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Abstract

Traumatic brain injury (TBI) is a major health and socioeconomic problem globally that is 

associated with a high level of mortality. Early and accurate diagnosis and prognosis of TBI is 

important in patient management and preventing any secondary injuries. Computer tomography 

(CT) imaging assists physicians in diagnosing injury and guiding treatment. One of the clinical 

parameters extracted from CT images is midline shift, a measure of linear displacement in brain 

structure, which is correlated with TBI patient outcomes. However, only a tiny fraction of the 

overall tissue displacement is quantified through this parameter. In this paper, a novel 

measurement of overall mid-surface shift is proposed that quantifies the total volume of brain 

tissue shifted across the midline. When compared to traditional midline shift, mid-surface shift has 

a stronger correlation with TBI patient outcomes.
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I. Introduction

Traumatic Brain Injury (TBI) is a major cause of death and disability, with an estimated 

sixty-nine million individuals worldwide diagnosed with TBI each year [1]. Computed 

tomography (CT) imaging is the gold standard method to rapidly diagnose traumatic brain 

injury and guide initial management decisions in the “golden hours” of treatment. Emergent 

treatment decisions are typically based on the combination of clinical status, concisely 

summarized by the Glasgow Coma Scale (GCS), and CT scan information. For example, it 

is recommended that intracranial pressure (ICP) monitors be placed in TBI patients with an 

abnormal head CT and GCS of 8 or less [2]. Concurrent decisions regarding the urgent 

medical management of elevated intracranial pressure and the need for craniotomy or 
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craniectomy similarly depend on CT scan data. In recognition of this reality, current 

guidelines for the pre-hospital management of TBI call for emergency medical providers to 

screen for TBI by assessing the GCS, along with pupillary size and reactivity, and to rapidly 

transport individuals with suspected severe TBI to the nearest facility with an immediately 

available CT scanner [3].

Outcome prediction for TBI patients is of importance for planning rehabilitation goals, 

providing informed expectations to relatives, and evaluation of treatment effectiveness [4], 

[5]. It has been shown that midline shift (MLS) is strongly associated with outcome in 

moderate and severe traumatic brain injury [6]. MLS, the maximum amount of horizontal 

brain shift, is correlated with increased ICP, and it is one of the parameters clinicians use to 

estimate the severity of TBI. As it signifies tissue compression and risk of herniation, the 

presence of MLS is widely used in clinical decisionmaking and CT severity rating scales, 

such as the Marshall and Rotterdam scores [7]. However, clinicians typically measure MLS 

at a single arbitrary level, most typically at the narrow boundary between the two lateral 

ventricles, known as the septum pellucidum. By measuring MLS in just a single slice, only a 

tiny fraction of the overall tissue displacement is quantified. Furthermore, MLS 

measurements are subject to inherent inaccuracy on account of head rotation in the CT 

scanner.

The goal of this study is to develop a novel measurement of mid-surface shift (MSS), and 

calculate its correlation with TBI patient outcomes. Section II describes how the MLS and 

MSS are measured and provides a review of state-of-the-art methods for measuring MLS. In 

Section III, the results of several statistical analyses comparing MLS and MSS in terms of 

their correlations with different TBI patient outcomes are described. Section IV compares 

MLS and MSS by applying logistic regression on patient clinical and demographic 

information and finally we provide concluding remarks in Section V.

II. Midline and Mid-surface shifts

Physicians typically determine MLS by measuring the distance between the ideal midline, 

identified by the attachment of the falx cerebri to the skull, and to an arbitrary point that 

corresponds to the actual midline (i.e., a line that lies between the left and right lateral 

ventricles or through the third ventricle). Usually the thin band of tissue that separates the 

lateral ventricles, called the septum pellucidum (SP), is used for this purpose. This manual 

measurement of MLS is prone to human error as well as inherent inaccuracies created by 

rotation of the head in the coronal plane. To make the process of calculating the MLS 

automated, a number of methods have been proposed that detect the linear displacement of 

MLS using CT images. State-of-the-art methods for detecting MLS are described below.

A. Automated Midline Shift (MLS) Detection

Liao et al. [8] classified MLS algorithms to symmetry-based methods and landmark-based 

models. In the symmetry-based algorithms such as [9], a curve that connects all deformed 

and displaced structures is calculated, with MLS determined by the position of the central 

control point after detecting the deformed midline. The landmark-based methods such as 

[10], [11] often use lateral ventricles as one of the landmarks to calculate the amount of 
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shift. Hooshmand et al. [10] developed landmark-based methods to measure the MLS. The 

method proposed in [10] first selects CT slices using Digital Imaging and Communications 

in Medicine (DICOM) metadata such as image type and window center. To compute MLS, 

the algorithm first detects the ideal midline using anatomic features of the skull, after which 

the actual midline is determined by analyzing ventricle placement detected through 

segmentation, with MLS ultimately calculated as the mean distance between the ideal and 

actual midlines on all selected CT slices.

A limitation of these aforementioned methods is that by quantifying MLS as a linear 

displacement, other potentially clinically relevant information related to the brain injury, 

such as location, shape, and volume of the brain shift, are ignored. Figure 1 provides a 

comparison of MLS (left image) and MSS (right image) measurements in a patient CT 

image. As shown in the right figure, the area between the ideal midline and the deformed 

line can be calculated in each slice, from which the MSS can be measured.

B. Mid-Surface Shift (MSS) Measurement

MSS is a proposed volumetric measurement to evaluate the deformation of brain structure. 

Determining the mid-surface and measuring its shift can potentially provide more accurate 

information about the effects of TBI. Here, MSS is defined as the ratio between the mid-

surface volume and the brain volume as calculated from selected CT slices. To ensure 

consistency across patients, an automated CT image series and slice selection method was 

developed.

1) Automated Series Selection: Each patient can have multiple series of CT scans 

within a DICOM file, which may include bone and scout images that are unsuitable for 

analysis. The series is selected based on the following criteria using metadata tags embedded 

in the DICOM file:

• the series should contain only axial images;

• the default window level should be between 25 Hounsfield unit (HU) and 100 

HU; and

• slice thickness should be the closest to 5 mm.

2) Automated Brain Mask Segmentation: The skull is segmented and removed from 

the CT images as it is only necessary to compute the brain area on each slice in order to 

estimate brain volume. As the skull might be fractured and therefore not a closed surface, 

3D Chan-Vese segmentation [12] is used on the contrast-adjusted CT images to account for 

these issues. The active contour algorithm iteratively evolves the boundary of initial 

segmentation by minimizing an energy function based on intensity and contour smoothness. 

To segment the brain mask, normalized CT images are replicated and stacked according to 

the ratio of the slice thickness to pixel spacing, in order to account for vertical spacing. The 

active contour algorithm is initialized with the largest component of the pixel-wise exclusive 

or (XOR) between skull and non-zero regions of the CT image. After performing active 

contour, the duplicated slices are combined using the center slice.
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3) Slice Selection: Slices in a series are selected by filtering out those with brain area 

smaller than 90% of the slice with the maximum area. Slices that are disconnected from the 

longest consecutive slices are excluded.

4) Manual Annotation: The mid-surface was annotated manually using biomarkers in 

the brain. Annotation starts at the center of the anterior of each slice, and follows the falx 

cerebri and the middle of the ventricle. Once the posterior of the brain is reached, the 

annotations are again guided by the falx cerebri. To calculate the volume of shift, the ideal 

midline is first identified as the line formed by the intersections of the annotated mid-surface 

curve and the inner edge of the skull. Finally, the ratio between the volume of shift and brain 

volume is calculated. Let Aenclosed,i be the number of voxels enclosed by the annotated mid-

surface and the ideal midline on the ith slice, and Abrain,i be the brain mask area on the ith 

slice. Let m and n be the first and last selected slices as described in section II-B3, 

respectively, then the MSS is

MSS =
∑i = n

m Aenclosed, i

∑i = n
m Abrain, i

. (1)

III. Statistical Analysis

In the following series of experiments, three methods for measuring a shift in brain structure 

are compared with respect to TBI patient outcomes: MLS as calculated by a physician via 

manual annotation (“MLS by annotation”), MLS as calculated using the algorithm of 

Hooshmand et al. [10] as described in Section II (“MLS by algorithm”), and MSS as 

calculated by a physician via manual annotation (“MSS by annotation”).

A. Patient Characteristics

A previously described database [13] of consecutive patients with subdural hematoma who 

were admitted to the Michigan Medicine neurological ICU at some point during their 

primary hospitalization was used in this study. Patient characteristics of the cohort are 

described in Table I. Glasgow Coma Score (GCS) on admission showed that the majority of 

patients were classified as mild TBI (GCS 13-15). MLS was measured manually at the level 

of the septum pellucidum by a single study author (Craig Williamson). Based on these 

measurements, 19 (40 percent) patients had a MLS of at least 5 mm.

B. Correlation with Outcome at Discharge

The Glasgow Outcome Score (GOS) is widely accepted as a standard method for describing 

the disability or recovery outcome in TBI patients. GOS categorizes patients into five 

groups. A higher score indicates a better outcome for the TBI patient. A brief description of 

each GOS rating is shown in Table II. Using these definitions, the dataset contains 25 

patients with a favorable outcome and 23 with an unfavorable outcome.

The Kendall’s tau correlation coefficient (τ) was calculated between each measurement and 

5 GOS groups. Since a larger number of MLS or MSS indicates a more severe TBI case, a 
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negative correlation between the MLS/MSS and the GOS is expected. These coefficients and 

their 95% confidence intervals (CI) are shown in Table III. As expected, a negative 

correlation between each measurement and the ordered GOS outcome was observed. The 

proposed MSS annotation not only shows the strongest correlation with the GOS rating at 

hospital discharge but is also significant at level of 0.05. It should be mentioned that neither 

MLS by algorithm nor MLS by physician’s manual annotation has significant correlation 

with outcome.

The point-biserial correlation coefficient (rpb) was calculated to examine the correlation 

between each measurement and the dichotomized GOS outcome (favorable versus 

unfavorable). The correlation coefficients and 95% CI are shown in Table IV. The MLS 

measurement by annotation shows less correlation with the outcome.

In TBI severity rating scales, 5 mm is a typical threshold for assessing severity of MLS. 

According to neurosurgical guidelines, a MLS greater than 5 mm is an indication for the 

evacuation of an acute subdural hematoma [14]. It is hypothesized that there is an 

appropriate threshold for the proposed MSS, which will potentially help with clinical 

decision making. Hence, potential thresholds were explored, with Fisher’s exact test being 

used to examine the association between dichotomized MSS and its correlation with 

dichotomized GOS groups. The MSS threshold used, the odds ratio, and p-values obtained 

from Fisher’s exact tests are shown in Table V. Given the MSS range (0.007-0.087 percent) 

in the dataset, a sequence of thresholds ranging from 0.01 to 0.08, in 0.01 increments, were 

evaluated. The only significant result was at a threshold of 0.02, corresponding to 2% of the 

brain volume. In this experiment, 26 patients with MSS greater than 0.02 were identified, 

with 22 patients having an MSS less than 0.02. An odds ratio less than 1 indicates that 

patients with MSS greater than the threshold are less likely to have a favorable outcome. 

However, the association between the dichotomized MSS and the outcome may not be 

significant. The significance level using p-values are shown in Table V. The odds of patients 

with MSS greater than or equal to 0.02 having a favorable outcome is 0.30 times of that of 

patients with MSS less than 0.02. In other words, patients with MSS greater than or equal to 

0.02 have significantly higher odds of having an unfavorable outcome compared to those 

with MSS less than 0.02.

The odds ratios and p-values of the Fisher’s exact tests are shown in Table VI. We used 0.02 

as the threshold to dichotomize MSS values and assumed that 5 mm is the best threshold to 

dichotomize MLS values. 19 patients had MLS ≥ 5 mm according to the manual annotation, 

but 17 patients with MLS ≥ 5 mm were identified using the automated MLS algorithm. The 

odds ratios of the three measurements show the same trend. Patients with MLS/MSS 

measured above the threshold are less likely to have a favorable outcome. The MSS 

annotation is the only measurement among the three to have a significant association with 

favorable/unfavorable outcome. It is noteworthy that the threshold on MSS (0.02) is 

calculated and so optimized based on all samples used to generate odd ratio for MSS in table 

VI.
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IV. Logistic Regression Analysis

Age and Glasgow Coma Scale (GCS) on admission are known to be accurate and important 

predictors of TBI outcome [15]. In this analysis, logistic regression was performed using age 

and GcS on admission, plus each of the three non-dichotomized values, respectively. 14 

(30%) patients were held out as a test set. For the remaining 34 patients in the training set, 

three-fold cross-validation was performed. The performance of each logistic regression 

model on test set is shown in below Table VII.

The model using the MSS annotation has the best sensitivity, specificity, AUC, accuracy, 

precision and F1 score.

V. Conclusion

In this paper, two brain structure shift measurements related to TBI were discussed: midline 

shift (MLS) and mid-surface shift (MSS). Two methods were used to calculate MLS - 

manual annotation by a physician and automated MLS measurement. CT images in our 

dataset were manually annotated for MSS and correlation analysis between each 

measurement and patient outcomes (as measured by GOS) was performed. MSS correlation 

with patient outcomes was consistently stronger than the MLS manual annotation, 

irrespective of whether the outcomes were dichotomized into favorable/unfavorable. 

Compard to automated MLS, MSS correlation was stronger with respect to non-

dichotomized outcomes and was comparable when outcomes were dichotomized. A key 

observation is that only MSS correlation was found to be significant in both cases. 

Consequently, MSS has a stronger correlation with TBI patient outcomes as compared to 

MLS. In addition, a significant and promising threshold for MSS measurement was 

determined (.02) that may assist in clinical decision making in the future.

Based on this work, we propose that MSS is a new and more significant measurement of 

brain structure shift. However, more data from different centers are required to further 

validate the results.
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Fig. 1: 
Examples of MLS and MSS on one CT image. In each image, the green (dotted) line is the 

ideal midline (i.e. brain midline without an injury). In the left image, the red line is the 

actual midline. In the right image, the voxels enclosed by the ideal midline and the annotated 

curve contribute to the MSS.
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TABLE I:

Patient characteristics

Characteristics Values, No.(%) or mean (SD)
N = 48

Age, years 70.3 (13.7)

Male 27 (56%)

GCS on admission 13.8 (2.6)

Mild (GCS 13-15) 42 (88%)

Moderate (GCS 9-12) 2 (4%)

Severe (GCS 3-8) 4 (8%)

Charlson Comorbidity Index 2.2 (2.0)

Hematoma width, mm 13.0 (6.3)

MLS, mm 4.8 (4.8)

≥ 5 mm 19 (40%)

< 5 mm 29 (60%)
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TABLE II:

Glasgow Outcome Score (GOS)

GOS Description Classification

1 Death Unfavorable

2 Persistent vegetative state Unfavorable

3 Severe disability Unfavorable

4 Moderate disability Favorable

5 Low disability Favorable
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TABLE III:

Correlation between each measurement and the five GOS groups

Measurement τ 95% CI

MLS by annotation −0.14 [−0.341, 0.067]

MLS by algorithm −0.17 [−0.346, 0.013]

MSS by annotation −0.26 [−0.445, −0.073]
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TABLE IV:

Correlation between each measurement and dichotomized GOS groups

Measurement rpb 95% CI

MLS by annotation −0.24 [−0.488, 0.051]

MLS by algorithm −0.32 [−0.555, −0.042]

MSS by annotation −0.31 [−0.542, −0.023]
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TABLE V:

Fisher’s exact test between dichotomized MSS using different thresholds and dichotomized GOS groups (1-3 

versus 4-5) using all subjects

MSS threshold (≥) Odds ratio p-value

0.01 0.39 0.29

0.02 0.30 0.05*

0.03 0.33 0.12

0.04 0.21 0.07

0.05 0.59 0.66

0.06 0.28 0.34

0.07 0 0.48

0.08 0 0.48
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TABLE VI:

Fisher’s exact test between dichotomized measurement and dichotomized GOS (1-3 versus 4-5)

Measurement Odds ratio p-value

MLS by annotation 0.36 0.14

MLS by algorithm 0.35 0.13

MSS by annotation 0.30 0.05*
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TABLE VII:

Logistic regression performance on the test set

Model Sens. Spec. AUC Acc. Prec. F1

+ MLS by annotation 0.71 0.57 0.65 0.64 0.63 0.67

+ MLS by algorithm 0.86 0.43 0.69 0.64 0.60 0.71

+ MSS by annotation 0.86 0.71 0.71 0.79 0.75 0.80

Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 2021 February 09.


	Abstract
	Introduction
	Midline and Mid-surface shifts
	Automated Midline Shift (MLS) Detection
	Mid-Surface Shift (MSS) Measurement
	Automated Series Selection:
	Automated Brain Mask Segmentation:
	Slice Selection:
	Manual Annotation:


	Statistical Analysis
	Patient Characteristics
	Correlation with Outcome at Discharge

	Logistic Regression Analysis
	Conclusion
	References
	Fig. 1:
	TABLE I:
	TABLE II:
	TABLE III:
	TABLE IV:
	TABLE V:
	TABLE VI:
	TABLE VII:

