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Abstract

Background: Qil flax (linseed, Linum usitatissimum L) is one of the most important oil crops., However, the
increases in drought resulting from climate change have dramatically reduces linseed yield and quality, but very
little is known about how linseed coordinates the expression of drought resistance gene in response to different
level of drought stress (DS) on the genome-wide level.

Results: To explore the linseed transcriptional response of DS and repeated drought (RD) stress, we determined the
drought tolerance of different linseed varieties. Then we performed full-length transcriptome sequencing of
drought-resistant variety (Z141) and drought-sensitive variety (NY-17) under DS and RD stress at the seedling stage
using single-molecule real-time sequencing and RNA-sequencing. Gene Ontology (GO) and reduce and visualize
GO (REVIGO) enrichment analysis showed that upregulated genes of Z141 were enriched in more functional
pathways related to plant drought tolerance than those of NY-17 were under DS. In addition, 4436 linseed
transcription factors were identified, and 1190 were responsive to stress treatments. Moreover, protein-protein
interaction (PPI) network analysis showed that the proline biosynthesis pathway interacts with stress response
genes through RAD50 (DNA repair protein 50) interacting protein 1 (RIN-1). Finally, proline biosynthesis and DNA
repair structural gene expression patterns were verified by RT- PCR.

Conclusions: The drought tolerance of Z141 may be related to its upregulation of drought tolerance genes under
DS. Proline may play an important role in linseed drought tolerance by maintaining cell osmotic and protecting
DNA from ROS damage. In summary, this study provides a new perspective to understand the drought adaptability
of linseed.
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Background

Drought stress (DS) is the most prevalent environmental
factor limiting crop productivity and can directly result
in an average yield loss of more than 50%, and global cli-
mate change is increasing the frequency of severe
drought conditions [1]. Drought is expected to cause
serious plant growth problems for more than 50% of
arable land by 2050 [2]. DS affects crop water potential
and turgor, e.g., reduces leaf expansion and promotes
leaf senescence and abscission, which interfere with nor-
mal functions and change physiological and morpho-
logical traits in crops [3]. In addition, DS directly and
indirectly, inhibits crop photosynthesis and leads to slow
crop growth, yield loss, and even death.

Unlike animals, plants cannot simply uproot and
move. Therefore, plants have evolved a series of special
mechanisms to resist the damage caused by DS. A series
of drought tolerance genes involved in the abscisic acid
(ABA), proline, glycine-betaine, and sorbitol pathways
upregulated by DS in wheat [4]. Similarly, tolerant maize
varieties exhibited more drastic changes in global gene
expression than susceptible varieties which correlated
with different physiological mechanisms of adaptation to
drought [5]. In addition, transgenic maize with enhanced
ZmVPPI expression demonstrated improved drought
tolerance which was attributed to enhanced photosyn-
thetic efficiency and root development [6]. Despite
recent advances, the mechanisms by which plants resist
DS are still unclear.

Oil flax (Linum usitatissimum L.) also as known as lin-
seed, is one of important oil crop in the world. It con-
tains unsaturated fatty acids and plant hormones that
are beneficial in the human body. Among them, a-
linolenic acid (ALA) and secoisolariciresinol diglucoside
(SDG) have been proven to promote nervous system
development and significantly reduce breast cancer risk,
respectively [7—10]. Furthermore, linseed is a fairly hardy
species and has a higher level of drought tolerance than
many other food crops. Therefore, it is widely grown in
the western and northwestern provinces in China, such
as Gansu and Inner Mongolia, which experience the
highest drought frequency and longest drought in East
Asia [11]. Nonetheless, DS still represents a major limit
to linseed production [12]. Since 1995, when long-term
traditional breeding programs to enhance linseed stress
tolerance and improve crop vyield under periodic
drought, transgenic linseed plants have been obtained
for enhancing tolerance to DS [13, 14]. Some transgenic
linseed plants have been obtained for enhancing toler-
ance to drought stress [15]. Despite recent advances in
linseed drought tolerance, how it functions is another
open question.

PacBio’'s SMRT (single-molecule real-time) sequen-
cing (PacBio, http://www.pacificbiosciences.com/)
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provides is third-generation sequencing platform that
is widely used for long-reads genome sequencing [16].
Due to its ability to obtain full-length transcripts with-
out assembly, this method can provide direct compre-
hensive analysis of splice isoforms of each gene and
improve annotation of existing gene models. SMRT
sequencing is an ideal method for plant genome
research due to the highly repetitive nature plant
genomes compared to vertebrate genomes [17-19].
Recently, Li et al. (2017) used Iso-Seq to analyse full-
length (FL) splice isoforms in strawberry, suggesting
its suitability in uncovering the mechanism of drought
tolerance in linseed [20].

Since the response of plants to DS is very complex, the
physiological and transcription responses of leaves and
roots to DS are almost completely different [21, 22]. In
this study, we analysed and discussed the transcription
data of only the aboveground parts to focus on deter-
mining the molecular mechanism underlying their
response to DS. The first identified variation in drought
tolerance of linseed varieties NY-17and Z141, was deter-
mined by combining SMRT sequencing and short-read
next generation sequencing to generate a more complete
FL linseed transcriptome. In addition, comprehensive
candidate gene identification was conducted for; DS, re-
watering (RW), and repeated drought (RD) conditions,
and analysis of expression patterns for homologous
genes in linseed was performed under different drought
conditions.

Results

Determination of drought tolerance in linseed varieties

In this study, we measured three drought-tolerance related
phenotypic traits of Z141 and NY-17 (Additional file 1).
7141 consistently performed better than NY-17 under DS
(Fig. 1a-d). In addition, under DS, Z141 had a lower plant
height and biomass reduction rate compared than NY-17
under DS (Fig. e, f; Additional file 2). The biomass reduc-
tion rate under DS was 30 and 46% in Z141 and NY-17
respectively. The relative leaf water content (RLWC) of
7141 was significantly higher than that of NY-17, suggest-
ing that Z141 leaves can retain more water under drought
stress. (Fig. 1g, h; Additional file 3).

Two-way ANOVA results showed significant effects of
the different varieties and different drought level treat-
ments and their effects on plant height, biomass ALWC
and RLWC (Table 1). By comparing the phenotypes of
7141 and NY-17 under drought stress, it is found that
the drought-tolerant of Z141 was stronger than that of
NY-17. Therefore, we reveal the molecular mechanism
difference between Z141 and NY-17 in response to
drought stress using single-molecule long-read tran-
scriptome sequencing,.


http://www.pacificbiosciences.com/

Wang et al. BMIC Genomics (2021) 22:109

Page 3 of 23

80

90

80

70

60

50

40

RLWC (%)

30

20

70

1

60 50 40 30 20 10
ASWC (%)

%%

%%

80

70

Fig. 1 Identification of linseed drought tolerance. a-d Z141 (left) and NY-17 (right) phenotype differences under normal water content (CK),
drought stress (DS), re-watering (RW), and repeated drought (RD) respectively. e, f Z141 and NY-17 phenotypic differences between drought
stress (left) and controls (right). g, h Z141 and NY-17 ALWC and RLWC with means and SEs (n = 3) respectively. The abscissa indicates ASWC, and
the ordinates indicate ALWC (g) and RLWC (h). Blue dots indicate Z141, and orange dots indicate NY-17. **, p <0.01, see Table 1 for ANOVA and
Table S2 and Table S3 for a summary of these drought tolerance-related traits
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Table 1 Two-way ANOVAs to test the effects of different
drought stress (Fixed effect), two linseed biotypes (random effects),
and their interaction on plant height, biomass, leaf absolute water
content (LAWC) and leaf relative water content (LRWC)

Trait Drought Linseed DxL

df F p df F p df F p
Plant height 1 709.13 0000 1 47990 0000 1 2636 0001
Biomass 110803 0000 1 30229 0000 1 4129 0000
LAWC 1 31444 0000 1 127 0292 1 3688 0.000
LRWC 1 94963 0000 1 522 005 1 648 003

The drought (D) had two levels (drought stress or non-drought stress) and
linseed biotype (L) had two levels too

Analysis of the linseed transcriptome by PacBio Iso-Seq

Total RNA of Z141 and NY-17 was isolated from con-
trol, DS, RW and RD treatment groups and quality
checked. A total of 16 RNA samples were sent to
Wuhan Frasergen Bioinformatics Co.Ltd. Genomic
Service for sequencing using the PacBio Sequel platform.
This platform can generate sufficiently long read lengths
that cover the full length of most RNA transcripts,
ensuring that accurate reconstructed FL splice variants
are obtained. Over 2 million polymerase reads with a
mean length of ~30,000bp were generated after quality
checking by Frasergen (Additional file 4). After processing
raw data, we obtained more than 33 million filtered subreads
with a mean length of ~2000bp (Additional file 5). In
addition, we obtained 1,599,415 circular consensus (CCS)
reads, which included 1,293,134 FL reads (Additional file 6).
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De novo reconstruction of the transcriptome data was
performed using RNA-Seq reads and publicly available flax
sequences. To evaluate the density and length of isoforms,
we compared the locus coverages of PacBio full-length and
non-chimeric (FLNC) sequences and swine SSC 10.2 anno-
tation. In the PacBio dataset, a total of 1,093,282 high-quality
FLNC sequences covered 108,579 isoforms and were allo-
cated to 28,686 loci (Additional file 7). Due to the high base
error of SMRT sequencing, high-quality Illumina short reads
were obtained using Prooveread software to correct the
errors (Additional file 8). In this study, the pre- and post-
correction FLNC sequences were aligned to the linseed gen-
ome sequence through GMAP, and finally, we obtained 1,
093,282 high-quality FLNC sequences for further study
(Additional file 9).

Global comparisons of DS- and RD-related transcriptomes
reveal gene expression and functional group differences
mRNA populations were compared using principal com-
ponent analysis (PCA) to provide a framework for un-
derstanding how linseed genes are regulated to respond
to DS. Transcriptomes of Z141 and NY-17 under DS,
RW and RD were likely to share a great similarity in
gene expression, with variations forming three groups
that were separated far from the control (Fig. 2a). The
transcriptomes of DS exhibited a distinct relationship
from those of RD, suggesting that the gene expression in
the transcriptome has a major shift between DS and RD.
Cluster analysis of differentially expressed genes
(DEGs) further supported our observed results from
PCA (Fig. 2b). The overlaps of up- and downregulated
genes between Z141-RD and NY-17-RD was significantly
higher than that between Z141-DS and Z141-RD, with
62.1% compared to 47.8% (upregulated) and 70.7% com-
pared to 60.6% (downregulated) respectively (Fig. 2c, d).
In addition, in Z141 and NY-17 approximately 52.2 and
65.6% of upregulated genes were responsive to only RD
respectively, and 29.9 and 43.6% of upregulated genes
were responsive to only DS (Additional file 10). Specific-
ally, in Z141 and NY-17, 8005 (including 3245 for DS
and 4760 for RD) and 6285 (including 2381 for DS and
3904 for RD) genes were upregulated under drought,
respectively (Additional file 10). Approximately 9104 (in-
cluding 4041 for DS and 5063 for RD) and 7908 (3515
for DS and 4393 for RD) genes were downregulated
under drought in Z141 and NY-17 (Additional file 10).
We also observed a higher proportion of stress-
responsive genes under RD than that under DS. In this
study, 2275 and 1343 genes were upregulated, and 3067
and 2154 were downregulated when Z141 and NY-17
were under DS, respectively. In total, 1007 and 1686
genes were significantly up- and downregulated when
7141 and NY-17 were under DS and RD (Fig. 2c, d).
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Taken together, these results suggest that the transcrip-
tomes of DS and RD has fundamentally different.

Gene Ontology (GO) enrichment analysis was con-
ducted to examine the functional distribution of the DS-
related candidate genes identified in our study. We per-
formed GO enrichment analysis on 2275 and 1343
DEGs that both up-regulated under DS and RD stress in
Z141 or NY-17 respectively (Additional file 11). A series
of GO categories exhibited significantly higher enrich-
ments in the overlapping or unique upregulated gene
sets under DS and RD treatments compared to their
levels in the control. The GO terms of upregulated genes
overlapping between DS and RD in Z141 and NY-17
were mainly enriched in “proline biosynthetic process
(GO: 0006561)” and “proline metabolic process (GO:
0006560)” (Fig. 3a, b). Moreover, except for amino acid
biosynthesis and metabolism, abiotic stress-related GO
terms e.g., “response to stress (GO: 0009650)” and “re-
sponse to desiccation (GO: 0009269)”, exhibited signifi-
cant enrichment among Z141 upregulated genes (Fig. 3a).
Interestingly, GO terms related to flower development
(GO: 0009908) were significantly enriched in only Z141
upregulated genes (Additional file 11, Fig. 3a). Precocious
flowering might be an important drought avoidance
mechanism for species preservation when plants under
stress [23, 24]. Therefore, this result may indicates that
the drought avoidance mechanism of Z141 was activated.
DS inhibits plant photosynthesis. In this study, the GO
terms of photosynthesis (GO: 0015979) were significantly
enriched in downregulated genes in Z141 and NY-17
under DS and RD (Additional file 11). Proline accumula-
tion is one of the striking metabolic responses of plants to
drought stress, it contributes to the redox balance of cells
under stressful conditions [25]. Our study showed that
proline biosynthesis genes were significantly up-regulated
in linseed under drought stress.

The difference in linseed gene regulation patterns
under DS and RD, suggests that under repeated DS,
linseed may have different molecular mechanisms for
drought tolerance. In order to verify this hypothesis, we
performed GO enrichment analysis on 970 and 2485
DEGs that were specifically up-regulated in Z141 under
DS or RD stress. Of the stress responsive GO terms, two
distinct functional categories of specific DS upregulated
genes in Z141 exhibited significantly higher enrichments,
namely methylation and negative regulation. The first
group included “histone H3-K36 demethylation (GO:
0070544)” and “macromolecule methylation (GO:
0043414)”, whereas the second group included “negative
regulation of biological process (GO: 0048519)” and
“negative regulation of macromolecule metabolic process
(GO: 0010605)” (Additional files 11 and 12). The GO
terms of upregulated genes in Z141 under RD were
mainly enriched in “fatty acid oxidation (GO: 0019395)”,
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Fig. 2 Comparative analysis of transcriptome profiles of linseed seedling leaves under DS and RD. a Principal component analysis (PCA) of mRNA
populations from the control, DS, RW and RD groups. Each sample contained two replicates. Principal components (PCs) 1 and 2 account for 30
and 22% of the variance, respectively. The PCA plot shows four distinct groups of mRNA populations. Group I: Z141 CK (blue square) and NY-17
CK (red square); group II: Z141 DS (blue diamond) and NY-17 DS (red diamond); group Ill: Z141 RW (blue circle) and NY-17 RW (red circle) and
group IV: Z141 RD (blue triangle) and NY-17 RD (red triangle). b Hierarchical clustering of DEGs exhibiting altered expression levels in response to
CK, DS, RW and RD treatments. The colours in the scale (blue (low), white (medium) and red (high)) represent the normalized expression levels of
differentially expressed DEGs. ¢, d Venn diagrams showing overlap of up- (c) or downregulated (d) genes in response to the four assayed abiotic
stresses: Z141-DS (purple), NY-17-DS (yellow), Z141-RD (green) and NY-17-RD (red)

\

“fatty acid biosynthetic process (GO: 0006633)”, “fatty
acid m metabolic process (GO: 0006631)” and “lipid
metabolic process (GO: 0006629)” (Additional file 11).
The GO terms of genes downregulated in only Z141
under DS were mainly enriched in “carbohydrate

metabolic process (GO: 0005975)”, “lignin biosynthetic
process (GO: 0009809)” and “lignin metabolic process
(GO: 0009808)”, whereas under RD, the GO terms of
genes downregulated in only Z141 were mainly
enriched in “amide biosynthetic process (GO:
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Fig. 3 Bubble diagram showing the Gene Ontology (GO) classification of upregulated genes overlapping between DS and RD in Z141 or NY-17.
GO terms of upregulated genes overlapping between DS and RD in Z141 (a) or in NY-17 (b). The three main GO categories are (from top to
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0043604)” and “cellular amide metabolic process (GO:
0043603)” (Additional files 11 and 12). Overall, these
functional categories indicated that epigenetic modifi-
cations might play a crucial role in the DS response
process, although the exact functions of these genes
remain to be elucidated. Meanwhile, DS may induce
the Z141 to shift from vegetative growth to repro-
ductive growth.

Under DS, 1038 DEGs were specifically up-
regulated in NY-17, and their GO terms of genes
were mainly enriched in RNA regulation, including
“RNA modification (GO: 0009451)”, “RNA processing
(GO: 0006396)” and “ncRNA processing (GO:
0034470)” (Additional file 11). There were 1525 DEGs
specifically up-regulated under RD, and the GO terms
of genes upregulated only under RD were mainly
enriched in “transmembrane transport (GO: 0055085)”
(Additional files 11 and 12). The GO terms of 1379
specifically down-regulated DEGs in NY-17 under DS
were mainly enriched in flavonoid biosynthesis (GO:
0009813). Interestingly, more than 3000 DEGs were
specifically down-regulated in NY-17 under RD stress,
and the GO terms of genes were similar to those in Z141
and were mainly enriched in “amide biosynthetic process
(GO: 0043604)” and “cellular amide metabolic process
(GO: 0043603)” (Additional files 11 and 12).

Comparison of Z141 and NY-17 transcriptomes reveals

the molecular mechanism of linseed drought tolerance

Although the transcriptomes of Z141 and NY-17 are
very similar in overall gene expression, a set of stress-
responsive genes exhibited altered expression patterns
specific to Z141 or NY-17 under DS, indicating that
genes of distinguished functional categories could im-
pact the drought tolerance of linseed. There were 1552
overlapping up-regulated genes between Z141 and NY-
17 under DS, and the GO items were mainly enriched in
two distinct functional categories, including proline bio-
synthesis and reproductive development. The proline
biosynthesis category “proline biosynthetic process (GO:
0006561)”, “proline metabolic process (GO: 0006560)”,
“glutamine family amino acid biosynthetic process (GO:
0009084)” and “glutamine family amino acid metabolic
process (GO: 0009064)”, whereas the abiotic stress re-
sponse category includeed “reproductive system develop-
ment (GO: 0061458)” and “reproductive structure
development (GO: 0048608)” (Additional files 13 and 14,
Fig. 4a). Under RD stress, 2957 DEGs were both up-
regulated in Z141 and NY-17. The GO items of these
genes were also mainly enriched in the proline biosyn-
thesis category with “proline biosynthetic process (GO:
0006561)” and “proline metabolic process (GO:
0006560)”, and in the abiotic stress response category
with “response to abscisic acid (GO: 0009737)”, and
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“response to desiccation (GO: 00009269)”, “response to
acid chemical (GO: 0001101)” (Additional files 13 and
14, Fig. 4b). The GO terms of downregulated genes
overlapping between Z141 and NY-17 under DS and RD
conditions were mainly enriched in functional categories
related to photosynthesis (Additional file 12).

There were 1693 specifically up-regulated DEGs under
DS in Z141, and the GO items of these genes were
mainly enriched in “abscission (GO: 0009838)”, “defense
response (GO: 0006952)” and “NADP biosynthetic
process (GO: 0006741)” (Additional files 13 and 14),
whereas under RD, the GO terms were mainly enriched
in “jasmonic acid biosynthetic process (GO: 0009695)”
and “jasmonic acid metabolic process (GO: 0009694)”
(Additional files 13 and 14). The uniquely upregulated
genes showed more enrichment in pathways closely re-
lated to plant drought resistance, such as jasmonic acid
biosynthesis, abscission and NADP biosynthesis, than in
other pathways.. In contrast, the GO terms for genes up-
regulated in NY-17 under DS were mainly enriched in
the RNA regulation functional category with “ncRNA
metabolic process (GO: 0034660)”, “ncRNA processing
(GO: 0034470)”, and “tRNA processing (GO: 0008033)”
terms (Additional files 13 and 14). Under RD, the GO
terms for genes in only NY-17 were mainly enriched in
“phenylpropanoid biosynthetic process (GO: 0009699)”
and “phenylpropanoid metabolic process (GO:
0009698)” (Additional files 13 and 14).

Reduce and visualize GO (REVIGO) analysis

To remove the insignificant GO terms which p. adjust
value >0.05 and visualize the GO difference between
only Z141 and NY-17 genotypes, we submitted upregu-
lated and downregulated enriched GO categories from
7141 and NY-17, respectively, with a false discovery rate
(FDR) < 0.05, respectively, to REVIGO analysis (Fig. 5a,
b). Graphical results revealed that highly significant bio-
logical process (BP) GO terms such as proline biosyn-
thesis process (GO: 0006561), DNA recombination (GO:
0006310), reciprocal DNA recombination (GO:
0035825), response to desiccation (GO: 0009269) and re-
sponse to stress (GO: 0006950) were upregulated in
7141 under DS. These GO terms are enriched in 6 main
functional groups, namely, proline biosynthesis, response
to desiccation, deoxyribose phosphate metabolism, cal-
cium ion transport, reproductive process, and
reproduction (Fig. 5a). Although DEGs of proline bio-
synthesis (GO: 0006561), response to abiotic stimulus
(GO: 0009628), and mismatch repair (GO: 0006298)
were significantly upregulated in NY-17 under DS stress,
more DEGs were enriched in RNA modification (GO:
0009451), RNA processing (GO: 0006396), and ncRNA
processing (GO: 0034660). Therefore, the upregulated
DEGs in NY-17 under DS were mainly enriched in
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RNA modification, anatomical structure homeostasis,
ribosome biogenesis, protein refolding, reproductive
system  development, and reproductive process
(Additional file 15).

The REVIGO analysis showed that the functional
groups of enriched GO terms were more similar be-
tween Z141 and NY-17 under RD stress than under DS.
The GO terms were mainly enriched in proline biosyn-
thesis, response to stress, metal ion transport, and inor-
ganic ion homeostasis. These functional groups are
closely related to the response of plants to DS; however,
in NY-17, the DEGs of leaf senescence (GO: 0010150)
and ageing (GO: 0007568) were upregulated, and this re-
sult is consistent with the phenotype of NY-17 under
RD stress (Additional file 15).

The downregulated GO terms in both Z141 and NY-
17 under DS and RD stress were mainly involved in tet-
rapyrrole biosynthesis, photosynthesis, and light reac-
tions (Additional file 15, Fig. 5b). This result is
consistent with GO analysis and indicated that the
effects of DS on the linseed aboveground parts mainly
involved photosynthesis.

Functional analysis of DEGs using MapMan analysis
MapMan is a user-driven tool that projects large data
sets onto diagrams of metabolic pathways and other pro-
cesses. Therefore, in this study, we used it to explore the
effects and changes induced under DS in linseed leaf tis-
sues. We input data of specific BP DEGs that were co-
upregulated or co-downregulated in Z141 and NY-17
under DS or RD stress and used the reference Lusitatis-
simum_200. m02. Figure 6 and additional file 16 shows
an overview of Z141 and NY-17 up- and downregulated
DEGs involved in metabolic pathways under DS and RD
stress.

The results showed that of the Z141 and NY-17 DEGs
that were up- or downregulated DEGs under DS stress,
1483 upregulated DEGs and 2478 downregulated DEGs
were mapped, and of them, only 178 and 581 are visible
in Fig. 6 and additional file 16. In contrast, of the Z141
and NY-17 DEGs that were up- or downregulated under
RD stress, 2973 upregulated DEGs and 3581 downregu-
lated DEGs were mapped; 400 and 723 of these are vis-
ible in Fig. 6 and additional file 14. Consistent with the
GO enrichment analysis, up- and downregulated DEGs
were mainly enriched in similar functional groups and
pathways by MapMan analysis.

It is evident from both GO enrichment and MapMan
analysis that upregulated DEGs were mostly enriched in
the glutamine family amino acid biosynthesis process
(GO: 0009084) and proline biosynthetic process (GO:
0006561). The downregulated DEGs were mainly
enriched in photosynthesis (GO: 0015979), light harvest-
ing in photosystem I (GO: 0009768), and light harvesting
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(GO: 0009765). These terms are most likely to play an
essential role in regulating DS in linseed.

PPI network analysis

To further explore the protein interactions during DS,
we constructed a PPI network of all the up- and down-
regulated DEGs and identified them in linseed leaf tis-
sues using the STRING program. For the upregulated
DEGs, we identified two interaction subnetworks that
were predicted from 43 nodes of proteins with a PPI en-
richment p-value<1.0e-16 at the medium confidence
parameter level. In this network analysis, we identified
RAD50 (DNA repair protein 50) interacting protein 1
(RIN-1) as a hub gene that interacted with proline bio-
synthesis and response to stress (Fig. 7a). For the down-
regulated DEGs, there were 94 nodes of proteins with
PPI enrichment (Fig. 7b). Almost all of the nodes were
concentrated on photosynthesis or related regulation
networks. This result is completely consistent with the
results of our previous analysis.

Identification of transcription factors (TFs) temporarily
up- and downregulated in response to DS and RD

TFs have play irreplaceable roles in the response to vari-
ous abiotic stresses by modulating target gene expres-
sion [26]. To understand the essence of regulatory
processes during DS and RD treatment, a domain
searching method was used to first predict TFs in Z141
and NY-17 on a whole-genome scale based on our iden-
tified non-redundant linseed unigenes. A total of 4936
linseed TF genes distributed among 50 families were
identified (Additional file 17) [27].

To profile a stress-responsive TF open reading frame
collection (TFome) under DS and RD, we focused on TF
genes exhibiting diverse expression patterns with stress
changes, including continuous upregulated, continuous
downregulated an early peak in expression and a late
peak in expression. As a result, 1190 TFs distributed in
50 families were found to be differentially regulated in
response to at least one stress. (Fold change >2 and FDR
adjusted p-value <0.01). Eleven TF families accounted
for approximately half of the stress-responsive TF genes,
including bHLH (9%), C2H2 (8%), NAC (8%), MYB
(6%), ERF (6%), bZIP (5%), WRKY (5%) and MYB-
related (4%) (Fig. 8a).

Moreover, the 1190 TFs were further classified into 15
clusters according to their expression patterns by
performing Mfuzz program analysis in R software. Clus-
ters 5, 8,11 and 13 consisted of 387 TFs mainly upregu-
lated by DS and RD, including DREB, HSF and NF-
YA10, which have been confirmed to be key regulators
of plant abiotic resistance pathways (Fig. 8b and
Additional file 18).
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Candidate gene prediction annotations, we screened DS-responsive genes from
By considering the results of GO enrichment, Map- the DEGs that have functions related to proline bio-
Man, and PPI network analysis and gene synthesis, response to stress, response to water, and
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cellular response to abiotic stimulus for candidate
gene analysis. A total of 508 DEGs related to the
above functions were screened for candidates for
gene prediction analysis in Z141 and NY-17, respect-
ively (Additional file 19, Table 2). P5SCS gene family
encodes 1- pyrrolin-5 - carboxylate synthase (P5CS),
which is the key rate-limiting enzyme in plant pro-
line biosynthesis [28]. Previous studies have shown
that overexpression of members of the P5CS gene
family can significantly increase the proline content
in plant cells and improve the drought tolerance of
plants [29]. Usually, the P5CS gene family of other
plants has 2-4 members [28]. But in linseed, we
have identified 8 members, and their expression pat-
terns closely match with our repeated drought pat-
terns (Additional file 19 and 20, Fig. 9a). In addition,
the expression level of most P5CS gene family mem-
bers in Z141 was significantly higher than that in
NY-17 under drought stress. (Fig. 9a). P5CR gene
family members encode the last enzyme in the plant

proline biosynthesis pathway, overexpression P5CR
gene will significantly improve the photosynthetic
response of Arabidopsis under drought and high-
temperature stress [30, 31]. In this study, we found
that the expression level of P5CR gene, such as
Lus10034453, in Z141 was significantly higher than
that in NY-17 under drought stress, and its expres-
sion pattern also matched our drought treatment
model (Fig. 9b). Higher gene expression of P5CR
family members may be conducive to proline accu-
mulation. These results indicate that the members of
the P5CS and P5CR gene families are closely related
to drought tolerance in plants. Moreover, in this
study, we found that some encoding dehydrin genes
were also rapidly increased their expression levels
under drought stress (Additional file 19 and 20).
Previous studies have shown that overexpression
dehydrin genes will enhance the drought tolerance
of plants [32, 33]. Therefore, we hypothesize that
proline, dehydrin, and DNA repair might play
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important roles in regulating drought tolerance in linseed.
Hence, based on all the above analyses, 24 genes (includ-
ing 8 P5CS gene family members, 2 P5CR gene family
members, 8 DNA repair genes and 6 dehydrin -encoding
genes) were considered the most likely candidate genes
enabling drought tolerance (Additional file 19 and 20).
However, further validation and verification are needed to

Validation of isoforms by RT-PCR

Expression analysis of differentially expressed functional
candidate genes, associated with DNA repair, the MAPK
signalling pathway, proline biosynthesis, and photosyn-
thesis that were selected from transcriptome data, was
validated by RT-PCR. The results (Fig. 10a-d) demon-
strated that transcript abundances of selected genes were

check their actual roles in drought tolerance. consistent with the transcriptome analysis results,
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Table 2 The number of DEGs related to proline biosynthesis, response to stress, cell response to stress, photosynthesis, and

carbohydrate catabolism, in Z141 and NY-17

Trait Name Description Up-DEGs Down-DEGs
141 NY-17 2141 NY-17
DS RD DS RD DS RD DS RD
proline biosynthesis proline metabolic process 12 15 11 14 0 0 0 0
proline biosynthetic process 12 13 11 12 0 0 0 0
response to stress response to acid chemical 44 77 34 65 0 0 0 0
response to stress 180 276 123 222 0 0 0 0
response to water 17 25 12 18 0 0 0 0
response to inorganic substance 25 43 21 33 0 0 0 0
response to X-ray 3 3 3 3 0 0 0 0
response to lipid 32 54 23 43 0 0 0 0
response to chemical 106 168 77 137 0 0 0 0
response to oxygen-containing compound 49 87 38 75 0 0 0 0
cell response to stress cellular response to abiotic stimulus 11 14 10 15 0 0 0 0
cellular response to acid chemical 20 29 17 29 0 0 0 0
cellular response to radiation 8 10 8 12 0 0 0 0
cellular response to ionizing radiation 3 3 3 3 0 0 0 0
cellular response to gamma radiation 3 3 3 3 0 0 0 0
cellular response to X-ray 3 3 3 3 0 0 0 0
photosynthesis photosynthesis, light harvesting 0 0 0 0 47 49 41 45
photosynthesis, light harvesting in photosystem | 0 0 0 0 31 33 30 32
regulation of photosynthesis 0 0 0 0 11 10 8 10
photosynthesis 0 0 0 0 172 180 137 171
photosynthesis, light reaction 0 0 0 0 87 95 67 87
photosynthesis, dark reaction 0 0 0 0 6 7 5 6
regulation of photosynthesis, light reaction 0 0 0 0 9 10 7 9
carbohydrate catabolism carbohydrate metabolic process 0 0 0 0 304 300 241 285
carbohydrate catabolic process 0 0 0 0 89 84 63 79
single-organism carbohydrate catabolic process 0 0 0 0 36 39 23 38

thereby validating the reliability of our annotated tran-
scriptome data for future studies.

Discussion

Linseed is an important special oil crop and has excel-
lent drought tolerance; in extreme cases, it can complete
its life cycle in areas where annual rainfall is only 200
mm [34]. Plant DS tolerance is controlled by quantita-
tive traits; therefore, understanding linseed adaptive
mechanisms and genes related to drought tolerance can
provide new ideas for drought tolerance research in
other crops. Although linseed whole-genome sequencing
data were published in 2012, it was not until 2017 that
the first report of a transcriptome dataset of flax at dif-
ferent developmental stages under DS was published by
Dash [35]. Unfortunately, the author did not analyse the
data; therefore, the molecular mechanism of its drought

tolerance remains a black box. In addition, very limited
attempts have been made to understand drought toler-
ance at the second- generation transcriptome level. In
this regard, the present study explored drought tolerance
in two linseed genotypes (Z141 and NY-17) at the seed-
ling stage using single-molecule long-read sequencing.
In this study, we regulated the absolute soil water con-
tent (ASWC) by measuring the weight of the soil. This
method enabled us to investigate the phenotypic and
gene expression changes of plants under at various DS
levels, and these stresses are reproducible because the
ASWC is not dependent on the type of soil. After that,
we measured the degrees of LWC, plant height, and bio-
mass dry weight of Z141 and NY-17 at different drought
levels. RLWC is an important evidence for plant drought
tolerance, it reflects the plant tissues water status and
the he ability of plants to retain water. ALWC is closely
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related to the characteristics of plant itself. Therefore, in
this study RLWC had a significant difference between
7141 and NY-17, while ALWC did not have significant
difference. We observed that the biomass reduction rate
in NY-17 was significantly higher than that in Z141, but
the RLWC in Z141 was significantly higher than that in
NY-17 for the control when the ASWC was lower than
10%. A large number of studies have shown that under
DS, high LWC values significantly reduce yield loss [36, 37].
Biomass accumulation is also significantly affected by DS,
and the biomass reduction rates of plants are inversely pro-
portional to their drought tolerances [38, 39]. Interestingly,
in recent vyears, some studies have shown that
drought-related SNPs are usually associated with plant
height [40, 41]. In the study of woody plants, plants
should be short under drought conditions [42]. These
findings are similar to our conclusions, regardless of
whether there is DS, and the NY-17 plants were
significantly taller than the Z141 plants (Table 1 and
Additional file 2). Thus, we conclude that compared

with NY-17, Z141 has better drought tolerance. This
finding is different from our initial hypothesis because
NY-17 is widely planted in arid areas such as the
Gansu Province in China, where the average annual
precipitation is lower than 400 mm.

Under DS the differences between Z141 and NY-17
occurred in not only phenotype, but also gene expres-
sion patterns. In our study, we observed that more DEGs
were identified in Z141 than in NY-17 under DS. For
example, 3245 DEGs were upregulated and 4167 DEGs
were downregulated in Z141 under DS, In contrast, only
2381 genes were upregulated and 3515 DEGs were
downregulated in NY-17, under DS. This result suggests
that Z141 responds more rapidly or sensitively to DS
than NY-17 does. In addition, we also found that the
number of DEGs under RD stress was significantly
greater than that under DS stress (Fig. 9). This finding is
similar to results from previous studies, which suggests
that a greater number of variable physiological responses
occurred in repeated than in sustained drought
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treatments [43]. Further analysis found that the numbers
of specifically up- and downregulated DEGs in Z141
were significantly greater than those in NY-17. In this
study, for example, under DS, more than 52% of the
total upregulated DEGs were specifically upregulated in
7141, and only 34% were specifically upregulated in NY-
17 (Fig. 3c). Therefore, we hypothesized that the signifi-
cant differences in gene expression patterns may be the
reason for Z141 having better drought tolerance.

From both GO enrichment and MapMan analyses,
we found that proline biosynthesis genes were signifi-
cantly upregulated when Z141 and NY-17 were under
DS. These findings are similar, to those reported by
earlier studies, which revealed a strong correlation be-
tween proline accumulation and drought tolerance.
Dramatic accumulation of proline is a common
physiological response in plants exposed to various
abiotic stresses. Previous studies have shown that pro-
line seems to have more roles under stress conditions,
such as stabilization of proteins, membranes, and sub-
cellular structures, and protecting cellular functions
by scavenging reactive oxygen species (ROS), than in
the absence of stress [44—46]. P5CS is the key and
rate-limiting enzyme that catalyses the activation of
glutamate by phosphorylation and the reduction of
the labile intermediate y-glutamyl phosphate into glu-
tamate semialdehyde (GSA) in the higher plant pro-
line biosynthesis pathway. Overexpression of P5CS
significantly increases plant proline production and
accumulation and increases drought and salt tolerance
in transgenic crops [25, 29, 47]. In the present study,
we observed that the gene expression levels of P5CS
and PS5CR in Z141 were significantly higher than
those in NY-17 (Fig. 9a). Another interesting finding
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in this study was the number of members in the
P5CS family in linseed, which was significantly higher
than that in other crops. Normally, there are approxi-
mately two or three family members in the P5CS
gene family, namely, P5CSI, P5CS2 and P5CS3 [28],
but in our study, we identified 8 family members in
the P5CS gene family (Fig. 10a). More P5CS gene
family members, higher gene expression and faster
proline accumulation may be important factors for
linseed survival in arid environments.

In addition to differences in gene expression patterns,
there are also significant differences in the number of
DEGs, especially specific up- and downregulated DEGs,
in Z141 and NY-17 under DS. In this study, we observed
that under DS, the numbers and percentages of genes
specifically up- or downregulated in Z141 were greater
than those in NY-17. For example, under DS, a total of
3245 genes were upregulated in Z141, of which 1693
genes (accounting for 52.2%) were specifically upregu-
lated (Fig. 2c¢). In contrast, 2381 genes were upregulated
in NY-17, of which only 829 genes, accounting for
34.8%, were specifically upregulated (Fig. 2c). These spe-
cifically functionally regulated genes were also different.
For example, under DS, the specifically upregulated
genes in Z141 were mainly associated with NADP bio-
synthesis, abscission, defense response and the MAPK
signaling pathway (Additional file 12), while the specific-
ally upregulated genes in NY-17 were mainly involved in
RNA regulation (Additional file 12). Previous studies
have shown that the expression of NADP biosynthesis
genes is upregulated when plants are under DS [48, 49].
Despite some studies suggesting that NADP genes could
be related to ABA-mediated signaling, the mechanism
remains unclear, and more studies are warranted [50].

RE-WATERING

RE-WATERING

maintained for 2 days

Fig. 12 Schematic representation of the cycles of dehydration and re-watering. Each drought cycle consisted of a dehydration phase followed by
a recovery period. Dehydration was imposed by suspending irrigation until the ASWC reached approximately 10% (red dashed line) and the
plants were kept at this soil water level for 2 days, after which the pots were re-watered until the ASWC was 70%. The plants were then
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Our study revealed an upregulation of NADP biosyn-
thesis genes in Z141 leaves under DS, which suggests
that NADP may compensate for a deficiency in CO, in
the light-independent reactions caused by DS. Thus, the
specifically up- or downregulated genes in Z141may
explain why this linseed variety has better drought toler-
ance than NY-17.

Most plant drought tolerance studies have been con-
ducted by considering stress as a single event that occurs
once in the life of a plant; however little is known about
when recurrent drought episodes occur. A study in two
shortgrass species found that drought timing and lack of
previous drought exposure determined their sensitivity
to water stress [51]. In contrast, some studies have found
that plants exposed to multiple drought cycles can de-
velop a differential acclimation that potentiates their
defense mechanisms, allowing them to be kept in an
‘alert state’ to successfully cope with further drought
events [52, 53]. In our study, we found similar results.
For example, the gene expression levels of P5CS and
PSCR, which are the key enzymes of proline biosynthesis
in plants under RD stress, were significantly higher
under RD stress than those under DS. Whether plants
have “memory” has been the focus of research in recent
years [54—56]; however, in our study, we observed that
the functional categories of unique downregulated genes
were significantly different between Z141 and NY-17
under DS but very similar under RD (Additional file 11).
The difference in linseed responses to RD stress suggests
that linseed might develop DS “memory”, thus changing
its gene expression pattern to adapt quickly to future
drought events [57].

Approximately 7% of the coding sequences were
associated with TFs, which play a central role in
regulating gene responses to abiotic stresses in
plants [58-60]. In this study, we predicted 4936
potential TFs in the linseed genome, accounting for
approximately 9% of the total genes, and represent-
ing nearly twice the number of TFs registered in
plantTFDB (2481, Additional file 14). Numerous
studies have shown that DREB is a master regulator
of gene networks in the plant acclimation response
to drought by regulating responsive gene expression
by binding to cis-acting elements [61]. Similarly,
one-third of DREB family members were significantly
upregulated under DS. Many other TFs, such as HSF
and NF-YA10, were also specifically upregulated
under DS. Previous studies have shown that HSF
and NF-YA1O0 can increase plant high temperature
and salt tolerance respectively [62, 63]. However, in
this study we ensured that the temperature (~ 22 °C)
was suitable for linseed growth during drought treat-
ment. This may suggest that the molecular mecha-
nisms of abiotic stress tolerance in plants to factors
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such as drought, high-temperature, and saline-alkali
conditions are not independent and that there may
be some interactions [64]. Moreover, some TFs
related to plant drought avoidance were also specif-
ically upregulated under DS in this study. NF-YC3
and WRKY75 have been proven to induce flowering
or regulated root development in plants under abi-
otic stress [65-67]. Unexpectedly, some validated
negative stress regulators were also unregulated
under DS which complicates understanding the
molecular mechanisms underlying linseed tolerance
to abiotic stress. For example, MYB102 has been
proven to delay leaf senescence and decrease abiotic
stress tolerance in Arabidopsis thaliana [68]. This
information indicates that even under abiotic stress
the up-regulated TF may not necessarily help
improve plant abiotic tolerance. In conclusion, our
results indicate that TF regulation of linseed drought
tolerance is considerably complex but it is still help-
ful for us to understand the molecular mechanisms
underlying linseed tolerance to DS.

DNA is a very sensitive target of hydroxyl radicals
[69]. ROS generation is one potential cause of DNA
damage under drought [70, 71]. Oxidative damage of
DNA involves base modifications and strand cleavage,
which lead to senescence and diseases in biological sys-
tems. Timely and accurate repair of DNA damage is the
key point of plant survival under DS. For example, over-
expression of OsNACI14, which has a DNA repair func-
tion in rice, has been demonstrated to significantly
induce tolerance to drought [72]. In our study, 8 DNA
repair-related DEGs were found to be significantly
upregulated in Z141 and NY-17 (Additional file 16). Fur-
thermore, PPI network analysis reported an interaction
between proline biosynthesis and stress response-related
genes (Fig. 7). Although previous studies showed that
proline can remove ROS and maintain cell function, the
underlying mechanism has not been clear [73, 74]. This
result indicated that proline not only maintains the nor-
mal osmotic pressure of cells but also protects DNA
from ROS damage when plants are under DS.

Based on the above results, we proposed the model
presented in Fig. 11. This model shows how proline bio-
synthesis, DNA repair, TF activities, and signaling terms,
might regulated increased drought tolerance in linseed.

Conclusions

Our results revealed that a group of genes involved in
plant drought tolerance were upregulated in only the lin-
seed variety with better drought tolerance under DS. In
addition, more genes are involved in the linseed re-
sponse to drought stress under RD. than under a single
drought. Third, in this study, we found that the rate of
proline accumulation affects linseed drought tolerance.
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Finally, some of the TFs involved in the response to
high temperature stress were expressed in linseed under
DS, indicating that the linseed response to drought and
high-temperature stress was cooperative rather than in-
dependent. Taken together, the results from this study
deepen our understanding of the molecular mechanism
of linseed drought tolerance and the orchestrated linseed
responses to RD stress, which frequently occur under
field condition, and provide a new perspective to under-
stand the drought adaptability of linseed. To our know-
ledge, this is the first study to compare and analyse the
gene expression patterns of linseed varieties with differ-
ent drought tolerances under different drought treat-
ments on a genome-wide scale using single-molecule
long-read sequencing. Therefore, our study will contrib-
ute to the current body of knowledge on drought toler-
ance gene identification and functional analysis in
linseed.

Methods
Phenotyping for drought tolerance in the linseed
seedling stage.

Linseed variety NY-17 (accession no.: NYS-2005001) was
provided by the Guyuan Branch of the Ningxia Academy of
Agriculture and Forestry Sciences, while Z-141 (China
metaphase germplasm bank no.. HM00001753) which was
introduced from Alberta, Canada, was provided by the
Zhangjiakou Academy of Agricultural Sciences. Z141 and
NY-17 seeds sterilization method as described by Seta-
Koselska [75]. Then transferred into 7 cm diameter plastic
pots filled with a mixture of cultivation soil and vermiculite
in a 1:1 ratio. After germination, the pots were transferred
to culture room with a 16 h photoperiod and a temperature
of 22°C.

The drought stress expression has adopted completely
random design (CRD) with control trial. The pot (7 x
7 x 7 cm) was filled with uniformly mixed loam (nutritive
soil: vermiculite = 1:1), and keep the absolute soil water
content (ASWC) at 70%. ASWC was measured as de-
scribed by Turner [76]. The seeds of each linseed variety
were randomly planted in 6 pots, 3 of which were ran-
domly selected as control groups and the other 3 pots as
experimental group. Each pot planted 6 linseed seeds
and as a biological repeat, there were 3 biological repeats
for drought stress and control respectively. DS and RD
stress experiments began from 20d old after linseed ger-
mination, and refer to Menezes-Silva et al. [53]. Gradual
reduced the soil water content of the experimental
group until ASWC of ~10%. Two days after the ASWC
reached 10%, measured the phenotypic traits of the
experimental group and the control group, then the
stressed plants were watered to reach 70% ASWC to
help recover. The DS and RW treatments were repeated,
and afterward, the irrigation was maintained normally
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until the maturation stage (Fig. 12). Leaf tissues were
collected during each drought and RW treatment from
six independent plants with three biological replicates.

Measurement of phenotypic traits

The three drought tolerance related phenotypic traits,
plant height, biomass, leaf water content (including
ALWC and RLWC) ALWC and RLWC were measured
as described by Ghashghaie [77] and Yamasaki [78]
respectively. Three biological replicates were measured
for all phenotypic traits. Specific measurement methods
and formulas please see additional file 1.

RNA isolation, library preparation, and transcriptome
sequencing

Total RNA from leaf tissues was extracted using TRI-
zol reagent (Invitrogen), according to the manufac-
turer’s instructions. RNA concentration was measured
using a NanoDrop 2000 spectrophotometer (ND-2000,
Thermo Fisher Scientific, Inc., USA). RNA from 16
samples was pooled together at equimolar rations.
Approximately, 2 pug of total RNA was used for cDNA
synthesis using an optimized SMARTer PCR cDNA
Synthesis Kit that had been optimized for preparing
high-quality, FL c¢DNAs (TaKaRa Biotechnology,
Dalian, China), which was followed by size fraction-
ation (1-3 and>3kb) using the BluePippin™ Size
Selection System (Sage Science, Beverly, MA). Iso-Seq
libraries were subsequently constructed using the
protocol by (https://www.pacb.com/wp-content/
uploads/Procedure-Checklist-Iso-Seq-Template-
Preparation-for-Sequel-Systems.pdf). Each SMRT cell
line was sequenced using P6 C4 reagent on the Pac-
Bio RS II platform with 4 h sequencing movies.

lllumina RNA-Seq library construction

mRNA was purified from the total RNA using poly T
oligo-attached magnetic beads. Sequencing libraries were
generated using the NEBNext® Ultra™ RNA Library Prep
Kit for Illumina® (NEB, USA) following the manufacturer’s
recommendations. The library quality was assessed on the
Agilent Bioanalyzer 2100 system.

Subread processing and error correction

PacBio raw data were preprocessed using the SMRT Pipe
analysis workflow of the PacBio SMRT Analysis software
suite (http://www.Pacb.com/products-andservices/analytical-
software/smrt-analysis/). CCS reads were obtained from the
P_CCS model. Briefly, raw polymerase reads were filtered
and trimmed to generate the subreads and read of inserts
(ROIs) using the RS_Subreads protocol, requiring a mini-
mum polymerase read length of 50 bp, a minimum polymer-
ase read quality of 0.75, a minimum subread length of 50 bp
and a minimum of one full pass. FLNC reads were regarded
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as those containing a 5’ adaptor, 3" adaptor and poly (A) tail
in the expected arrangement with no additional copies of the
adaptor sequence within the ROL

Error correction of FLNC reads with the high-quality
[lumina short reads was performed using Proovread
version 2.12 with the default parameters [79]. The qual-
ity of Illumina short reads was examined using FastQC
(v0.11.5; http://www.Bioinformatics.babraham.ac.uk/
projects/fastqc). Sequencing adaptors and low-quality
bases in short reads were trimmed before the error cor-
rection of FLNC reads. FLNC reads before and after
error correction were respectively mapped to the IWGS
C RefSeq v1.0 using GMAP (version 2016-09-14; https://
github.com/juliangehring/ GMAPGSNAP) [80].

Identification of gene loci and isoforms

Based on read-genome alignments, FLNC reads with the
same splicing junctions were collapsed into one isoform.
The isoforms that had shorter 5° terminal regions but
shared the introns and splicing sites in the remaining
region, were regarded as transcripts degraded at the 5’
terminal region and were filtered out. For the remaining
isoforms, supporting evidence was examined. We
retained isoforms supported with at least two FLNC
reads, one FLNC read with a percent of identity (PID)
higher than 99%, or all junction sites that were fully sup-
ported by Illumina reads or annotations of the IWGSC
RefSeq v1.0. Isoforms that overlapped by at least 20% of
their length on the same strand were considered to be
from the same gene locus. Newly discovered loci and
isoforms were compared with the reference genome an-
notation using the same criteria as for loci and isoform
identification. Alternative splicing (AS) events were clas-
sified and characterized by comparing different isoforms
of the same gene loci using as profile [81].

Expression levels of genes and isoforms

For each sample, the trimmed short reads were mapped
to the linseed reference genome (https://phytozome.jgi.
doe.gov/pz/portal.html#!info?alias=Org_Lusitatissimum)
using TopHat (v2.1.1; https://ccb.jhu.edu/software/
tophat) [82]. RSEM (v1.3.0; https://deweylab.Github.io/
RSEM) was used to calculate the isoform-level expres-
sion in terms of FPKM and TPM (transcripts per mil-
lion) (Additional file 21) [83].

Identification of differentially expressed genes and
differentially spliced genes

To carry out differential expression analysis, transcript quan-
tification results generated by RSEM were processed and
refined in successive steps. First, transcript and gene read
counts were generated from TPM data correcting for pos-
sible gene length variations across samples that were mainly
derived from differential transcript usage using the tximport
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1.10.0 R package with the option “lengthScaledTPM” [84].
Second, the corrected read count data of genes were used to
estimate their expression in terms of FPKM. Third, the cor-
rected read count data of genes were imported into the R
package EdgeR to identify DEGs with the criteria of a fold
change >2.0, an FDR-adjusted p-value < 0.05 and an expres-
sion level of FPKM=>1 in at least one sample for each com-
parison (Additional files 21 and 22) [85].

Gene set enrichment and transcription factor (TF) analysis
The GO descriptions were obtained by BLAST and
BLAST2GO searches and GO enrichment analysis using
the R package clusterprofiler [86, 87]. TFs prediction
was based on Zheng’s method using software iTAK soft-
ware to predict the TFs by their protein sequence [88].

PCA and heatmap analysis

PCA was performed using all samples’ FPKM values.
The first principal component and second principal
component values of each sample were calculated and
plotted using the R package ggplot2 [89].

We selected the DEGs from all comparison groups, and
then used the expression levels of these DEGs in all sam-
ples to perform hierarchical clustering. Finally, a heatmap
was plotted using the R package pheatmap [90].

REVIGO analysis

The results of GO enrichment with q value < 0.05 were
imported it into the REVIGO database (http://revigo.irb.
hr/) [91]. The final results were displayed in a tree
diagram.

MapMan analysis

The latest linseed mapping file provided by the MapMan
database was downloaded. Then, the mapping file and
the DEGs that were up- or downregulated in Z141 or
NY-17 under DS or RD stress were imported into Map-
Man software ver 3.6.0 [92].

PPI network analysis

The Search Tool for Retrieval of Interacting Genes/
Proteins (STRING) online database was applied to
construct up- or downregulated protein-protein inter-
action (PPI) networks using Linum usitatissimum as
the background [93].

Statistical analysis

For the phenotypic trait measurements, data from the dif-
ferent DS treatments were analysed separately. The signifi-
cant effects of different varieties (fixed effects) and different
DS treatments (random effects) were tested using ANOVA.
For all comparisons involving pairs of means (Z141 versus
NY-17), we used an independent ¢-test. Statistical analyses
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were performed using the software package SPSS ver. 21.0
for Windows (IBM Inc., New York, USA).

Validation by RT-PCR

To further evaluate the reliability of our transcrip-
tome data, total RNA of all the treated samples was
extracted using the TRIeasy™ Total RNA Extraction
Reagent (YEASEN, Shanghai, China) and first-strand
c¢DNA synthesis was performed using the Hifair® 1st
Strand cDNA Synthesis Kit (gDNA digester plus)
(YEASEN, Shanghai, China) according to the
manufacturer’s protocol. Subsequently, the expres-
sion of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, Lus10014603) and seven candidate genes,
including one DNA repair related gene (Lus10021585),
two MAPK signaling pathway associated genes
(Lus10012962 and Lus10001832), two proline biosynthesis-
dependent genes (Lus10004697 and Lus10001016), and
two photosynthesis-related genes (Lus10038490 and
Lus10027966), were detected by RT-PCR using the first-
strand cDNA of eight treatment samples. The coding se-
quences of all selected genes were used to design specific
amplification primers (Additional file 20) in Primer Premier
6.0 software. All primers were synthesized by Sangon
(Shanghai, China). Each 20 pL RT-PCR verification reaction
contained 1.0 uL cDNA template, 1.0 uL each of the for-
ward and reverse primers (10 uM), 10 uL 2 x Hifair Canace®
Gold PCR Master Mix (containing 1.0 U/50 pL polymerase,
15mM Mg**, and 200 uM dNTP) (YEASEN, Shanghai,
China), and 7 pL. ddH20O. Double distilled water was used
as a blank control template. The amplification conditions
were as follows: an initial denaturation at 98 °C for 5 min;
34 cycles of 98 °C for 105, 60 °C for 20s, and 72 °C for 30s;
and a final extension at 72°C for 5 min. Finally, the PCR
products were checked by 2.0% agarose gel electrophoresis.
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