and are applied to both synthesizing
the system through multi-scale or trans-scale integration. Some
of the commonly used formalisms in simulating humoral and/or
cell-mediated immunity upon infection have been summarised in
Table 4. Additional examples of in silico modelling of immuno-
genicity have been discussed in Hande et al. [149], Charoentong
et al. [150], Dobrovolny et al. [151], and Narang et al. [152].

There is no global best formalism for system immunology mod-
elling and the choice of model is dependent on the study objective
[149,152]. Modelling methodologies such as differential equations
are more suitable to depict a homogeneous system whereas cellu-
lar automata and agent-based modelling are more commonly used
in the simulation of a heterogeneous system [153,154]. Cellular
automata and differential equations are also more commonly used
to study the intracellular network as compared to the uses of
agent-based modelling in studying a network composed of both
innate and adaptive immunity. ODEs and PDEs are also more
favourable over cellular automata and ABM if a numerical analysis
is needed to validate the hypothesis of interest. For example, ODEs
have been used in several simulations to study the within-host
response to SARS-CoV-2 infections [155–158]. Alternatively,
multi-formalism modelling is possible in overcoming the pitfalls
of each formalism, and examples of applications to SARS-CoV-2
immune response studies are seen in Sahoo et al. [155], Getz
et al. [159], Peter et al. [160], and Fain et al.[161]. For example,
Hernadez-Vargas and Velasco-Hernandez [162] used target cell-
limited models integrated with ODEs in exploring the T cell-
induced immunity upon SARS-CoV-2 infection. The model also
adapted mathematical terms in evaluating the consequence upon
the introduction of a hypothetical drug. Although the approach is
succinct, this paper identified some potential mechanisms regard-
ing the timeline of symptoms-development and the benefits of
prophylactic medication upon SARS-CoV-2 infection. Similarly,
Getz et al. [159] has assembled a multidisciplinary team of scien-
tists in developing a Physicell-based multi-scale model in simulat-
ing critical processes during SARS-CoV-2 infection. The framework
is based on agent-based modelling in imitating the 2D and 3D tis-
sue environments coupled with cell phenotypic parameters using
ODEs.

In the study by Sahoo et al. [163], the model predicts that an
intermediate strength innate immune response integrated with a
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weaker adaptive immune response will require longer virus clear-
ance time, as reflected by the age-dependent severity in COVID-19
in clinical settings [164]. In another study, their mathematical
model suggests that the disease severity is increased for people
who are exposed more often to SARS-CoV-2 [156]. This is persis-
tent with a clinical study where those infected in a high transmis-
sion setting of Wuhan have a high odd ratio for severe COVID-19
outcomes as compared to low transmission settings [22]. The
model in Fain et al. [161] also indicates that the infection duration
can range up to 73 days, despite most clinical studies suggesting a
median duration of 14–20 days. This is supported by several clini-
cal findings with patients who shed the virus for more than 60 days
post-hospitalization [156,165,166]. These findings suggest that
although the models are simplified, they can provide additional
comparable insights into the infection. Later in this review, we will
discuss how mathematical models can be applied in studying the
vaccine immune response.

4.2. PK/PD studies in vaccine design

Mathematical modelling approaches have become an integral
part of drug discovery and development in recent years and are
used when studying drug PK and pharmacodynamics (PD). Surpris-
ingly, there is only limited knowledge available on vaccine absorp-
tion, distribution, metabolism, and excretion (ADME) processes.
Indeed, there is the long-lasting belief that PK studies are irrelevant
in evaluating vaccine efficacy. This is also reflected on the current
regulatory registration processes across the world, which require
no experimental PK studies to be conducted for vaccine approval
[16]. Here, the flawed premise of this notion is challenged by
briefly revisiting how (adjuvanted) vaccines induce immunogenic-
ity. Currently, PK modelling is rarely used in vaccine (antigen or
adjuvant) immunogenicity prediction. The few PK models that
exist in literature are presented and their relevance to the
COVID-19 vaccine development process is discussed.

4.2.1. Timing and location in vaccine efficacy
The immune response can be broken down into two general

categories: innate and adaptive. When an invading pathogen is
encountered, cellular effectors of the innate immune response,
such as macrophages and dendritic cells (DC), are able to detect
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the encounter, through activation of pattern recognition receptors
(PRRs) that survey both the extracellular and intracellular space,
responding to conserved pathogen-associated molecular patterns
(PAMPs). This sets off a cascade of events, including antigen uptake
by innate cells, such as immature DCs, that subsequently differen-
tiate to mature antigen-presenting cells (APCs). Mature APCs that
have processed the antigen to peptide fragments, present it on
their surface in forms appropriate for inducing naïve T cell activa-
tion (priming). This interaction takes place within the lymph nodes
(LNs), a pivotal meeting point between lymph-migrating APCs and
naïve T and B cells– principal drivers of adaptive immunity– thus
establishing a link between the innate and adaptive arms of the
immune response. Indeed, the adaptive response requires innate
signals for its activation [14,167,168].

The LNs are areas of high T and B cell concentration, however,
these are compartmentalised into specific sites. T cells reside in
the paracortex (T cell zone), deeper in the LNs, together with a
large population of migratory antigen-presenting DCs. B cells are
located in the follicles (comprising the B cell zone), areas where
non-migratory follicular DCs (FDCs) are also found. Upon exposure
to antigen presented by APCs, naïve CD4+ T cells (T helper cells or
Th) are activated and differentiate into functionally distinct sub-
populations. This process is influenced by the available levels of
antigen and higher doses are associated with greater production
of follicular helper T cells (TFH). B cell priming requires binding
to cognate antigen in its native form and is less sensitive to antigen
levels [167,168].

Following activation, B cells enter specialised regions of the fol-
licles that are named germinal centres (GCs). GCs are further split
into a light and a dark zone. In the dark zone, activated B cells
undergo proliferation and somatic hypermutation of their antigen
receptors; when a round of proliferation ends, GC B cells migrate to
the light zone, where they acquire antigen from the FDCs, which is
then processed and appropriately presented on their surface to TFH
cells. This is a cyclic process known as B cell affinity maturation
and signals provided by the TFH cells drive the fate of the B cells.
Upon exiting the GCs, B cells either become antibody-producing
cells (short-lived, termed plasmablasts, or long-lived, named
plasma cells), or memory cells [167].

The aim of vaccination is the induction of immunological mem-
ory. Modern subunit vaccines lack the pathogenic features (PAMPs)
required for sufficient activation of the innate immune response,
which in turn affects the effectiveness of the downstream adaptive
response. In this case, adjuvants are paired with purified antigen in
order to provide the inflammatory cues that the former lack. As
discussed, however, efficient antigen transport to the LNs is a crit-
ical component in the cascade of events eventually leading to the
formation of memory cells. The use of adjuvants adds one more
layer of complexity that needs to be considered during vaccine
design. In their excellent review, Irvine et al. [167] point out that
cell-mediated antigen/adjuvant transport to the draining LNs
(dLNs) is a relatively inefficient process compared to direct lym-
phatic transport. Furthermore, adjuvants that fail to accumulate
in the dLNs and reach the blood (lack of right location), pose the
additional risk of inducing systemic toxicity. All in all, it becomes
apparent that the biodistribution profiles of the antigen and adju-
vant should be evaluated together. High antigen levels in the
absence of inflammatory cues within the LNs or vice versa (lack
of right timing) will result in suboptimal immune response [167].

4.2.2. Predicting antigen immunogenicity
The introduction of IS/ID modelling, while in its early stages,

aims to translate PK/PD modelling from drug development to vac-
cine design. Similar studies still remain scarce in the literature as
far as vaccines are concerned. These models, while lacking strong
mechanistic nature, provide concrete insights on the predictive
262
capabilities of PK/PD methods in vaccine design. Indeed, IS/ID
modelling has already been used to facilitate animal model
decision-making and inform first-in-human dose selection.

Rhodes et al. [169] use data from macaques to predict IFN-c
responses in humans, following tuberculosis (TB) bacillus
Calmette-Guérin (BCG) vaccination. Two different macaques spe-
cies, rhesus and cynomolgus, are the primary non-human primate
models for TB. However, it has been shown that under the same
experimental conditions, the outcomes can be species-dependent
and even within the same species, the country of origin of macaque
might affect the level of protection against infection and response
post-vaccination. The model adopts a compartmental structure
and nonlinear mixed-effects modelling (NLMEM) are used to
describe the IFN-c dynamics of two CD4+ T cell populations: tran-
sitional effector memory (TEM, short-lived) and resting ‘‘central”
memory (CM, long-lived) cells. A proportion of TEM cells, whose
rate of post-vaccination recruitment is time-dependent, undergo
apoptosis, and the remaining transition to CM cells.

Notably, this is an over-simplified model, consisting of 5 param-
eters in total, out of which 3 are fitted to the experimental data.
The model, separately fitted to macaque and human ex vivo IFN-
c data, is shown to describe the empirical data well. It is then used,
among others, to: 1) identify covariates that explain the within-
population variation and 2) test which fitted macaque models best
predict human IFN-c responses. Macaques were found to be best
stratified by colony and humans by baseline BCG status, and these
two were significantly associated regarding the BCG-induced IFN-c
response. Indonesian cynomolgus macaques and Indian rhesus
macaques best predicted the immune response of baseline BCG-
naive humans, while Mauritian cynomolgus macaques were found
to do the same for baseline BCG-vaccinated ones.

In a subsequent publication, Rhodes et al. [169] use the same IS/
ID modelling framework to inform TB vaccine dose decision-
making in humans. The model is calibrated on IFN-c response data
for the TB vaccine H56 adjuvanted with IC31� (H56 + IC31) in mice
and humans, and H1 + IC31 data in humans only. The mouse data
were stratified by dose group and the TEM to CM cell transition
rate (bTEM) was the single parameter selected to differ among
them. Subsequently, the bTEM-dose curve was estimated for mice,
assuming a peaked curve profile based on prior studies. This was
used to extrapolate to doses ranging 0.01–50 mg for H56 + IC31.
In humans, the single available experimental point for 50 mg
H56/H1 + IC31 was used, together with an allometric scaling factor,
to predict (human) bTEM values for doses in the 0.1–500 mg
H56 + IC31 range, using the mouse-predicted curve as a starting
point. This approach enabled the authors to predict that doses in
the range of 0.8–8 mg may be as, or more, immunogenic in humans
as larger doses. This prediction was later independently supported
by a Phase 1/2a H56 + IC31 dose-ranging clinical trial [146].

To put the importance of this into perspective, there is an ongo-
ing scientific effort to find suitable animal models for COVID-19
vaccine development [170]. The implications of utilising similar
approaches in vaccine development, range from accelerating the
process to enabling the identification of animal models that are
better suited for special human populations (such as the elderly
or disease groups).

4.2.3. Predicting adjuvant immunogenicity
Modern vaccine design aims to maximise efficacy while min-

imising potential serious adverse effects. To this end, newer
approaches have shifted away from early live-attenuated and inac-
tivated whole-pathogen vaccines, towards platforms with
improved safety profiles, such as recombinant viral vectored,
nucleic acid-based, and protein subunit vaccines.

Adjuvants play a multifaceted role in vaccine development; in
addition to boosting the elicited immune response, the use of an
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appropriate adjuvant can also induce a broadened antibody
response with improved magnitude and functionality, due to a
greater number of functional antibodies, antibodies with higher
affinities, or both. Appropriate adjuvant selection can also guide
towards desirable T cell responses. For example, Dong et al [33]
propose that Th1-type biased adjuvants may be preferable when
compared to those inducing Th2-type immune responses, since
the latter have been connected with increased lung
immunopathology in SARS-CoV-2 vaccines.

As discussed, the PK profiles of adjuvants can have profound
impact on the immune response generated by vaccines that rely
on them for inflammatory cues. Thus, in silico PK approaches could
be used to assess adjuvant biodistribution profiles and, in turn,
allow for informed immunogenicity predictions to be made. PK
models tend to adopt a compartmental representation, but the
compartments involved often lack physiological meaning. The con-
cept of physiologically-based pharmacokinetic (PBPK) modelling
differs from other PK modelling approaches in that each compart-
ment corresponds to an organ or tissue, though lumped compart-
ments are sometimes used for dimensionality reduction [171].

Such models come with many advantages due to their nature,
which is inherently mechanistic. Among their typical applications,
PBPK models are often used for translating existing understanding
to novel settings, e.g., different species or special populations.
Other important applications include, but are not limited to,
informing dosing regimens and generating and testing hypotheses
regarding the physiological processes that drive observed drug
behaviour [172]. When approached from a different point of view,
it becomes apparent that the majority of the aforementioned appli-
cations are, essentially, trying to answer the same question: how
may intrinsic factors– age, gender, race, weight, height, pregnancy,
and organ dysfunction– influence exposure (PK) and/or response
(PD) to a specific drug? [173]

Achieving improved vaccine efficacy has significant advantages
that become ever more relevant in the case of a pandemic. Reduc-
tion in the amount of antigen needed while maintaining the target
antibody response would be expected to increase manufacturing
capacity. Similarly, shortening the vaccination regimen– as in
GlaxoSmithKline’s (GSK’s) FendrixTM hepatitis B vaccine, where
addition of the AS04� adjuvant enabled the reduction from a three
to a two-dose regimen– could ease the logistical burden that dis-
tributing doses on a massive scale poses [174].

Despite their popularity in drug development, PBPK modelling
has rarely been used in studying vaccine adjuvants. Tegenge and
Mitkus [175] have developed a whole-body PBPK (WB-PBPK)
model for squalene-containing adjuvants in human vaccines. In
their initial publication, the model is used to make predictions
for intramuscularly (IM) injected commercial MF59� adjuvant, a
squalene-in-water (SQ/W) emulsion. In a subsequent study, the
same generic WB-PBPK model is extended and applied to AS03�,
which is a SQ/W adjuvant containing a-tocopherol.

The original and subsequent models, adopting the typical PBPK
structure and assumptions [171] are a collection of tissue-
representing compartments, connected by a circulating blood sys-
tem. Each tissue compartment is described as a mass-balance ODE
under the assumptions of perfusion rate-limited and well-stirred
conditions and defined by tissue volume and blood flow rate. These
are physiological parameters, only specific to the species of inter-
est, and widely available in the literature. Due to the inclusion of
draining and distal LNs, the compartments are also described in
terms of lymph flow rates, which are set at a fraction of the corre-
sponding tissue blood flow. Niederalt et al. [176], making a similar
assumption for lymphatic flow to Jones et al. [171], estimated the
fraction by fitting to experimental concentration–time profiles.
Similarly, in their original publication, Tegenge and Mitkus [175]
assume a priori almost exclusive lymphatic transport of squalene
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in part due to its highly lipophilic nature. In a later publication
[177], an optimal fractional lymphatic transport value is estimated
for a sheep PBPK model by fitting with available experimental data.
This is then used to inform a human PBPK model, that is otherwise
built on top of human-specific physiological parameters. This,
while not ideal, is testament to the translational power of this type
of modelling; the ability to extrapolate across species allows for
predictions to be made, even under limited data availability.

Only passive transport (diffusion) is considered due to both
blood and lymphatic flow. For that, tissue-plasma partition coeffi-
cients for squalene were estimated using mechanistic tissue
composition-based equations for highly lipophilic compounds
[175]. These methods, belonging to the broader family of in vitro-
in vivo extrapolation (IVIVE) techniques, estimate tissue distribu-
tion from physicochemical and in vitro binding characteristics of
the compound [171]. Inter-species extrapolation is therefore sig-
nificantly simplified, since tissue-plasma ratios depend on the dif-
ference in tissue composition among species, physiological
parameters that are generally available in literature [178]. Addi-
tionally, Tegenge and Mitkus [175] modelled emulsion cracking
in deltoid muscle and dLNs, described by first-ordered kinetics fit-
ted to in vivo data in squirrel monkeys. Squalene metabolism in
adipose tissue and liver, as well as fecal excretion, were also con-
sidered following first-order kinetics and fitted to in-vivo data in
rats and humans. There is an important point to be made here;
PBPK modelling, despite introducing complexity, maintains a clear
separation among physiological and substance-specific parame-
ters. The former tends to be easily accessible from various sources
in literature, while, for the latter IVIVE, techniques exist that
reduce the dependence on in vivo data and thus allow for easier
extrapolations. Furthermore, in the event where enough experi-
mental PK data exist, more advanced estimation methods can be
applied, even in cases of highly dimensional parameter spaces
[179].

While not often used, PBPK models like those presented above
could be applied on different scenarios to improve adjuvant selec-
tion with minimal effort. This is due to the separation of the phys-
iological parameters (that remain unchanged between models)
from the substance-specific ones which simplifies model parame-
terisation, and the increased availability of IVIVE techniques that
allow in vitro data, which is easier to generate, to be used. All in
all, the few examples of PBPK models applied in vaccine design
exist only for adjuvants. However, these models adopt a generic
structure, in that they can be applied to different species and com-
pounds with minimal changes or be extended to cover novel sce-
narios in a relatively straightforward manner. As such, while
PBPK modelling has been traditionally utilised in drug develop-
ment, a compelling case can be made that their applicability in vac-
cines might come with minimal changes and that vaccine design,
in general, could benefit just as much by the advantages this tech-
nique has to offer.

4.2.4. Predicting antigen ADME properties
The adjuvant-focused studies of Tegenge and Mitkus [175,177]

incorporate dLNs and LNs compartments, assume tissue-level
lymph flow as a fixed fraction of the corresponding tissue blood
flow rates and local preferential lymphatic transfer. To date, there
are several PBPK models that include a more involved representa-
tion of the lymphatic system [176,180–183]; such models are usu-
ally built to predict the biodistribution of monoclonal antibodies
(mAbs) in animal models or humans. Also, these typically share a
common framework, first introduced by Baxter et al. [184], who
incorporated the two-pore formalism to describe transcapillary
exchange of mAbs. Macromolecular compounds, proteins and pep-
tides convect and diffuse across the barrier between plasma and
interstitial space by passing through large and small pores. Fluid
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recirculation also occurs, with small pores acting as filters, trap-
ping large molecules in the interstitial space, while excess fluid
flux into the latter is taken up by the lymphatic system
[176,181]. Niederalt et al. [176] give a detailed overview of the
model, but the hydrodynamic radius of the compound is the only
drug-dependent parameter needed.

The two-pore model of extravasation can be used to describe
the passive transport of both antigenic proteins or peptides, and
endogenous IgG. Moreover, in contrast to the simplistic approach
taken by Tegenge and Mitkus [175], where each compartment rep-
resents a single tissue, almost every model here splits tissues into
several sub-compartments [176,181,182,185]. Among the two
already mentioned, plasma and interstitial space, other sub-
compartments can include blood cells (vascular space), cellular
space, and endosomal space [176]. This detailed tissue representa-
tion requires no preferential lymphatic transfer assumption to be
made, as lymph flow is instead incorporated in a mechanistic man-
ner, while also enabling better localisation of active processes and
reactions. Importantly, the additional parameterisation needed is
physiologically-focused, e.g., tissue-plasma partition coefficients,
therefore compound-independent, and can also be handled by
IVIVE estimation techniques.

A notable example of a localised active process is incorporation
of the neonatal Fc receptor (FcRn) binding [176,181,185]. The
endosomal space represents the region within the vascular
endothelial cells where catabolic clearance of IgG and albumin
fusion proteins takes place. These proteins are taken up from
plasma and interstitial space through pinocytosis; in the endo-
somes, they reversibly bind to FcRn with high affinity, due to the
acidic environment. The protein-FcRn-complex is recycled back
to plasma and interstitial space where it dissociates given the
low affinity for FcRn binding due to the neutral environment.
Any unbound proteins in the endosomal space degrade. The
parameters involved in FcRn binding are species-specific
[176,185]. Models that incorporate tissue-specific FcRn expression
by assuming a proportional relationship among FcRn concentration
and its tissue-specific mRNA expression also exist in literature
[186]. This sub-model could be of great interest in the case of ‘‘al-
bumin hitchhiking” [187,188], too, where antigens are modified
with a lipophilic albumin-binding domain to achieve greater accu-
mulation in LNs.

4.2.5. Incorporating epitope binding affinities
The components discussed until now account for passive trans-

port of both antigen (macromolecules) and adjuvant (assumed as
small molecules) compounds, which includes lymphatic transfer
to LNs. They do so by adopting a fully mechanistic representation,
while requiring a minimal amount of compound-specific parame-
ters. For a complete integrated approach, however, there is still
need for an immune response-mediated antigen/adjuvant clear-
ance and PD response component. A straightforward implementa-
tion would be to incorporate pre-existing immune response
models, as the ones previously presented.

Quantitative systems pharmacology (QSP) techniques [189–
192], in particular, are of much interest for this. Jafarnejad et al.
[192] utilise, among others, the formalism given by Chen et al.
[190]; here, we focus on the latter, as it presents a generalised
framework, including applications [190], that is better aligned with
the objectives of this review. This is a multiscale ODE model that at
the whole-body level accounts for the in vivo disposition of the
antigen. For the latter, an empirical PK model is utilised that could,
in principle, be substituted for the more detailed PBPK approach
discussed above.

Furthermore, mechanistic details are incorporated both at the
subcellular and cellular level. The model considers the following
immune cells: 1) DCs, chosen to represent all APCs, 2) CD4+ T
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helper cells, and 3) B cells, and includes activation and differentia-
tion processes for all three. DC activation is modelled to be driven
purely by lipopolysaccharide (LPS); after maturation, at the subcel-
lular level, DCs uptake antigenic proteins, which are degraded into
T epitope peptides within the endosomes, and then presented in
MHC II complexes on their surface. This highly mechanistic
description of antigen presentation allows for the integration of
the number and MHC II binding affinities of T-epitopes, which
can be obtained either in vitro or predicted in silico– as already dis-
cussed in this review. Indeed, the model is not only specifically
built to allow for that, but also permits incorporation of subject-
specific MHC II allele genotypes [189,190]. At the cellular level,
naïve T cells that are activated through DC-presented antigen, pro-
liferate and differentiate into either memory T cells or functional T
helper cells. The former can be directly activated by mature DCs,
while the latter facilitate downstream B cell activation. B cells then
proliferate and differentiate into antibody-secreting short-lived
and long-lived plasma cells, or memory B cells.

4.2.6. Integrated PBPK models of vaccines
So far, techniques employed regarding antigen PK/PD (the IS/ID

modelling approach) and adjuvant PBPK modelling have been
explored. We focused on in silico studies that could be directly
translated to COVID-19 vaccine design with minimal to no changes
needed. As already discussed, the latter might have the potential to
accelerate both preclinical and clinical studies. However, no inte-
grated PBPK/PD modelling framework built around vaccine design
exists to date; such approach could be thought to at least consist
of: 1) a typical PBPK structure, expanded to include lymphoid com-
partments and transport, 2) passive compound transport and clear-
ance processes, describing both adjuvant and antigen
biodistribution, 3) active immune response-related transport and
clearance of adjuvant and antigen compounds, and 4) an immune
response PD component, that should be capable of predicting con-
centration–time profiles of markers relevant in preclinical and clin-
ical research.

4.3. Perspectives and challenges

Incorporating PBPK modelling of adjuvants in the vaccine
design workflow of COVID-19 vaccines can provide significant ben-
efits. First, in terms of accelerating the development process, par-
tially through speeding up the transition from preclinical to first-
in-human, Phase I, clinical studies. In their adjuvant models,
Tegenge and Mitkus [175,177] extrapolate from limited ex/in vivo
animal data in mice and sheep to humans. In similar fashion,
Rhodes et al. [145] under limited available human data and more
extensive, but still limited, mouse ex vivo data, use PK/PD mod-
elling to predict the most immunogenic vaccine doses in humans.
Taken together, these methods provide a significantly more refined
approach to translating biodistribution profiles from animal mod-
els to humans than the currently-utilised allometric scaling
approach. Future incorporation of a PB component could further
strengthen the flexibility and predictive power of such approaches.

Improving dose translation capabilities are particularly impor-
tant, as small animal models and non-human primates are used
extensively in vaccine development; in regard to COVID-19, the
WHO has been reporting periodically on the progress made in
identifying suitable animal models, which are in part to be used
to accelerate preclinical testing of vaccine candidates [170,193].
This is the same framework (PK/PD) that was also used to better
inform animal model selection [169].

Second, in the presence of a validated human PBPK model, the
framework can allow for extrapolation across human populations,
potentially providing useful insights before, or during, Phase II and
II trials are conducted. For example, in the presence of appropriate
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in vivo PK data in healthy volunteers, such as in Phase I trials, esti-
mation of the expected PK behaviour in specific populations, e.g.
the elderly or people with underlying medical conditions or in
underrepresented subjects, often women and BAME groups, could
take place. Indeed, global evidence shows a higher COVID-19 bur-
den with old age, male sex, obesity, and comorbidities. People from
Black, Asian, and minority ethnic (BAME) groups in the UK and
Black, Hispanic, and Native American groups in the USA are also
at increased risk of COVID-19 complications and death [194]. In
this case, computational methods capable of accounting for such
covariates should provide predictions of increased importance.
Notably, these are the same intrinsic factors discussed earlier, that
PBPK modelling is built around of.

Such information might then be utilised for designing better-
informed Phase II and III clinical trials and could potentially lead
to in silico-augmented trials, in which both physical and virtual
patients are combined [148]. Most importantly, given that appro-
priate biodistribution of both antigen and adjuvant is essential
for vaccine efficacy, incorporating PBPK modelling in early vaccine
development will increase the likelihood of progressing a success-
ful vaccine.

In all vaccine development, acceleration of preclinical and clin-
ical testing and reduction in clinical trials cost would be beneficial.
These benefits are amplified under pandemic conditions that
require rapid vaccine design and evaluation. However, while adju-
vant PK data, sparse as may be, exist in literature, antigen related
ADME processes are rarely evaluated. Indeed, antigen is adminis-
tered in small amounts and widely spaced, making kinetic studies
hard to implement [16]. A summary of PK parameters reported in
vaccine development studies is given by Gómez-Mantilla et al. [16]
Then, the sparsity of such data can also be attributed, at least in
part, to the absence of regulatory guidance mandating their exis-
tence for vaccine approval.

That, together with the high dimensionality of the parameter
space (88 parameters in total [190]), as is often the case in PBPK/
PD modelling, and mechanistic modelling in general, are expected
to present a major challenge. However, many of the parameters
needed are species-specific; Chen et al. [190] developed their
model for both mouse and human. The ability to predict across
species, in turn, should allow for easier adaptation into both pre-
clinical and clinical settings. Also, by incorporation of MHC II allele
frequency and T-epitope binding affinities, Chen et al. [190] were
able to predict the immune response of 1,000 virtual subjects
against adalimumab. If combined with the additional PBPK-
provided subject-level PK information and integration of in silico-
predicted T-epitope affinities of novel vaccine antigens, this could
allow for early vaccine immunogenicity profile prediction in differ-
ent human populations. Such tools could potentially prove useful
in cases where rapid vaccine development is prioritised, like in
the ongoing COVID-19 pandemic.
5. Toxicity and allergenicity prediction

5.1. Toxicity prediction

There are various adverse clinical effects associated to the cur-
rently authorized SAR-CoV-2 vaccines. Taken those approved by
the UK authority, i.e., Comirnaty [19], mRNA-1273 [20], and
AZD1222 [21], the common side effects include pain, swelling,
and redness at the site of administration and reactogenicity symp-
toms including mild or moderate fever, myalgia or headache after
7 days post-injection. These adverse effects are potentially caused
by inflammatory cells infiltration at the injection site or result from
the host immune response evoked by the vaccine components.
Most importantly, these side effects are tolerable and do not
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possess lethal risks to the majority of the global population. In
contrast, this may not be the case for some other vaccine candi-
dates at the initial phase of vaccine design. It is possible that some
promising candidates may present life-threatening toxicity and
could not be picked up during in vitro or in vivo studies. More sev-
ere adverse events including trauma, macrophagic mypfasitis
(MMF), enhanced diseases, and autoimmune diseases have been
reported previously in toxicology studies of other vaccines
[195–198]. These studies demonstrate the double-edged potential
of vaccine-mediated immune-stimulation. Although the precise
mechanisms of these severe adverse events are not well character-
ized, existing computational tools are available to eliminate
vaccine candidates with high chance of evoking toxicities.

5.1.1. Non-specific toxicity predictions for SARS-CoV-2 vaccine
epitopes

Peptide toxicity predictions have been widely applied in facili-
tating the design of therapeutics with desired lack of toxicity
[199]. Most prediction tools utilised ML approaches in classifying
peptides based on their physicochemical, therapeutical, and toxi-
cological properties [200–203]. Amongst the number of available
tools, ToxinPred predicts peptide toxicity using a SVM classifier
trained on SwissProt and TrEMBL peptide sequence data [201]. In
ToxinPred, various features can be selected from the training data
including AA composition, dipeptide composition, binary profile
pattern, and motif-based profile for toxicity predictions. It has a
high accuracy of 94% (using dipeptide composition) and its web
interface allows analogue generation with minimum mutations
to design a non-toxic version of the peptide. The precision and con-
venience make ToxinPred the commonest tool for toxicity predic-
tion in the published SARS-CoV-2 vaccine design studies
[22,204–206].

Alternative tools to ToxinPred are available. For example,
ToxClassifier, a SVM-based classifier trained on their Tri-Blast
Enhanced data, has the highest accuracy of 96% [202]. Unlike Tox-
inPred, ToxClassifier does not have a length limit of 30 AA. ToxClas-
sifier also provides similar toxin or non-toxic sequence upon query
submission. TOXIFY is a Recurrent Neural Networks-based classi-
fier trained on UniProtKB protein sequences [203]. TOXIFY has a
reported accuracy of 97.4% and shown superior to ToxClassifier
in classifying non-toxic molecules. More recently, Jain and Kihara
proposed NNTox, a neural network-based classifier trained on
SwissProt data, for predicting 11 sub-classes of toxins. NNTox
has an overall accuracy of 0.8 and can take DNA sequence as input.
PredSTP is also available in predicting toxins based on the sequen-
tial tri-disulphide peptide from the Knottin database [207,208]. As
far as we are aware from existing publications, despite the
reported improved performance of these alternative tools, only
ToxinPred [209] has been used for toxicity prediction. This con-
trasts to the combinatorial methodology used for epitope predic-
tions in SARS-CoV-2 vaccine design studies. By applying multiple
toxicity tools, the more rigorous screening can eradicate more can-
didates with a potential safety hazard at the beginning stage of
vaccine development.

5.1.2. Haemolytic toxicity predictions for SARS-CoV-2 vaccine epitopes
The above-mentioned tools provide prediction of all types of

toxicity. They can be used to assist candidate-filtering in some of
the conventional in vitro toxicity assays including lactate dehydro-
genase (LDH) leakage, 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-
2H-tetrazolium bromide (MTT), or adenosine triphosphate (ATP)-
based assays. Other tools are available in indicating peptide’s hae-
molytic toxicity, the ability to damage the red blood cells. In con-
ventional studies, such activity is measured by the amount of
haemoglobin released from membrane-compromised erythrocytes
[210]. With the advances in computational power, haemolytic
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activity can be predicted using tools such as HLPpred-Fuse [211],
HemoPI [212], and HemoPImod [213].

Amongst the listed examples, HemoPI is constituted of HemoPI-
1 (a dataset of 552 haemolytic peptides and 552 non-haemolytic
peptides), HemoPI-2 (a set of peptides with low haemolytic
potency, n = 462), and HemoPI-3 (a dataset with high haemolytic
potency, n = 1,623) [212]. Users can select a SVM with/without
motif-based models trained on all or specific dataset(s) according
to their needs. For example, to filter a set of SARS-CoV-2 epitope
candidates by their haemolytic potencies, the hybrid model trained
on HemoPI-1 or HemoPI-2 should be chosen. HemoPI is available
as a webserver and has been used in SARS-CoV-2 vaccine design
studies [214,215]. Similarly, HLPpred-Fuse was trained with hae-
molytic peptides using six ML classifiers, including SVM and ran-
dom forests, to select 54 probabilistic features (e.g., binary
profile, conjoint triad, and grouped dipeptide and tripeptide com-
position etc.) for the final prediction model [211]. The result is
given as the haemolytic peptide activity and probability values.
More recently, Kumar et al. [213] developed HemoPImod, a classi-
fication model based on 4 classifiers trained with multiple peptide
features, including its 3D descriptors. The reported accuracy of
HemoPImod is 78.29% and require prediction of modified structure
with PEPstrMOD [216]. In contrast to HemoPI, both HLPpred-Fuse
and HemoPImod appear not to have been applied in SARS-CoV-2
vaccine design studies, possibly due to their time of launch.

5.1.3. Vaccine component toxicity predictions with computational
network analysis

Another potentially toxic ingredient constituted in any vaccine
is the adjuvant. As mentioned in the Immunogenicity section, adju-
vants are included to evoke an effective immune response mostly
through innate or humoral immunity. Of the authorized SARS-
CoV-2 vaccines, alum has been used as an adjuvant in CoronaVac
[217]. Other common adjuvants include minerals (oil), diethy-
laminoethyl (DEAE)-dextran, enterotoxin, CpG oligodeoxynu-
cleotide (ODN), and cytokines. The toxicity of the adjuvant itself
is well-studied and documented during its design stage. However,
a predictive platform has not yet been developed which takes into
account that all vaccine components in combination can evoke
higher toxicity [218–220]. Here, we hypothesise that a computa-
tional network analysis-based method can predict the toxicity of
multiple vaccine components based on their protein-interactors.

As indicated by Cheng et al. [221], network analysis on drug tar-
gets and disease proteins can be utilised in predicting efficacious
combination therapies. In the study, the drug-target network was
constructed based on the binding affinity data, inhibition con-
stant/potency, dissociation constant, median effective concentra-
tion, or median inhibitory concentration from 6 databases
(DrugBank [222], Therapeutic Target Database [223], PharmGKB-
database [224], ChEMBL [225], BindingDB [226], and IUPHAR/BPS
Guide to PHARMACOLOGY [227]). In the analysis, the adverse drug
interactions were collected from DrugBank [222] and TWOSIDE
[228] for adverse event-specific drugs. To study the potential side
effects of a SARS-CoV-2 vaccine candidate, the binding affinity
can be acquired through mass spectrometry-based proteomics
with human cell in vitro. The data acquired can then be used to
construct the protein interactome, in a similar method to Chent
et al. [229]. Various network algorithms including Random Walk
Restart and centralities can be used to extract key interacting pro-
teins from the vaccine-protein interactome. The subsequent key
proteins can deduct the potential side effects by consensus-
filtering with SIDER database [230] or submission to toxicity-
related protein database, such as DITOP [231]. Such approach
assumes that the underlying mechanism for vaccine-induced toxi-
city would be similar to that of drug-induced toxicity. The method
would capture cell-type specific toxicity which also presumes that
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the intracellular vaccine-protein interaction would have a system-
atic effect. Alternatively, one could measure the interactome by
applying proteomics on animal models administrated with the
vaccine. Nevertheless, the network analysis method may not
replace any in vitro or in vivo studies but would serve as an auxil-
iary study in understanding the mechanism of any potential toxic-
ity arises from the vaccine candidate injection.

5.2. Allergenicity prediction

Allergenicity measures the ability of a substance in inducing
hypersensitivity. There are four types of hypersensitivity. In type
I hypersensitivity, increased production of IgE primes mast cells
to release granules, histamine, and cytokines, thus causing the
allergy symptoms. Type I hypersensitivity is responsible for mani-
festation in asthma, allergic rhinitis, food allergies, and anaphylac-
tic reactions to substances. Hence, IgE binding affinity is frequently
used for allergenicity predictions. For type II hypersensitivity, the
immunoglobulins produced are IgG and IgM with subsequent
complement system activation leading to cell damage or cell lysis.
Similarly, in type III hypersensitivity, IgM, IgG, and IgA production
increased for polymorphonuclear leukocytes chemotaxis and
induce tissue damage, whilst type IV are associated with
Th1-mediated reactions where the symptoms are delayed, and
macrophages or cytotoxic-T cells are activated in causing direct
cellular damage.

5.2.1. IgE binding affinity predictions for SARS-CoV-2 vaccine epitopes
Similar to the technique used in epitope predictions, there are

several ML-based classifiers available in predicting peptide binding
affinity to IgE. Namely, AlgPred combines both SVM classifier
trained on AA and dipeptide composition, motif-based method,
IgE epitopes datasets, and BLAST search against allergen-
representative peptides [56]. More recently, the latest version,
AlgPred2.0 is trained on a larger dataset and has improved
reported accuracy of 0.98 AUC [232]. AlgPred has been used in pre-
dicting the allergenicity of SARS-CoV-2 vaccine epitopes [204,233–
236]. Another commonly used prediction tool is AllerTOP, a k-
nearest neighbours classifier trained on 2,395 allergens [237].
AllerTOP was reported to have higher accuracy compared to
AlgPred and is seen applied in Dar et al. [238], Behmard et al.
[131], Ayyagari et al. [112], Dai et al. [76], and Das et al. [66]. Other
popular prediction tools include AllerHunter [239], PREAL [240],
ProAp [241], and AllergenFP [237]. It is beyond the scope of this
review to benchmark these predictors. However, consensus-
based filtering with multiple tools may decrease the chances of
allergenicity amongst the epitope candidates, as employed in Sir-
ohi et al. [204] and Behmard et al. [131]. Similarly, IgPred, a
SVM-based B cell epitope prediction tool for predicting antibody-
specific epitopes, can be used to eliminate candidates that tend
to have a higher similarity to known-IgE epitopes [201].

5.3. Predicting vaccine-induced enhanced disease

Computational modelling of immunogenicity can also identify
those who are least benefited by the COVID-19 vaccine candidate.
Recent reports have suggested that the SARS-CoV-2 vaccine may be
susceptible to inducing vaccine-induced enhanced disease– a
condition reported being possibly caused by T helper 17 cells
(Th17-type immune response) or through antibody-mediated
manner [242,243]. The immune enhancement can magnify
SARS-CoV-2 infection and increase the severity of COVID-19
[243]. Although the condition is more commonly studied using
in vitro and in vivo models [197,243], one may apply mathematical
models in eliciting molecular and cellular conditions related to the
enhanced disease. For example, ODEs have been applied for



Fig. 2. Summary of the advantages using computational approaches in vaccine development. Computational approaches can accelerate vaccine development at various
stages. The top panel shows a traditional vaccine development process that requires at least 10 years of research and validation. In the centre, the diagram shows how
different computational approaches (texts in teal) spur the vaccine development process. In the bottom panel, the timeline at the vaccine design stage has been enlarged. The
box summarises the prospectives and challenges our review has proposed at each stage of our suggested computational-assisted vaccine design tools. Processes that have
been associated as parts of reverse vaccinology are represented in filled-gold boxes.
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predicting the likelihood of antibody-mediated enhancement in
Influenza [197]. On the other hand, Carbo et al.’s method in pre-
dicting the probability of Th17-type immunogenicity could be
adapted. Through these methods, the immune enhancement-
associated host factors can be identified and serve as a predictive
biomarker for the vaccine in preventing disease exacerbation
[244]. More importantly, the enhancement-associated properties
of the vaccine can be identified and used to refine the vaccine
design.
6. Discussion

Computational approaches can be employed to aid vaccine
development in several ways and can accelerate the process
(Fig. 2). While typical traditional vaccine development
takes ~ 10 years, computational techniques could speed up this
process and also reduce the associated costs. There has been a con-
certed, global effort to develop vaccines for COVID-19, which has
recently seen three different vaccines approved with many more
in the pipeline, and although computational approaches have been
exploited in this effort, several techniques remain underutilised. In
this review, we covered antigen prediction, epitope prediction,
adjuvant selection and toxicology and allergenicity prediction,
and the applicability of ADME modelling in vaccine design. Fig. 2
also includes other approaches that can stimulate the vaccine
development process. This includes vaccine efficacy prediction
during the clinical trial phases and multi-omics analysis to further
our understanding of the disease and the vaccine.

Computational techniques for vaccine design have been used to
select antigens, predict B and T cell epitopes, and evaluate these
potential epitopes to ensure conservation across mutations in the
virus and across the human population, and to predict immuno-
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genicity and toxicity. There are other computational techniques
which could aid vaccine design for COVID-19 which have so far
been underutilised. Some research groups have studied the
immune signature of moderate and severe COVID-19 patient
cohorts to identify features which classify these cohorts
[35,245,246]. The activities of the antigen-specific T cells, virus-
neutralising antibodies, and the antigen presenting cells during
SARS-CoV-2 infection can elicit the underlying protective mecha-
nisms, thus these parameters that can influence vaccine epitope
immunogenicity [162].

Attempts to develop COVID-19 vaccines have tended to focus
on preventing viral entry into cells. For this reason, the S protein
has been the focus for antigen selection. However, other proteins
could be promising, including those which induce the adaptive
immune system; our meta-analysis of four transcriptomics data-
sets suggests nsp16 warrants further investigation as a potential
antigen for SARS-CoV-2, based on its interaction with proteins
involved in host immune response. This may especially be interest-
ing if any of the mutations which arise in the S protein render cur-
rently approved vaccines ineffective. In such a scenario, alternative
antigen selection would be necessary to deal with the new
variants.

Multiple groups have applied reverse vaccinology to predict
epitopes for SARS-CoV-2 based on the AA structures. An issue with
these approaches is that most studies use the same tools, mostly
relying on web server software to predict epitopes. This over-
reliance on specific tools/pipelines leads to a lack of diversity of
approach which could mean promising epitopes are missed.
Although newer, and indeed more accurate models have been
developed, there has been a lack of uptake of these. There is also
an urgent need for a systemic benchmarking of using different epi-
tope prediction tools in combination. Similarly, many studies have
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utilised structural databases for predicting epitopes with
decreased risks of allergenicity and toxicology. However, there is
currently no approach in predicting toxicity of all vaccine compo-
nents in combination computationally, which may be achievable
through computational network analysis.

PK studies are rarely carried out in vaccines. However, the
importance of PK in vaccine safety and efficacy is well recognised
[167]. This is especially relevant in subunit vaccines, the largest
platform of COVID-19 vaccines at the moment, where the biodistri-
bution of both adjuvant and antigen need to be well-timed
together. However, modelling which has been applied looks at
either antigen or adjuvant alone. Recently, many studies
[145,179] advocate the use of in silico PK modelling in vaccine
design. In the past, it has been shown it is possible to extrapolate
from animal models to study adjuvant PK profiles in humans.
There are also multiple immune response models studying human
immunogenicity. PBPK/PD may not have been utilised in vaccine
development, including COVID-19, yet, but has the potential to
lower antigen doses through better informed adjuvant selection,
accelerate the transition from preclinical animal models to human
subjects, and make predictions for special populations that still
remain underrepresented in modern clinical trials.

It is worth exploring these techniques and developing robust
computational vaccine design strategies for COVID-19. If the unfor-
tunate situation arises in which SARS-CoV-2 variants emerged with
resistance to immunity induced by the approved vaccines [247],
our proposed in silico approaches could accelerate the develop-
ment of a vaccine against the new variant lineage. Specifically,
antigen prediction based on cellular immune response could sug-
gest alternative antigens for a new vaccine and the proposed
immunogenicity and ADME prediction models could indicate if
the appropriate subcomponents of the immune system would be
activated to secure an effective immunisation.

Additionally, these strategies should be ready to be deployed
against further zoonotic diseases as they emerge. The increase in
contact between humans and animals due to the continued expan-
sion of human society and the reduction of animal habitats is
expected to result in similar viral infections emerging in the future.
This is an era in which a system for fast and safe vaccine develop-
ment is needed more than ever.
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