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Abstract

Mathematical modeling of healthcare associated infections (HAIs) and multidrug resistant 

organisms (MDROs) improves our understanding of pathogens transmission dynamics and 

provides a framework for evaluating prevention strategies. One way of improving the 

communication among modelers is by providing a standardized way of describing and reporting 

models thereby instilling confidence in the reproducibility and generalizability of such models. We 

updated the Overview, Design concepts, and Details protocol developed by Grimm et al. for 

describing agent-based models (ABMs) to better align with elements commonly included in 

healthcare-related ABMs. The MInD-Healthcare framework includes the following nine key 

elements: 1. Purpose and scope; 2. Entities, state variables, and scales; 3. Initialization; 4. Process 

overview and scheduling; 5. Input data; 6. Agent interactions and organism transmission; 7. 

Stochasticity; 8. Submodels; 9. Model verification, calibration, and validation. Our objective is 

that this framework will improve the quality of evidence generated utilizing these models.
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I. Framework purpose and audience

Healthcare-associated infections (HAIs) are associated with substantial morbidity, mortality, 

and costs [1, 2]. Mathematical modeling transmission of HAI pathogens and multidrug 

resistant organisms (MDROs) improves our understanding of the dynamics of the spread of 

pathogens, provides a framework for evaluating prevention strategies, and can accelerate 

prevention efforts [3]. Instilling confidence in the reproducibility and generalizability of 

models is a challenge that may be addressed through clear and thorough communication of 

the underlying methodology.

The International Committee of Medical Journal Editors has compiled recommendations for 

best practices for conducting and reporting high-quality scholarly work. Reporting 

guidelines utilized for different types of study designs include STrengthening the Reporting 

of OBservational studies in Epidemiology (STROBE) for observational studies and 

Consolidated Standards of Reporting Trials (CONSORT) for randomized trials [4, 5]. 

However, there is a paucity of best practices for reporting HAI and MDRO transmission 

modeling studies to biomedical journals. As transmission modeling becomes increasingly 

prominent and findings are used to inform public health practice, a common framework for 

reporting would strengthen the knowledge base and acceptability of findings from such 

studies [6, 7], analogous to recent efforts to improve modeling of human papillomavirus-

related cancer control [8].

In 2017, the Centers for Disease Control and Prevention created the Modeling Infectious 

Diseases in Healthcare Network (MInD-Healthcare), a consortium of investigators 

collaboratively developing and using mathematical models to investigate the spread and 

prevention of HAIs and MDROs. This document describes the MInD-Healthcare Framework 

and aims to improve communication among mathematical modelers about their respective 

agent-based models (ABMs). We specifically focus on transmission of HAI pathogens and 

MDROs, though there is substantial overlap with describing other infectious diseases. With 

an increasing proportion of ABMS among all HAI transmission models this framework is 

focused on ABMs in contrast to other models (e.g., compartmental models) for which 

complete mathematical specification is provided for methodological transparency [9]. 

However, the guiding principles are generalizable. This framework can be utilized by 

epidemiologists to better understand the methods used by mathematical modelers and 

appropriately interpret modeling studies’ results. This framework is an adaptation of the 

Overview, Design concepts, and Details (ODD) developed by Grimm, et al. to increase 

transparency and reproducibility of modeling methods in the context of ecological modeling 

[10, 11]. The ODD framework has infrequently been used to describe HAI ABMs, although 

it has improved methodological clarity when employed [12–14]. The MInD-Healthcare 

Framework aims to align the traditional ODD with elements commonly included in 

healthcare-related ABMs and adopt terminology commonly used by epidemiologists to 

describe infectious disease processes.
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II. Framework elements:

The framework is composed of nine elements: 1. Purpose and scope; 2. Entities, state 

variables and scales; 3. Initialization; 4. Process overview and scheduling; 5. Input data; 6. 

Agent interactions and organism transmission; 7. Stochasticity; 8. Submodels; 9. Model 

verification, calibration, and validation. See Table 1 for a checklist for users of this 

framework. Each element should be described clearly and concisely utilizing tables and 

diagrams, where appropriate.

1. Purpose and scope[10]:

The purpose of a model is grounded by the primary objective(s) of the study, and the 

potential impact of the model-driven insights on clinical practice. The scope provides 

boundaries for which dynamics will be included and therefore the external validity of the 

model. The purpose and scope should align with each other and drive the description of the 

remaining framework elements. The purpose and scope of a model are typically described in 

the introduction of an article because they provide critical context for understanding why the 

model was developed and provide a guide for what to expect in the following model 

description. This element contains a summary description and justification for the model’s 

level of complexity and its intended use.

2. Entities, state variables, and scales[11]:

An entity is a person or object that may interact with other entities or be affected by external 

environmental conditions. The entities of an ABM (e.g., patients, healthcare personnel 

(HCP)) are characterized by a set of state variables. A state variable is an attribute which 

performs at least one of the following functions: it distinguishes an entity from other entities 

of the same type or traces how the entity changes over time. State variables may also be 

global and accessible to all entities. Scales refer to the temporal and spatial resolutions of the 

model and how influence they influence the representation of transmission (e.g., minimum 

duration for contact) [15]. Modelers should describe what kinds of entities are in the model 

and by what state variables or attributes they are characterized.

At any point in time, the state variables provide a snapshot of the model, with sufficient 

information to restore and restart the model from that instant. State variables can change 

over time (e.g., use of an antibiotic) or remain constant (e.g., sex, physical location of a 

hospital). Patient-level state variables should be epidemiologically meaningful and 

comparable to data available in electronic medical records (e.g., patients’ treatment statuses 

with each class of antibiotic could be included as state variables (e.g., neither, only 

penicillin, only fluoroquinolone, both), but ‘receipt of 2 antibiotic classes’ would not be 

considered a state variable). Health states are a set of state variables that represent the 

underlying natural history of disease processes. These health states may include, but are not 

limited to, susceptible, asymptomatically colonized, infected and infectious, and recovered. 

The health states that are modeled may vary by agent type (e.g., HCP may only become 

transiently colonized whereas patients progress to infection).

Many ABMs include the following types of entities and their associated state variables:
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Agents. A model can have different types of agents; individuals can be considered 

agents and may be further differentiated in categories (e.g., patients, HCP). There 

may even be different sub-types within a category, (e.g., nurses, physicians). Agents 

are not limited to humans (e.g., pathogens or facilities). Example state variables of 

agents include: identity number (i.e., even if all other state variables would be the 

same, the agent would still maintain a unique identity), demographics (e.g., age, sex), 

location (e.g., assigned unit within a hospital), and comorbidities (e.g., previous 

antibiotic use).

Spatial units. Spatial units are often used to model the state of specific spatial 

locations within a hospital (e.g., patient room, unit) and are referred to as grid cells or 

patches. Example state variables of spatial units include: location, size, list of agents 

within the spatial unit, and descriptors of physical environmental conditions (e.g., 

surface type) within the spatial unit. Some overlap of roles can occur; for example, a 

spatial unit used to model a patient room may be an entity with its own state variables 

(e.g., likelihood of surfaces to become and remain contaminated) but may also 

function as a location, and hence a state variable, of patients.

Collectives and cohorts. We group entities with common state variables together. 

These groups of entities can have distinct behaviors, so it may make sense to 

distinguish them as a defined group (e.g., entire healthcare facilities, groups of HCP 

within a unit, or households). A collective is a group that is usually characterized by 

the list of its agents, and by specific actions that are only performed by the collective, 

not their constitutive entities (e.g., a hospital ward made up of spatial unit 

subcomponents in which certain agent to agent interactions can only occur). In 

contrast, a group of agents that are only considered as a unit of analysis (and do not 

have distinct behavior) are referred to as a cohort (e.g., ICU patients to aid in model 

verification, calibration, and validation).

In describing spatial and temporal scales it is important to specify what the model’s units 

represent in reality, both within and among healthcare facilities. For temporal scale: describe 

time period being modeled (e.g., 5-year period or specific calendar years 2011–2015). 

Describe time as discrete steps (e.g., day) or as a continuum over which both continuous 

processes and discrete events can occur. Describe if timescales vary by agent class and at 

which timestep events occur. For spatial scale: Describe if agents operate and interact within 

a single ward, across an entire healthcare facility, or across a network of healthcare facilities 

and the community. Describe if the model explicitly represents a geographic area.

3. Initialization [11]:

Results generated from ABMs can depend significantly on the initial conditions of the 

model. Initialization describes the starting states of the model entities and environment (i.e., 

at time t = 0 of a simulation run), including how many entities of each type are present 

initially and the exact values of their state variables or how they were set stochastically. 

Describe if initialization is always the same or varies between simulation runs. Are the initial 

values chosen arbitrarily or based on data? If the latter, references to those data should be 

provided. It may not be possible to accurately replicate model results unless the initial 
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conditions are known. Different models, and different analyses using the same model, can of 

course depend quite differently on initial conditions. Sometimes the purpose of a model is to 

analyze consequences of its initial state, while other times modelers aim to minimize the 

effect of initial conditions on results (e.g., excluding the output from a predetermined 

warmup period). These considerations should be described explicitly and align with the 

overall objective of the study. If a random number seed is used for stochastic elements, this 

section is the appropriate place to specify the value of that seed.

4. Process overview and scheduling [11]:

The simulation of an ABM relies extensively on an explicitly-defined schedule for how 

model processes are executed. Processes can be defined by who (i.e., what entity) does what 

(i.e., what actions are executed) and who is affected (i.e., which entities and state variables). 

Scheduling determines the order in which actions are taken, as well as the order in which the 

effects of those actions are realized. Many ABMs represent time in discrete steps, while 

others treat it as a continuous variable [16].

Describe if the model is a hybrid or combined model (i.e., including compartmental 

components). In this element only the self-explanatory names of the model’s processes 

should be listed: ‘move’, ‘update plots’, etc. These names are then the titles of the 

submodels that are described in section 8, ‘Submodels’. As Grimm et al. defined, processes 

are performed either by one of the model’s entities (e.g., move), or by a higher-level 

controller (i.e., an observer) that performs actions such as updating plots or writing output to 

files. To handle such higher-level processes, ABM software platforms like Repast [17] and 

NetLogo [18] include the concept of the ‘Model’ or ‘Observer’. By ‘in what order?’ we refer 

to both the order in which the different processes are executed and the order in which a 

process is performed by a set of agents. For example, HCP visiting a patient we specify the 

order in which HCP attempt to wash their hands, wear personal protective equipment, and 

touch the patient and environment. We specify, relative to other processes modeled, whether 

HCP perform hand hygiene in a random order, a fixed order, or a HCP type-sorted order. 

Differences in such ordering (e.g., HCP visits to patients) can have a very large effect on 

model outputs [19, 20]. When processing a particular action, an entity’s state can be updated 

immediately (asynchronous updating), or the update can be stored until all entities have 

executed the process, at which point all entity states are updated simultaneously 

(synchronous updating).

For this element, only an overview is required to provide an understanding of how the ABM 

is simulated (e.g., visit patient, update environment). The specific details of these processes 

are reserved for the submodels element. Except for very simple models, authors should 

provide the full model code or at a minimum pseudo-code to fully describe the schedule, so 

the model can be replicated. Ideally, the pseudo-code corresponds fully to the actual ABM 

code.

5. Input data [11]:

Describe whether the model uses input from external sources such as data files or other 

models to represent processes that change over time. In models of real systems, dynamics 
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may be driven in part by a time series of environmental variables, sometimes called external 

forcings; for example, seasonality of disease or associations with environmental factors that 

could affect the hospital infrastructure (e.g., legionellosis and rainy weather seasons, daily 

shift schedules of HCP). ‘Driven’ means that one or more state variables or processes are 

affected by how these environmental variables change over time. However, these 

environmental variables are inputs and are not, themselves, affected by the internal variables 

of the model. Often it makes sense to use observed time series of environmental variables so 

that their statistical qualities (e.g., mean, variability, temporal autocorrelation) are realistic. 

Alternatively, external models can be used to generate input (e.g., a set of seasonal 

environmental conditions) [21]. Obviously, to replicate an ABM, any such input has to be 

specified and the data or models provided, if possible. The publication of input data for 

some simulations may be constrained by confidentiality considerations. Where such 

concerns exist, inclusion of pseudo data ought to be considered. If these input data are 

obtained through an application program interface (API) to another model or data provider, 

details on how this API can be accessed should be provided. If a model does not use external 

data, this element should nevertheless be included, using the statement: ‘the model does not 

use input data to represent time-varying processes.’ Note that ‘Input data’ does not refer to 

parameter values or initial values of state variables.

6. Agent interactions and organism transmission [11]:

Describe the kinds of interactions among agents that are assumed. Include a description of 

both direct interactions (e.g., in which individuals encounter and affect others) and indirect 

interactions (e.g., patients sharing the same care team). Provide details on how transmission 

is specified, including which interactions result in changes to health states (e.g., in a simple 

flow chart). How do agents react to the interactions, or lack thereof, with other agents and 

the processes that they undergo? How do the pathogen characteristics influence 

transmission? Is feedback from previous processes incorporated into future processes? Are 

dynamic responses based on exceeding some minimum threshold?

7. Stochasticity [3]:

Often times we choose to model variability in a parameter or process without fully 

representing all the underlying mechanisms which account for that variability occurring. A 

simplified approach is to incorporate stochastic elements which randomly draw numbers to 

change parameters or processes. ABMs are inherently stochastic, though they may contain 

deterministic elements (e.g., a module describing room contamination deterministically may 

output contamination level as a parameter value in an ABM more broadly). Demographic 

stochasticity, where only whole individuals, as opposed to fractions of individuals, can 

undergo changes (e.g., birth, death, disease state changes) is a mechanistic basis for 

including stochasticity in mathematical models and is especially relevant small populations 

[17]. What elements of the submodels are modeled fully stochastically, partially 

stochastically, or deterministically? Why are elements modeled this way? Is stochasticity 

used, for example, to reproduce variability in processes for which it is important to model 

the actual causes of the variability? How many model replications are utilized and how was 

this number determined?
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8. Submodels [11]:

All submodels should be presented completely and in detail (e.g., utilizing the applicable 

framework elements). Submodels are described at a high level in the process overview and 

scheduling, although specific details of these processes are described here. The factual 

description of the submodel, (i.e., equation(s) and algorithms), should be described. If 

parameterization is not discussed outside of the description based upon this framework, it 

can be included here. The parameter definitions, units, and values used should be presented 

in tables. The purpose of including this information is to prevent the description from 

seeming ad hoc and to strengthen model credibility. Justification can be very brief in the 

earlier sections, but the complete description of submodels is likely to include references to 

relevant literature, as well as independent implementation, testing, and analysis of 

submodels. Additionally, in most cases it will be necessary to have simulation experiments 

or a model analysis section following the model description.

9. Model verification, calibration, and validation:

Verification is the process of ensuring the model was implemented correctly. Calibration is 

the process of tuning the model parameters so that model output matches a selected set of 

statistics from the real-world system or simulated data and is possibly conducted in tandem 

with validation (e.g., incident infections hospital-wide). Validation is the process of 

evaluating how well the model represents the underlying truth of the process it aims to 

represent. What is the process of model verification? What is the process for model 

calibration? What are the calibration targets and on what information are they based? What 

is the process for model validation?

Sensitivity analysis may be a part of multiple processes. Sensitivity analysis is the process of 

determining which model parameters and structures have the most significant effect on 

model outputs. Uncertainty analysis is the process of evaluating how the uncertainty of 

model parameter values may affect the model’s output.[22] The precision with which 

parameters can be measured in the real-world impacts the reliability of model results 

generated using those estimates [3]. Therefore, uncertainty analysis relates to validation and 

calibration. Sensitivity analysis may be performed for verification (e.g., extreme value test) 

or validation (e.g., analyzing the impact of increasing hand hygiene compliance on 

acquisition rates) or calibration (e.g., choosing a wider range for certain parameters to be 

chosen from, fixing non-calibrated parameters to different plausible values, employing a 

different fitting method). What sensitivity analyses were conducted? What uncertainty 

analyses were conducted?

III. Interpretation

The MInD-Healthcare Framework was developed as a set of best practices for conducting 

and reporting transmission modeling studies, in particular those utilizing ABMs. It primarily 

aims to improve communication among mathematical modelers about their respective 

ABMs and builds upon the ODD protocol [10]. By increasing methodological transparency, 

we hope this framework will improve quality and reproducibility of the evidence generated 

by these models, just as development of the CONSORT guideline improved completeness of 
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reporting of randomized controlled trials [23]. Additionally, this framework can facilitate 

multi-model comparisons by aiding in harmonization, systematic exploration of variability, 

and pooling of results [24].

High-quality scientific literature provides a complete methodological description and 

increased certainty for decision makers. Mathematical models are often criticized as being 

“black boxes” because they provide a limited methodological description. Adoption of these 

standards will enable consumers of modeling studies to better understand the methods and 

accompanying strengthens and limitations of these studies. Increased transparency also 

ought to improve the interpretation of modeling studies and adoption of recommendations 

based upon these studies. The MInD-Healthcare Framework should be reevaluated and 

revised in the future to consider evolution of the field, generation of new evidence, and 

incorporate feedback from those using this framework.
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