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Abstract

Background: β-amyloid (Aβ) and tau positron emission tomography (PET) detect the pathological changes that
define Alzheimer’s disease (AD) in living people. Cognitive measures sensitive to Aβ and tau burden may help
streamline identification of cases for confirmatory AD biomarker testing.

Methods: We examined the association of Brain Health Assessment (BHA) tablet-based cognitive measures with
dichotomized Aβ -PET status using logistic regression models in individuals with mild cognitive impairment (MCI)
or dementia (N = 140; 43 Aβ-, 97 Aβ+). We also investigated the relationship between the BHA tests and regional
patterns of tau-PET signal using voxel-wise regression analyses in a subsample of 60 Aβ+ individuals with MCI or
dementia.

Results: Favorites (associative memory), Match (executive functions and speed), and Everyday Cognition Scale
scores were significantly associated with Aβ positivity (area under the curve [AUC] = 0.75 [95% CI 0.66–0.85]). We
found significant associations with tau-PET signal in mesial temporal regions for Favorites, frontoparietal regions for
Match, and occipitoparietal regions for Line Orientation (visuospatial skills) in a subsample of individuals with MCI
and dementia.

Conclusion: The BHA measures are significantly associated with both Aβ and regional tau in vivo imaging markers
and could be used for the identification of patients with suspected AD pathology in clinical practice.

Keywords: Alzheimer’s disease, Mild cognitive impairment, Neuropsychology, Psychometrics, Positron emission
tomography, Biomarkers

Introduction
Alzheimer’s disease (AD) is a major cause of dementia
in older adults. The disease is defined by abnormal accu-
mulation of two proteins: fibrillar β-amyloid (Aβ)

peptides and phosphorylated neurofibrillary tau deposits
[1]. Recent developments of in vivo molecular imaging
modalities have made it possible to detect underlying
pathological changes associated with AD [2]. Both Aβ
and tau positron emission tomography (PET) biomarkers
are included as defining features of AD in the National
Institute on Aging and Alzheimer’s Association (NIA-
AA) research framework [3] and have been approved for
clinical use by the U.S. Food and Drug Administration
[4, 5]. As the prevalence of AD continues to rise,
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development of effective diagnostic markers and ap-
proaches is critical for diagnostic accuracy and identifi-
cation of candidates for clinical trials and disease-
modifying therapies on the horizon [6].
Several studies have investigated the association be-

tween cognitive measures and AD PET pathology
markers [7–11]. Specifically, past studies have found
moderate to strong associations between tau-PET and
cognition suggesting that the topography of tau tracer
binding corresponds with cognitive performance in the
domains associated with both typical [11] and atypical
[12–14] AD. Additionally, tau-PET has been associated
with cognitive performance and decline in cognitively
normal older adults [9, 15, 16] as well as with the sever-
ity of functional impairment in mixed clinical samples
[17, 18]. Similarly, associations between Aβ -PET burden
and cognition have been reported in both clinically
mixed [10, 11, 19–23] and cognitively unimpaired [24,
25] samples, including greater rates of decline in cogni-
tively normal Aβ-positive (Aβ+) older individuals [24,
25]. However, the effects of greater Aβ burden on cogni-
tive performance tend to be weaker and less specific
compared to tau [11, 25] likely due to the fact that tau
pathology is more strongly related to neuronal loss in af-
fected brain areas [26].
At the same time, PET studies remain largely cost-

prohibitive for widescale use and the need for brief and
efficient tools for the detection of AD pathology remains
[27, 28]. Given the association of in vivo markers with
cognition, brief, reliable, and sensitive cognitive mea-
sures have the potential to address this need as a front-
line cost-effective clinical marker [27]. Time- and cost-
effective clinical markers that are strongly associated
with Aβ and tau markers may help significantly reduce
the need for PET scans in clinic and enable multimodal
case identification as a scalable alternative to lengthy
clinical and diagnostic evaluations. These non-invasive
frontline measures would not replace comprehensive
clinical and neuropsychological assessments and stand-
ard imaging and laboratory tests but would rather en-
hance clinical efficiency of these diagnostic studies by
offering providers a means for determining who needs
referrals for comprehensive assessment for diagnostic
confirmation [28]. Additionally, robust multidomain
measures of cognitive functions would enhance the im-
plementation of PET results for clinical implications and
care pathways, particularly in the light of past evidence
on positive PET findings in cognitively unimpaired indi-
viduals [9, 15, 16, 24, 25].
In this study, we explored the associations between

cognitive performance on the University of California
San Francisco (UCSF) Brain Health Assessment (BHA),
a brief tablet-based battery developed and validated for
the detection of neurocognitive disorders in older adults

[29]. In addition to its brevity and advantages as a com-
puterized cognitive measure, the BHA strengths include
neuroanatomical validity of each of its novel constituent
tasks [29], availability of regression-based norms for
English and Spanish speakers [30], and a robust global
cognitive composite which reliably measures cognitive
change over time [30]. The BHA has also been previ-
ously shown to be sensitive to longitudinal cognitive de-
cline in Aβ+ cognitively normal older adults compared
to their Aβ− counterparts [30]. This study expands on
those findings by examining the associations between
BHA performance and Aβ and tau PET burden in a clin-
ically heterogeneous sample of older adults with mild
cognitive impairment (MCI) and dementia. We hypothe-
sized that performance on the novel BHA tests would be
significantly associated with Aβ+ status, and with re-
gional tau signal in mesial temporal region for Favorites
(associative memory), frontal and parietal regions for
Match (executive functions and processing speed), and
occipital and parietal regions for Line Orientation
(visuospatial skills).

Methods
Participants
The study was approved by the UCSF and the University
of California Berkeley Committees on Human Research
and Lawrence Berkeley National Laboratory (LBNL) Hu-
man Subject Committee, and all participants provided
written informed consent. Participants were English-
speaking older adults aged 50 or older and were re-
cruited from longitudinal observational studies at the
UCSF Memory and Aging Center. All participants
underwent a comprehensive diagnostic evaluation in-
cluding neurological and neuropsychological examin-
ation, clinical interview with an informant including
Clinical Dementia Rating (CDR [31]), and structural
neuroimaging. The final diagnoses were made in multi-
disciplinary clinical consensus conferences based on
published criteria as previously described [29, 30]. Par-
ticipants were included in this study if they had a diag-
nosis of MCI or dementia, completed the BHA tests,
and underwent Aβ -PET imaging in addition to standard
diagnostic evaluations (N = 140, Fig. 1). MCI partici-
pants were classified as amnestic based on presence at
least 2 of the following characteristics: subjective report
of memory problems, informant report of memory prob-
lems on CDR, or disproportionately poor performance
on tests of memory on the standard neuropsychological
battery described elsewhere [12], all other MCI partici-
pants were classified as non-amnestic, and dementia par-
ticipants were classified as amnestic-predominant or
atypical (including non-amnestic AD-type dementia or
another non-AD-type dementia syndrome) based on
published criteria as previously described [29, 30]. The
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tau-PET sample was comprised of a subgroup of partici-
pants with Aβ -PET who met all of the aforementioned
criteria and were also found to be Aβ+ on PET (N = 60,
Fig. 1). Aβ− and tau-PET results were not used to in-
form clinical diagnoses at any point. Exclusion criteria
were presence of severe psychiatric illness, other non-
neurodegenerative neurological condition that could
affect cognition, substance use disorder diagnosed in the
last 20 years, or significant systemic illness.

Measures

Cognitive tests
The BHA is a 10-min tablet-based cognitive battery pro-
grammed in the TabCAT software platform (UCSF, San
Francisco, CA). The battery is comprised of 4 subtests,
including 3 novel tasks which were included in this
study: Favorites (associative memory), Match (executive
functioning and processing speed), and Line Orientation
(visuospatial skills) [29, 30]. The optional Animal Flu-
ency subtest was not included because it has been previ-
ously examined in relation to biomarkers in similar
clinical cohorts [8, 12]. The BHA also includes an op-
tional informant-facing functional survey, the Brain
Health Survey (BHS), which includes the short form of
the Everyday Cognition Scales (BHS-ECog) [32]. De-
tailed task and survey descriptions were previously pub-
lished [29, 30] and are available at memory.ucsf.edu/
tabcat. Participants completed the BHA on a 9.7-in. iPad
with a trained examiner in a private examination room.
A subset of participants (n = 109, Supplementary

Table 1) also completed the Montreal Cognitive Assess-
ment (MoCA) [33] which is a widely used brief paper-
and-pencil measure. Both the BHA and the MoCA were
administered independent of diagnostic assessments and
PET findings.

PET acquisition
Participants included in the Aβ analyses underwent Aβ
PET imaging up to 6 months pre- or up to 3 years post-
BHA administration. For the tau analyses, participants
underwent 18F-Flortaucipir (tau) PET imaging up to 6
months pre- or up to 1 year post-BHA administration.
Aβ imaging was based on PET with either 18F-
Florbetapir (n = 35) or 11C-Pittsburgh Compound B
(PIB; n = 105). Florbetapir imaging was acquired on a
GE Discovery STE/VCT PET-CT scanner at UCSF (n =
34) or a Siemens Biograph 6 Truepoint PET/CT scanner
at the LBNL (n = 1). PIB imaging was acquired on a Sie-
mens Biograph 6 Truepoint PET/CT scanner at the
LBNL (n = 105). Florbetapir acquisition and processing
was performed in accordance with the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) protocol [34].
Briefly, participants were scanned from 50 to 70 min
post-injection of 10 mCi of Florbetapir. PET frames were
smoothed and averaged to achieve an effective 8 × 8 × 8
mm resolution. The whole cerebellum was used as the
reference region to create standard uptake value ratio
(SUVR) images. PIB and Flortaucipir imaging was per-
formed on the Siemens Biograph at LBNL in 3D acquisi-
tion mode. A low-dose CT scan was acquired for
attenuation correction. Participants were scanned from

Fig. 1 Sample selection flowchart. Abbreviations: BHA, Brain Health Assessment
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50 to 70min post-injection of 15 mCi of PIB and from
80 to 100min post-injection of 10 mCi of Flortaucipir.
Both tracers were synthesized and radiolabeled at the
LBNL Biomedical Isotope Facility. Data were recon-
structed using an ordered subset expectation
maximization algorithm and smoothed with a 4-mm
Gaussian kernel with scatter correction. Resulting PET
frames were realigned, averaged, and coregistered to the
participant’s MRI to create an SUVR image using the in-
ferior cerebellar gray as the reference region to avoid
contamination from off-target binding in the dorsal
cerebellum for Flortaucipir PET [35] and the cerebellar
gray for PIB. Aβ status was determined by visual assess-
ment of PIB/Florbetapir SUVR images by an expert
neurologist.
To examine the associations of cognitive performance

and tau retention, voxel-wise regressions were per-
formed for each of the novel BHA tests and Flortaucipir
SUVR. To prepare Flortaucipir PET for voxel-wise ana-
lyses, SUVR images were warped to Montreal Neuro-
logical Institute (MNI) space following the MRI-based
deformation parameters using SPM12 (fil.ion.ucl.ac.uk/
spm/software/spm12/). Warped images were then
smoothed using a 4-mm FWHM Gaussian kernel within
a mask that excluded extracerebral voxels using the
AFNI 3dBlurInMask command.

Statistical analyses
Differences in demographic characteristics between Aβ−
and Aβ+ groups were compared based on independent
sample t-tests for continuous variables and Fisher’s exact
tests for categorical variables. Raw scores on the BHA
subtests were converted to demographically adjusted
(age, sex, education) z-scores as previously described
[30]. BHS-ECog scores were included as average values
derived from responses on 12 ECog questions [32].
For Aβ analyses, we performed logistic regression

models to investigate the relationship between dichot-
omous Aβ status outcome (dummy-coded: 0 = Aβ−, 1 =
Aβ+) and performance on each of the novel BHA tests.
All models included covariates for age (years), sex
(dummy-coded: 0 = male, 1 = female), education (years),
disease severity (CDR Sum of Boxes), clinical phenotype
(dummy-coded: 0 = non-amnestic MCI/atypical demen-
tia, 1 = amnestic MCI/amnestic-predominant dementia),
and time difference between PET acquisition and BHA
completion. We performed receiver operating character-
istic (ROC) analyses to examine the predictive accuracy
of the BHA tests with (adjusted) and without (un-
adjusted) inclusion of demographic and clinical charac-
teristics. The selection of variables for ROC curve
analyses was informed by the results of the logistic re-
gression and only significant predictors were chosen. We
also conducted log likelihood ratio tests to compare the

goodness of fit of adjusted and unadjusted models to fa-
cilitate interpretation of results. In sensitivity analyses,
we repeated all primary analyses using demographically
unadjusted raw scores on the BHA tests. Additionally,
we performed supplementary logistic regression analyses
using MoCA total score as a predictor of Aβ positivity.
For tau analyses, voxel-wise analyses were performed in

SPM12 within a cortical gray matter mask, with and with-
out inclusion of age as a covariate, as age has been previ-
ously found to be strongly associated with cortical tau
burden [36]. In sensitivity analyses, we included additional
covariates for sex and education. Voxel-wise analyses were
thresholded using 2 approaches. First, a relatively liberal
threshold consisted of an uncorrected P < .001 at the
voxel level combined with a cluster extent of 100 voxels.
Second, a more stringent family-wise error (FWE)-cor-
rected P < .05 voxel level threshold was applied. Thre-
sholded SPM T-maps were surface-rendered with
BrainNet Viewer [37]. In addition, unthresholded statis-
tical maps corresponding to all voxel-wise figure panels
are freely available for viewing or download on Neurovault
(https://neurovault.org/collections/FEEVNTPD/). Add-
itionally, we fit multiple linear regression models to inves-
tigate the association between Flortaucipir SUVR in
significant clusters (at P < .001 uncorrected threshold)
and cognitive performance on each of the novel BHA tests
controlling for CDR Sum of Boxes, clinical phenotype
(dummy-coded: 0 = non-amnestic MCI/atypical dementia,
1 = amnestic MCI/amnestic-predominant dementia), and
time difference between PET acquisition and BHA com-
pletion. Tau analyses were not performed with the MoCA
due to a small sample size (n = 39) of participants who
completed this measure.
Logistic and linear regression models were performed in

R (v4.0.2, R Project for Statistical Computing) with two-
tailed significance level for regression models set at P < .05.
All models were checked for overdispersion, influential
values, and multicollinearity. We report P values without
adjusting for multiple comparisons as this methodology fo-
cuses on avoiding one or more results with P < .05 in the
case where all differences are truly zero, which is likely an
unrealistic hypothesis in our situation. In addition, adjust-
ment would require that each result detract from the
others, but there are known biological relationships among
the measures considered here, and these allow consistent
findings to support each other instead of detracting from
one another. Thus, we use scientific judgment rather than
formal methods of adjustment to indicate where caution is
warranted despite findings with P < .05.

Results
Sample characteristics
Demographic characteristics of Aβ PET sample are pre-
sented in Table 1. Aβ+ sample was comprised of 64
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Table 1 Demographic characteristics of the Aβ PET sample (N = 140)

Aβ−
(n = 43)

Aβ+
(n = 97)

t / odds ratio
[95% CI]

P

Age 66.6 (11.6) 68.6 (8.7) 0.98 [− 2.01; 5.91] .33

Education 16.4 (2.9) 16.9 (2.6) 0.97 [− 0.52; 1.53] .33

Female 17 (40%) 43 (44%) 1.22 [0.55; 2.72] .71

Non-Hispanic White 38 (88%) 85 (88%) 0.93 [0.24; 3.10] .99

MCI 29 (67%) 64 (66%) 1.07 [0.47; 2.50] .99

Amnestic phenotype 14 (33%) 57 (59%) 2.93 [1.31; 6.81] .006

CDR-SB 2.3 (2.1) 3.1 (2.2) 1.98 [− 0.01; 1.52] .05

Time difference (yrs) 0.3 (0.3) 0.4 (0.6) 1.74 [− 0.02; 0.30] .08

Favorites z-score − 1.3 (1.3)
n = 38

− 2.4 (1.1)
n = 88

− 4.42 [− 1.54; − 0.58] < .001

Match z-score − 2.0 (1.4)
n = 42

− 3.6 (2.7)
n = 93

− 4.81 [− 2.38; − 0.99] < .001

Line Orientation z-score − 0.6 (1.2)
n = 41

− 1.2 (2.6)
n = 94

− 1.79 [− 1.20; 0.06] .08

BHS-ECog score 2.0 (0.7)
n = 38

2.5 (0.7)
n = 85

2.94 [0.14; 0.71] .005

Data are presented as mean (standard deviation) for continuous variables and n (% of the total sample) for categorical variables. Time difference represents the
years between the BHA completion and PET acquisition presented in absolute values. For Brain Health Assessment measures, the number of participants with
complete data are included. P values are based on independent sample t-tests for continuous variables and Fisher’s exact tests for categorical variables between
Aβ− and Aβ+ groups. The 95% confidence intervals (CI) are reported for mean differences for t-tests and odd ratios for Fisher’s exact tests. BHS-ECog Brain Health
Survey Everyday Cognition Scales, CDR-SB Clinical Dementia Rating Scale Sum of Boxes, MCI mild cognitive impairment, PET positron emission tomography,
yrs. years

Table 2 Demographic characteristics of the Aβ+ participants with and without tau-PET

Tau-PET
(n = 60)

No tau-PET
(n = 37)

t / odds ratio
[95% CI]

P

Age 67.1 (9.2) 70.4 (6.8) − 2.06 [− 6.61; − 0.12] .04

Education 16.4 (2.4) 17.6 (2.8) − 2.01 [− 2.23; − 0.01] .05

Female 32 (53%) 13 (35%) 1.96 [0.79; 5.04] .14

Non-Hispanic White 56 (93%) 32 (86%) 1.18 [0.27; 4.75] .76

MCI 32 (53%) 31 (84%) 4.17 [1.43; 14.06] .004

Amnestic phenotype 33 (55%) 24 (65%) 0.66 [0.26; 1.66] .40

CDR-SB 4.3 (2.2) 2.3 (1.7) 2.98 [0.40; 2.01] .004

Time difference (yrs) 0.2 (0.3) 0.7 (0.9) − 2.67 [− 0.70; − 0.10] .01

Favorites z-score − 2.7 (1.0)
n = 51

− 1.9 (1.1)
n = 36

− 3.17 [− 1.22; − 0.28] .002

Match z-score − 4.6 (2.5)
n = 54

− 2.3 (2.3)
n = 37

− 4.28 [− 3.19; − 1.17] < .001

Line Orientation z-score − 1.5 (2.6)
n = 56

− 0.5 (2.0)
n = 37

2.15 [− 2.04; − 0.08] .03

BHS-ECog score 2.6 (0.6)
n = 50

2.3 (0.7)
n = 33

1.58 [− 0.07; 0.58] .12

Data are presented as mean (standard deviation) for continuous variables and n (% of the total sample) for categorical variables. Time difference represents the
years between the BHA completion and PET acquisition presented in absolute values. For Brain Health Assessment measures, the number of participants with
complete data is included. P values are based on independent sample t-tests for continuous variables and Fisher’s exact tests for categorical variables between
groups with and without tau-PET. The 95% confidence intervals (CI) are reported for mean differences for t-tests and odd ratios for Fisher’s exact tests. BHS-ECog
Brain Health Survey Everyday Cognition Scales, CDR-SB Clinical Dementia Rating Scale Sum of Boxes, MCI mild cognitive impairment, PET positron emission
tomography, yrs. years
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participants with MCI (36 amnestic, 28 non-amnestic
[see Supplementary Table 2 for detailed description of
clinical phenotypes]) and 33 participants with demen-
tia (21 amnestic-predominant AD-type dementia, 2
frontal variant AD-type dementia, 1 behavioral variant
frontotemporal dementia [bvFTD], 2 corticobasal syn-
drome [CBS], 2 logopenic variant primary progressive
aphasia [PPA], 3 posterior cortical atrophy [PCA], 1
unspecified PPA, 1 progressive supranuclear palsy

[PSP]). Aβ− sample consisted of 29 participants with
MCI (12 amnestic, 17 non-amnestic [Supplementary
Table 2]) and 14 participants with dementia (2
amnestic-predominant AD-type dementia, 2 frontal
variant AD-type dementia, 6 bvFTD, 1 CBS, 1 demen-
tia with Lewy bodies [DLB], 1 non-fluent variant
PPA, 1 PSP). Aβ+ participants were more likely to
have an amnestic clinical phenotype, had poorer per-
formance on Favorites and Match tests, and greater
BHA-ECog scores compared to the Aβ− group
(Table 1). Table 2 presents baseline characteristics of
the tau-PET subsample, which was comprised of 32
MCI (13 amnestic, 19 non-amnestic [Supplementary
Table 2]) and 28 dementia (20 amnestic-predominant
AD-type dementia, 2 frontal variant AD-type demen-
tia, 2 logopenic variant PPA, 3 PCA, 1 unspecified
PPA) participants. Demographic characteristics of
Aβ+ participants who did not complete tau-PET are
also reported in Table 2.

Associations of BHA tests with Aβ PET
Logistic regression results showed significant associa-
tions between Favorites, Match, and BHS-ECog scores
and Aβ+ status (Table 3). Among other predictors, only
an amnestic clinical phenotype was associated with Aβ
positivity (Table 3). Sensitivity analyses using unadjusted
BHA test scores showed similar results (Supplementary
Table 3). Figure 2 illustrates ROC curves showing accur-
acy in predicting Aβ+ status based on BHA measures
alone (Favorites, Match, and BHS-ECog) and with
addition of an amnestic clinical phenotype. Results of
the likelihood ratio test comparing goodness of fit be-
tween unadjusted and adjusted models revealed a signifi-
cantly better fit of the adjusted model (χ2 = 9.47, P =
.002). The MoCA also discriminated between Aβ− and
Aβ+ groups but with lower accuracy (Supplementary
Table 3, Supplementary Fig. 1).

Associations of BHA tests with tau PET
Results of voxel-wise regression analyses of individual
BHA tests and tau SUVR are presented in Fig. 3. After
controlling for age, Favorites scores were associated with
Flortaucipir SUVR in mesial temporal lobes, Match
scores with Flortaucipir SUVR in frontal and parietal
lobes, and Line Orientation performance with Flortauci-
pir SUVR in occipital and parietal lobes (Fig. 3). Sensitiv-
ity analyses including additional covariates for sex and
education showed similar results (Supplementary Fig. 2).
The association with Flortaucipir SUVR in significant
clusters (at P < .001 uncorrected threshold) was stron-
gest for Match (R2 = .55), followed by Line Orientation
(R2 = .32) and Favorites (R2 = .25; Fig. 3).

Table 3 Results of logistic regression analyses predicting Aβ+
PET status

B SE z P

Favorites

Age 0.022 0.026 0.83 .41

Female 0.397 0.474 0.84 .40

Education 0.074 0.084 0.88 .38

CDR-SB 0.081 0.122 0.67 .51

Amnestic phenotype 0.890 0.479 1.86 .06

Time difference (yrs) 0.688 0.474 1.45 .15

Favorites z-score − 0.673 0.196 − 3.44 < .001

Match

Age 0.035 0.024 1.47 .14

Female − 0.034 0.459 − 0.07 .94

Education 0.138 0.090 1.54 .12

CDR-SB 0.022 0.128 0.17 .86

Amnestic phenotype 1.465 0.460 3.18 .001

Time difference (yrs) 0.488 0.418 1.17 .24

Match z-score − 0.521 0.136 − 3.82 < .001

Line Orientation

Age 0.024 0.023 1.04 .30

Female 0.266 0.428 0.62 .53

Education 0.099 0.084 1.18 .24

CDR-SB 0.184 0.112 1.64 .10

Amnestic phenotype 1.475 0.442 3.34 < .001

Time difference (yrs) 0.571 0.439 1.30 .19

Line Orientation z-score − 0.257 0.136 − 1.89 .06

BHS-ECog

Age − 0.001 0.027 − 0.01 .99

Female 0.496 0.465 1.07 .29

Education 0.074 0.083 0.89 .38

CDR-SB 0.076 0.134 0.57 .57

Amnestic phenotype 1.295 0.486 2.66 .008

Time difference (yrs) 0.419 0.426 0.98 .33

BHS-ECog Score 0.864 0.398 2.17 .03

Abbreviations: B log odds, BHS-ECog Brain Health Survey Everyday Cognition
Scales, CDR-SB Clinical Dementia Rating Scale Sum of Boxes, MCI mild
cognitive impairment, PET positron emission tomography, SE standard error,
yrs. years
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Discussion
Our findings suggest that individual BHA cognitive mea-
sures are significantly associated with both in vivo AD
pathological markers and support use of highly sensitive
and reliable brief cognitive measures to help identify and
monitor patients with suspected AD pathology in clinical
practice. A particular strength of our findings is the
brevity of the BHA battery, which takes only 10 min to
administer [29, 30] making it highly feasible for wide-
scale implementation in busy clinical settings. Also,
given its computerized nature, the BHA does not require
administration by a trained specialist or manual scoring
of results and features an automated comprehensive
reporting system to facilitate interpretation of results by
non-specialists.
Specifically, we found significant associations between

individual BHA tests of associative memory and process-
ing speed and executive functions and Aβ positivity in
both MCI and dementia. These findings are largely con-
sistent with prior reports on the associations of memory
and executive measures with Aβ burden [19–21] in clin-
ically mixed samples, and with our prior results on these
tests being associated with regional gray matter volumes
typically affected in the early symptomatic stages of AD
[29]. While not directly comparable due to differences in

cognitive measures used in the analyses, the accuracy of
classification in our study is similar to or better than
previously published findings on Alzheimer’s Disease
Assessment Scale-Cognitive Subscale (ADAS-Cog) [19]
and ADNI cognitive battery [20, 21]. Additionally, we
found that the BHA measures were associated with Aβ
positivity after controlling for age, sex, education, time
gap, disease severity, and amnestic phenotype, which
supports the notion that these measures are sensitive to
Aβ deposition beyond the effects of demographic and
clinical characteristics.
We also found significant associations between per-

formance on all three novel BHA cognitive measures
and regional tau SUVR among Aβ+ participants. These
results are particularly important given the need for
novel cognitive measures which, beyond clinical validity,
also exhibit associations with brain regions affected in
neurodegenerative diseases and are capable of capturing
cognitive impairment associated with greater biomarker
burden [27]. To our knowledge, only one other comput-
erized cognitive measure, the National Institutes of
Health Toolbox Cognition Battery (NIHTB-CB) has
been previously shown to be associated with tau PET,
also supporting the association between tasks of execu-
tive functions and processing speed with tau burden in

Fig. 2 Receiver operating characteristic curves predicting Aβ+ PET status. Legend: Blue lines are based on BHA measures only (Favorites, Match,
and BHS-ECog) and orange lines are based on the BHA measures and an amnestic clinical phenotype. Abbreviations: BHA, Brain
Health Assessment

Tsoy et al. Alzheimer's Research & Therapy           (2021) 13:36 Page 7 of 10



cognitively unimpaired older adults [38]. Additionally,
our findings are consistent with prior reports on the as-
sociations between regional tau retention and specific
cognitive domains [12] and further highlight the feasibil-
ity of using brief and robust cognitive measures as indi-
cators of potential AD-related pathological changes
addressing the shortcomings of cost- and time-
prohibitive neuropsychological batteries.
Our findings are also important to consider in the

context of rapid developments in blood-based bio-
markers for AD [39], which are also aimed to ad-
dress the barriers to clinical implementation of
molecular neuroimaging, including its high cost and

invasiveness. Among those, plasma amyloid (Aβ1–42)
[40] and phosphorylated tau (p-tau-181 [41, 42] and
p-tau-217 [42]) have shown significant associations
with corresponding PET findings. Thus, a combin-
ation of a brief cognitive assessment and a plasma
test represent a promising alternative to PET im-
aging procedures in clinical practice and may not
only help streamline case identification but also in-
crease accessibility to appropriate interventions and
clinical trials. Additionally, multimodal frontline
identification would support more efficient distribu-
tion of healthcare resources and help avoid unneces-
sary costs to public healthcare systems.

Fig. 3 Voxel-wise results of independent regressions between BHA tests and Flortaucipir PET SUVR. Legend: Left column shows voxel-wise
associations between individual BHA tests and Flortaucipir SUVR without covariates. Middle column shows voxel-wise associations between
individual BHA tests and Flortaucipir SUVR with inclusion of age as a covariate. Voxel-wise associations are shown at uncorrected P < .001 in blue
and at FWE-corrected P < .05 in red. Right column illustrates scatter plots and modeled regression lines (including covariates of CDR Sum of
Boxes, clinical phenotype [dummy-coded: 0 = non-amnestic MCI/atypical dementia, 1 = amnestic MCI/amnestic-predominant dementia], and
time difference between PET acquisition and BHA completion) on the associations between individual BHA tests and Flortaucipir SUVR in
significant clusters at P < .001 uncorrected threshold. Abbreviations: BHA, Brain Health Assessment; CDR-SB, Clinical Dementia Rating Scale Sum of
Boxes; FWE, family-wise error; MCI, mild cognitive impairment; PET, positron emission tomography; SUVR, standard uptake value ratio
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Limitations
Our study had a number of limitations. First, our sample
was relatively small and was primarily comprised of
highly educated, English-speaking non-Hispanic White
individuals, which may limit generalizability of the re-
sults to other populations. Second, our sample included
a substantial number of participants with less typical de-
mentia syndromes, including earlier onset and atypical
variants of AD. At the same time, this limitation may
also be regarded as a strength of the study given a shift
towards biological definition of AD and the importance
and challenges of identifying its atypical variants in clin-
ical practice [3, 43]. Finally, there was a trend for greater
CDR Sum of Boxes scores in Aβ+ versus Aβ− partici-
pants, and although all analyses controlled for this vari-
able, it is possible that our findings may in part be
related to an overall greater a disease severity effect not
captured by the CDR. Thus, current findings require
replication in larger, more diverse cohorts as well as
cross-validation in out-of-sample populations. Future
studies should also examine longitudinal associations be-
tween BHA tests and AD PET biomarkers. Lastly, our
findings should be interpreted with a caveat that applies
to all studies of brain-behavior relationships: the brain
bases of cognitive performance are multifactorial, and
different individuals may fail the same test for different
reasons.

Conclusions
Our results showed that performance on the BHA mea-
sures is significantly associated with in vivo Aβ and re-
gional tau PET burden in a clinically heterogeneous
sample of individuals with MCI and dementia. These
findings demonstrate potential for clinical applicability
of brief and sensitive cognitive measures for the frontline
identification of patients with underlying AD pathology.
Potential implementation of the BHA or similar tools in
clinical settings may support progress towards precision
medicine and targeted interventions in AD research and
therapies.
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