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Abstract

Mathematical modeling of healthcare associated infections (HAIs) and multidrug resistant
organisms (MDROSs) improves our understanding of pathogens transmission dynamics and
provides a framework for evaluating prevention strategies. One way of improving the
communication among modelers is by providing a standardized way of describing and reporting
models thereby instilling confidence in the reproducibility and generalizability of such models. We
updated the Overview, Design concepts, and Details protocol developed by Grimm et al. for
describing agent-based models (ABMs) to better align with elements commonly included in
healthcare-related ABMs. The MInD-Healthcare framework includes the following nine key
elements: 1. Purpose and scope; 2. Entities, state variables, and scales; 3. Initialization; 4. Process
overview and scheduling; 5. Input data; 6. Agent interactions and organism transmission; 7.
Stochasticity; 8. Submodels; 9. Model verification, calibration, and validation. Our objective is
that this framework will improve the quality of evidence generated utilizing these models.
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I. Framework purpose and audience

Healthcare-associated infections (HAISs) are associated with substantial morbidity, mortality,
and costs [1, 2]. Mathematical modeling transmission of HAI pathogens and multidrug
resistant organisms (MDROSs) improves our understanding of the dynamics of the spread of
pathogens, provides a framework for evaluating prevention strategies, and can accelerate
prevention efforts [3]. Instilling confidence in the reproducibility and generalizability of
models is a challenge that may be addressed through clear and thorough communication of
the underlying methodology.

The International Committee of Medical Journal Editors has compiled recommendations for
best practices for conducting and reporting high-quality scholarly work. Reporting
guidelines utilized for different types of study designs include STrengthening the Reporting
of OBservational studies in Epidemiology (STROBE) for observational studies and
Consolidated Standards of Reporting Trials (CONSORT) for randomized trials [4, 5].
However, there is a paucity of best practices for reporting HAIl and MDRO transmission
modeling studies to biomedical journals. As transmission modeling becomes increasingly
prominent and findings are used to inform public health practice, a common framework for
reporting would strengthen the knowledge base and acceptability of findings from such
studies [6, 7], analogous to recent efforts to improve modeling of human papillomavirus-
related cancer control [8].

In 2017, the Centers for Disease Control and Prevention created the Modeling Infectious
Diseases in Healthcare Network (MInD-Healthcare), a consortium of investigators
collaboratively developing and using mathematical models to investigate the spread and
prevention of HAIs and MDROs. This document describes the MInD-Healthcare Framework
and aims to improve communication among mathematical modelers about their respective
agent-based models (ABMs). We specifically focus on transmission of HAI pathogens and
MDROs, though there is substantial overlap with describing other infectious diseases. With
an increasing proportion of ABMS among all HAI transmission models this framework is
focused on ABMs in contrast to other models (e.g., compartmental models) for which
complete mathematical specification is provided for methodological transparency [9].
However, the guiding principles are generalizable. This framework can be utilized by
epidemiologists to better understand the methods used by mathematical modelers and
appropriately interpret modeling studies’ results. This framework is an adaptation of the
Overview, Design concepts, and Details (ODD) developed by Grimm, et al. to increase
transparency and reproducibility of modeling methods in the context of ecological modeling
[10, 11]. The ODD framework has infrequently been used to describe HAI ABMs, although
it has improved methodological clarity when employed [12-14]. The MInD-Healthcare
Framework aims to align the traditional ODD with elements commonly included in
healthcare-related ABMs and adopt terminology commonly used by epidemiologists to
describe infectious disease processes.
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[I. Framework elements:

The framework is composed of nine elements: 1. Purpose and scope; 2. Entities, state
variables and scales; 3. Initialization; 4. Process overview and scheduling; 5. Input data; 6.
Agent interactions and organism transmission; 7. Stochasticity; 8. Submodels; 9. Model
verification, calibration, and validation. See Table 1 for a checklist for users of this
framework. Each element should be described clearly and concisely utilizing tables and
diagrams, where appropriate.

1. Purpose and scope[10]:

2. Entities,

The purpose of a model is grounded by the primary objective(s) of the study, and the
potential impact of the model-driven insights on clinical practice. The scope provides
boundaries for which dynamics will be included and therefore the external validity of the
model. The purpose and scope should align with each other and drive the description of the
remaining framework elements. The purpose and scope of a model are typically described in
the introduction of an article because they provide critical context for understanding why the
model was developed and provide a guide for what to expect in the following model
description. This element contains a summary description and justification for the model’s
level of complexity and its intended use.

state variables, and scales[11]:

An entity is a person or object that may interact with other entities or be affected by external
environmental conditions. The entities of an ABM (e.g., patients, healthcare personnel
(HCP)) are characterized by a set of state variables. A state variable is an attribute which
performs at least one of the following functions: it distinguishes an entity from other entities
of the same type or traces how the entity changes over time. State variables may also be
global and accessible to all entities. Scales refer to the temporal and spatial resolutions of the
model and how influence they influence the representation of transmission (e.g., minimum
duration for contact) [15]. Modelers should describe what kinds of entities are in the model
and by what state variables or attributes they are characterized.

At any point in time, the state variables provide a snapshot of the model, with sufficient
information to restore and restart the model from that instant. State variables can change
over time (e.g., use of an antibiotic) or remain constant (e.g., sex, physical location of a
hospital). Patient-level state variables should be epidemiologically meaningful and
comparable to data available in electronic medical records (e.g., patients’ treatment statuses
with each class of antibiotic could be included as state variables (e.g., neither, only
penicillin, only fluoroquinolone, both), but ‘receipt of 2 antibiotic classes’ would not be
considered a state variable). Health states are a set of state variables that represent the
underlying natural history of disease processes. These health states may include, but are not
limited to, susceptible, asymptomatically colonized, infected and infectious, and recovered.
The health states that are modeled may vary by agent type (e.g., HCP may only become
transiently colonized whereas patients progress to infection).

Many ABMs include the following types of entities and their associated state variables:
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Agents. A model can have different types of agents; individuals can be considered
agents and may be further differentiated in categories (e.g., patients, HCP). There
may even be different sub-types within a category, (e.g., nurses, physicians). Agents
are not limited to humans (e.g., pathogens or facilities). Example state variables of
agents include: identity number (i.e., even if all other state variables would be the
same, the agent would still maintain a unique identity), demographics (e.g., age, sex),
location (e.g., assigned unit within a hospital), and comorbidities (e.g., previous
antibiotic use).

Spatial units. Spatial units are often used to model the state of specific spatial
locations within a hospital (e.g., patient room, unit) and are referred to as grid cells or
patches. Example state variables of spatial units include: location, size, list of agents
within the spatial unit, and descriptors of physical environmental conditions (e.g.,
surface type) within the spatial unit. Some overlap of roles can occur; for example, a
spatial unit used to model a patient room may be an entity with its own state variables
(e.g., likelihood of surfaces to become and remain contaminated) but may also
function as a location, and hence a state variable, of patients.

Collectives and cohorts. We group entities with common state variables together.
These groups of entities can have distinct behaviors, so it may make sense to
distinguish them as a defined group (e.g., entire healthcare facilities, groups of HCP
within a unit, or households). A collective is a group that is usually characterized by
the list of its agents, and by specific actions that are only performed by the collective,
not their constitutive entities (e.g., a hospital ward made up of spatial unit
subcomponents in which certain agent to agent interactions can only occur). In
contrast, a group of agents that are only considered as a unit of analysis (and do not
have distinct behavior) are referred to as a cohort (e.g., ICU patients to aid in model
verification, calibration, and validation).

In describing spatial and temporal scales it is important to specify what the model’s units
represent in reality, both within and among healthcare facilities. For temporal scale: describe
time period being modeled (e.g., 5-year period or specific calendar years 2011-2015).
Describe time as discrete steps (e.g., day) or as a continuum over which both continuous
processes and discrete events can occur. Describe if timescales vary by agent class and at
which timestep events occur. For spatial scale: Describe if agents operate and interact within
a single ward, across an entire healthcare facility, or across a network of healthcare facilities
and the community. Describe if the model explicitly represents a geographic area.

3. Initialization [11]:

Results generated from ABMs can depend significantly on the initial conditions of the
model. Initialization describes the starting states of the model entities and environment (i.e.,
at time t = 0 of a simulation run), including how many entities of each type are present
initially and the exact values of their state variables or how they were set stochastically.
Describe if initialization is always the same or varies between simulation runs. Are the initial
values chosen arbitrarily or based on data? If the latter, references to those data should be
provided. It may not be possible to accurately replicate model results unless the initial
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conditions are known. Different models, and different analyses using the same model, can of
course depend quite differently on initial conditions. Sometimes the purpose of a model is to
analyze consequences of its initial state, while other times modelers aim to minimize the
effect of initial conditions on results (e.g., excluding the output from a predetermined
warmup period). These considerations should be described explicitly and align with the
overall objective of the study. If a random number seed is used for stochastic elements, this
section is the appropriate place to specify the value of that seed.

4. Process overview and scheduling [11]:

The simulation of an ABM relies extensively on an explicitly-defined schedule for how
model processes are executed. Processes can be defined by who (i.e., what entity) does what
(i.e., what actions are executed) and who is affected (i.e., which entities and state variables).
Scheduling determines the order in which actions are taken, as well as the order in which the
effects of those actions are realized. Many ABMs represent time in discrete steps, while
others treat it as a continuous variable [16].

Describe if the model is a hybrid or combined model (i.e., including compartmental
components). In this element only the self-explanatory names of the model’s processes
should be listed: ‘move’, ‘update plots’, etc. These names are then the titles of the
submodels that are described in section 8, ‘Submodels’. As Grimm et al. defined, processes
are performed either by one of the model’s entities (e.g., move), or by a higher-level
controller (i.e., an observer) that performs actions such as updating plots or writing output to
files. To handle such higher-level processes, ABM software platforms like Repast [17] and
NetLogo [18] include the concept of the “Model’ or “‘Observer’. By ‘in what order?” we refer
to both the order in which the different processes are executed and the order in which a
process is performed by a set of agents. For example, HCP visiting a patient we specify the
order in which HCP attempt to wash their hands, wear personal protective equipment, and
touch the patient and environment. We specify, relative to other processes modeled, whether
HCP perform hand hygiene in a random order, a fixed order, or a HCP type-sorted order.
Differences in such ordering (e.g., HCP visits to patients) can have a very large effect on
model outputs [19, 20]. When processing a particular action, an entity’s state can be updated
immediately (asynchronous updating), or the update can be stored until all entities have
executed the process, at which point all entity states are updated simultaneously
(synchronous updating).

For this element, only an overview is required to provide an understanding of how the ABM
is simulated (e.qg., visit patient, update environment). The specific details of these processes
are reserved for the submodels element. Except for very simple models, authors should
provide the full model code or at a minimum pseudo-code to fully describe the schedule, so
the model can be replicated. Ideally, the pseudo-code corresponds fully to the actual ABM
code.

5. Input data [11]:

Describe whether the model uses input from external sources such as data files or other
models to represent processes that change over time. In models of real systems, dynamics
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may be driven in part by a time series of environmental variables, sometimes called external
forcings; for example, seasonality of disease or associations with environmental factors that
could affect the hospital infrastructure (e.g., legionellosis and rainy weather seasons, daily
shift schedules of HCP). ‘Driven’ means that one or more state variables or processes are
affected by how these environmental variables change over time. However, these
environmental variables are inputs and are not, themselves, affected by the internal variables
of the model. Often it makes sense to use observed time series of environmental variables so
that their statistical qualities (e.g., mean, variability, temporal autocorrelation) are realistic.
Alternatively, external models can be used to generate input (e.g., a set of seasonal
environmental conditions) [21]. Obviously, to replicate an ABM, any such input has to be
specified and the data or models provided, if possible. The publication of input data for
some simulations may be constrained by confidentiality considerations. Where such
concerns exist, inclusion of pseudo data ought to be considered. If these input data are
obtained through an application program interface (API) to another model or data provider,
details on how this API can be accessed should be provided. If a model does not use external
data, this element should nevertheless be included, using the statement: ‘the model does not
use input data to represent time-varying processes.” Note that ‘Input data’ does not refer to
parameter values or initial values of state variables.

6. Agent interactions and organism transmission [11]:

Describe the kinds of interactions among agents that are assumed. Include a description of
both direct interactions (e.g., in which individuals encounter and affect others) and indirect
interactions (e.g., patients sharing the same care team). Provide details on how transmission
is specified, including which interactions result in changes to health states (e.g., in a simple
flow chart). How do agents react to the interactions, or lack thereof, with other agents and
the processes that they undergo? How do the pathogen characteristics influence
transmission? Is feedback from previous processes incorporated into future processes? Are
dynamic responses based on exceeding some minimum threshold?

7. Stochasticity [3]:

Often times we choose to model variability in a parameter or process without fully
representing all the underlying mechanisms which account for that variability occurring. A
simplified approach is to incorporate stochastic elements which randomly draw numbers to
change parameters or processes. ABMs are inherently stochastic, though they may contain
deterministic elements (e.g., a module describing room contamination deterministically may
output contamination level as a parameter value in an ABM more broadly). Demographic
stochasticity, where only whole individuals, as opposed to fractions of individuals, can
undergo changes (e.g., birth, death, disease state changes) is a mechanistic basis for
including stochasticity in mathematical models and is especially relevant small populations
[17]. What elements of the submodels are modeled fully stochastically, partially
stochastically, or deterministically? Why are elements modeled this way? Is stochasticity
used, for example, to reproduce variability in processes for which it is important to model
the actual causes of the variability? How many model replications are utilized and how was
this number determined?
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8. Submodels [11]:

All submodels should be presented completely and in detail (e.g., utilizing the applicable
framework elements). Submodels are described at a high level in the process overview and
scheduling, although specific details of these processes are described here. The factual
description of the submodel, (i.e., equation(s) and algorithms), should be described. If
parameterization is not discussed outside of the description based upon this framework, it
can be included here. The parameter definitions, units, and values used should be presented
in tables. The purpose of including this information is to prevent the description from
seeming ad hoc and to strengthen model credibility. Justification can be very brief in the
earlier sections, but the complete description of submodels is likely to include references to
relevant literature, as well as independent implementation, testing, and analysis of
submodels. Additionally, in most cases it will be necessary to have simulation experiments
or a model analysis section following the model description.

9. Model verification, calibration, and validation:

Verification is the process of ensuring the model was implemented correctly. Calibration is
the process of tuning the model parameters so that model output matches a selected set of
statistics from the real-world system or simulated data and is possibly conducted in tandem
with validation (e.g., incident infections hospital-wide). Validation is the process of
evaluating how well the model represents the underlying truth of the process it aims to
represent. What is the process of model verification? What is the process for model
calibration? What are the calibration targets and on what information are they based? What
is the process for model validation?

Sensitivity analysis may be a part of multiple processes. Sensitivity analysis is the process of
determining which model parameters and structures have the most significant effect on
model outputs. Uncertainty analysis is the process of evaluating how the uncertainty of
model parameter values may affect the model’s output.[22] The precision with which
parameters can be measured in the real-world impacts the reliability of model results
generated using those estimates [3]. Therefore, uncertainty analysis relates to validation and
calibration. Sensitivity analysis may be performed for verification (e.g., extreme value test)
or validation (e.g., analyzing the impact of increasing hand hygiene compliance on
acquisition rates) or calibration (e.g., choosing a wider range for certain parameters to be
chosen from, fixing non-calibrated parameters to different plausible values, employing a
different fitting method). What sensitivity analyses were conducted? What uncertainty
analyses were conducted?

lll. Interpretation

The MInD-Healthcare Framework was developed as a set of best practices for conducting
and reporting transmission modeling studies, in particular those utilizing ABMs. It primarily
aims to improve communication among mathematical modelers about their respective
ABMs and builds upon the ODD protocol [10]. By increasing methodological transparency,
we hope this framework will improve quality and reproducibility of the evidence generated
by these models, just as development of the CONSORT guideline improved completeness of
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reporting of randomized controlled trials [23]. Additionally, this framework can facilitate
multi-model comparisons by aiding in harmonization, systematic exploration of variability,
and pooling of results [24].

High-quality scientific literature provides a complete methodological description and
increased certainty for decision makers. Mathematical models are often criticized as being
“black boxes™ because they provide a limited methodological description. Adoption of these
standards will enable consumers of modeling studies to better understand the methods and
accompanying strengthens and limitations of these studies. Increased transparency also
ought to improve the interpretation of modeling studies and adoption of recommendations
based upon these studies. The MInD-Healthcare Framework should be reevaluated and
revised in the future to consider evolution of the field, generation of new evidence, and
incorporate feedback from those using this framework.

This work was supported by the U.S. Centers for Disease Control and Prevention (5 U01 CK000531-02).
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