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Background
The status of living organisms can to a great extent be revealed by studying its transcrip-
tome and the underlying gene regulatory system [1]. The advent of big data techniques, 
such as microarray profiling and later RNA-Seq, has made data of such systems widely 
available to the research community for deeper analysis [2]. As a result of long-standing 
efforts to make sense of big biological data, we now have a corresponding plethora of 
methods to reverse engineer gene regulatory networks (GRNs) [3–10]. These methods 
are often applied to make predictions on biological properties, such as screening for 
drug targets [11], identifying biomarkers for diagnosis, and make prognoses of complex 
diseases.

However, GRN research is still facing profound challenges, as seen in previous stud-
ies showing great need for improving most available methods [12]. These poor per-
formances ultimately hinder the progression in research on complex diseases. Due to 
the low accuracy of predictions the usability of GRNs has been limited, since individ-
ual gene-gene predictions cannot be trusted with any reasonable certainty [13]. The 
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poor accuracy is well exemplified by the outcome of the DREAM5 challenge, which 
was a broad effort to measure the performance of GRN inference methods [12]. In the 
DREAM5 challenge, participants were given gene expression data from biological and 
in silico-generated networks, with instructions to predict gene-to-gene interactions. 
Among all predictions for the biologically derived networks, no participants achieved a 
higher accuracy than 35% among the top 100,000 ranked gene-gene interaction predic-
tions. Nevertheless, gene-gene interaction predictions are not the only feature that can 
be extracted from a reverse-engineered GRN.

It has been noted that methods for GRN predictions tend to have a large variance in 
performance between different datasets, meaning that there is no method that works 
best for all input data profiles [13]. Therefore, statistical entities that are based on many 
interactions in the inferred network, called hubs, has frequently been used for systems 
biology analysis [14–16]. Moreover, to the best of our knowledge no corresponding large 
scale assessment of methods for hub inference has yet been performed. As of today, 
there are only a few methods available for hub inference from expression data. One 
common approach is to first infer modules using weighted correlation network analysis 
(WGCNA) and then identify hubs based on module connectivity [17–19]. Another tool 
is the master regulator inference algorithm (MARINa) [20], which has been successfully 
used in several studies aiming to infer hubs [21]. However, MARINa is a tool that builds 
on already predicted GRNs [20], and is thus dependent on the often poor ability of indi-
vidual GRN inference algorithms to recreate networks from expression data. In addi-
tion, MARINa is only applicable when data from two phenotypes are available. Indeed, 
most approaches for extracting hubs from gene expression data that are based on prior 
GRN inference methods vary greatly in performance between datasets. Nevertheless, 
the analysis of the DREAM5 network inference challenge showed that combining the 
predictions of methods into a crowd estimate increases accuracy and improves robust-
ness of network inference [12]. To solve the problem of inconsistent hub-prediction per-
formance, and to transfer the insights of community predictions of gene regulations into 
a hub inference context, we herein present the Community Hub prediction algorithm, 
ComHub.

ComHub is a method that uses a meta-prediction of regulator outdegree based on 
independent network prediction algorithms. Moreover, ComHub was inspired by the 
community network approach presented in the analysis of the DREAM5 challenge 
outcome [12]. We found, analogously, that the methods’ ability to predict hubs can be 
improved by combining the outdegrees of regulators into a community. ComHub works 
by first applying a compendium of GRN inference methods to predict gene-gene inter-
actions. Second, ComHub computes the outdegrees of regulators for each method and 
combines the predictions by averaging the outdegrees (Fig. 1). We benchmarked Com-
Hub using the datasets aquired in DREAM5 challenge, and observed it to outperform 
the DREAM5 community approach on biological datasets. To verify the soundness of 
ComHub, and to further exemplify the usefulness of hub predictions, we lastly applied 
ComHub to independent data from two different sources: Bacillus subtilis gene expres-
sion data and gene expression profiles across human tissues. We confirmed ComHub to 
again achieve robust predictions of hubs. We implemented ComHub as a Python pack-
age, available for download from https​://gitla​b.com/Gusta​fsson​-lab/comhu​b.

https://gitlab.com/Gustafsson-lab/comhub
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Results
An intra‑community assessment identifies better edge prediction thresholds

We developed ComHub by analysing how to combine predictions of the 35 network 
inference methods that were present in the DREAM5 challenge, where networks were 
reverse engineered from E. coli and in silico gene expression data. Specifically, we 
focused on the predicted outdegree of each regulator, and how network predictions of 
multiple inference methods should be combined to most accurately predict system hubs.

GRN inference methods generally predict thousands of interaction predictions with 
varying degrees of confidence. How many of these predicted interactions that can be 
considered accurate is an unsolved problem of GRN inference, and we also noted that 
the regulator outdegree is largely influenced by the number of considered edges. We 
therefore first sought an independent measure to identify a threshold for edge inclusion 
into the ComHub algorithm. Such a measure is not obvious, but we hypothesised the 
similarity between ingoing network inference methods to be a good predictor of how 
posed the problem was. In other words, we reasoned that the meta-prediction should be 
the most well-defined at the threshold of included edges that also maximised the simi-
larity of outdegree-rankings between the ingoing methods. We assessed the similarity 
between the GRN predictions from the DREAM5 challenge as a function of number of 
considered interactions, ranked by prediction confidence. As a similarity measure we 
used the correlation of regulator outdegree between each pair of predicted GRNs. More-
over, we compared the similarity with the average performance of the network inference 
methods (Fig. 2). Notably, we observed that the number of considered edges that yielded 
the highest correlation between methods also corresponded to the threshold of optimal 
performance. This observation was important as it allows for an unbiased approach to 
estimate the number of edges to be included in the GRN prediction. Moreover, we spec-
ulated that such measures of intra-algorithm consistency can be used to give an unbi-
ased estimation of the information embedded in the data also across the field of GRN 
inference.

Using the prediction filtering from the intra-algorithm prediction correlations, we 
estimated the optimal number of included edges to be 80,000 and 2000 for the E. coli 
and in silico datasets, respectively. Correspondingly, compared to the gold standard net-
work the true optimal edge numbers were 80,000 and 1000, with optimal performance 

Fig. 1  The workflow of ComHub. ComHub either takes as input (1) Gene expression data and applies a set 
of network inference methods or (2) predefined networks. ComHub identifies an optimal number of edges 
to include from the predicted GRNs. Next, the outdegrees of each transcription factor is averaged over the 
method predictions
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either being exactly overlapped (E. coli), or within 2% of the optimal performance for in 
silico. Hence, the pairwise correlation between methods can be used as a measurement 
on how many inferred interactions that should be included in a community prediction.

ComHub robustly predicts hub transcription factors on the DREAM5 challenge data

As noted by Marbach et al. [12], GRN inference methods have an overall diverse perfor-
mance depending on data properties. This variation also applies to the ability to predict 
hubs, as measured by gene outdegree. To address this limitation, we applied ComHub 
to predict hubs based on the combined results of the DREAM5 participants’ inferred 
networks, and measured performance as the Pearson correlation coefficient (PCC) 
between outdegree in the prediction and the gold standard network. Furthermore, the 
performance was also evaluated using absolute error and HITS hub score [22] shown in 
Additional file 1: figures 1 and 2. By applying ComHub to sets of randomly drawn net-
works from the DREAM5 contestants, we observed a robust network, converging with 
the gold standard as the number of in-going methods increased (Fig. 3a). Notably, this 
convergence occured at a relatively low number of in-going DREAM5 predictions, and 
at only six methods the average PCC measured 85% and 90% of the maximal PCC for 
E. coli and in silico, respectively. When including all 35 methods, we observed a PCC 
between the predicted and gold standard outdegree of 0.38 and 0.71 for E. coli and in 
silico, respectively (Fig. 3b). In addition, we compared the performance of ComHub to 
the community approach presented in the DREAM5 challenge, where the consensus was 
taken on each gene-gene interaction individually. ComHub outperformed the commu-
nity approach from the DREAM5 challenge on E. coli (Fig. 3b).

ComHub was validated on B. subtilis and human gene expression data

We verified the applicability of ComHub using two independent datasets. First, we used 
B. subtilis gene expression data along with the gold standard from [23]. Second, we used 
a compendium of human gene expression data across tissues and cell lines from the 
Human Protein Atlas [24], along with the human protein-protein interaction network 
from STRINGdb as a gold standard [25]. We applied 6 GRN inference methods, cov-
ering a variety of different approaches. These methods included a bootstrap ElasticNet 
(bootstrap=1000) [3], the “trustful inference of gene regulation with stability selection” 
(TIGRESS) [4], the “context likelihood of relatedness” (CLR) [5], the “algorithm for the 

Fig. 2  The similarity between methods coincides with the optimal performance. The average pairwise 
correlation, assessed with Pearson correlation coefficient (PCC), between method predictions (blue) 
compared to the average method performance (orange) for the in silico and E. coli datasets. The dotted lines 
shows were the optimal edge threshold were selected
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reconstruction of accurate cellular networks” (ARACNE) [6], the absolute value of the 
PCC [7], and the “gene network inference with ensemble of trees” (GENIE3) [8]. The 
computing efficiency of each of these methods are shown in Additional file 1: Supple-
mentary Fig. 3.

For the B. subtilis dataset, ComHub identified the number of interactions to be used 
in the predicted network to 50,000 by assessing the similarity between the methods’ pre-
dictions, as described above (Fig. 4a). This point coincided with a smaller peak in perfor-
mance for individual methods. For the human dataset, the peak in similarity at 100,000 
interaction clearly coincided with the peak in performance for individual methods. For 
both datasets, the greatest improvement of performance occurs already with only a few 
in-going methods to ComHub, with the PCC to saturate already at approximately four 
included GRN inference methods (Fig. 4b). ComHub placed among the the top perform-
ing methods on both datasets; clearly outperforming the individual methods on the B. 
subtilis dataset and almost all individual methods on the human dataset (Fig. 4c). The 
performance of ComHub compared to the DREAM5 community of individual edges was 
similar on the B. subtilis dataset while ComHub performs better on the human dataset.

ComHub compared to the WGCNA

ComHub is a method that predicts master regulators, i.e. hubs, from the gene regula-
tory networks from independent GRN inference algorithms. However, there are alterna-
tive methods for inferring hubs from gene expression data. Therefore, we lastly aimed 

a

b

Fig. 3  The performance of ComHub on the in silico and E. coli datasets. a The performance of ComHub (red) 
and the DREAM5 community network (black) as a function of in-going methods. b The maximal performance 
(combining 35 method predictions) of ComHub, the DREAM5 community network approach and each of the 
DREAM5 participant methods, on the in silico and E. coli datasets
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to compare ComHub to such hub methods. Several studies have identified hubs by first 
applying WGCNA for module detection and then using a connectivity measure of each 
gene to identify hub genes [17–19]. We applied the WGCNA approach on the four data-
sets studied herein, resulting in lists of regulators ranked on the regulators module con-
nectivity. To compare the performance of ComHub with the WGCNA approach, we 
evaluated each approach towards the regulator outdegree in the gold standards using 
the Spearman correlation coefficient. We found ComHub to outperform the WGCNA 
approach on all four datasets (Fig. 5). In addition, a gene set enrichment analysis of the 
hub predictions on human data can be found in Additional file 1: Figure 4. As expected, 
the hub predictions are enriched for Gene Ontology terms related to the general func-
tion of transcription factors, with many terms shared between the different methods 
predictions. ComHub had enrichment for more terms than WGCNA hub and many of 
the GRN inference methods predictions.

Discussion
The importance of deriving biological network properties as key factors in regula-
tory actions has gained a lot of attention, especially in the emerging field of network 
medicine. Yet, the role of hubs as crucial nodes in GRNs is still to be explored further. 
Moreover, the absence of gold standard methods for hub prediction triggers the need for 
benchmarking existing approaches and developing novel improved approaches. Herein 
we present a novel hub prediction approach, ComHub, which improves hub predictions 

a b c

Fig. 4  The performance of ComHub on the B. subtilis and human gene expression datasets. a The pairwise 
correlation between the method predictions (blue), compared to average method performance (orange). 
The dotted lines shows where the edge thresholds were selected. b The performance of ComHub (red) and 
the DREAM5 community network approach (black) as a function of in-going methods. c The performance of 
ComHub, the DREAM5 community network approach and each of the 6 network inference methods used
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by integrating GRN predictions from a variety of standard gene-gene interaction identi-
fication approaches.

Several benchmark studies have previously been performed to evaluate network infer-
ence methods’ ability to predict several aspects of GRNs [12, 26, 27]. The DREAM5 
challenge, being one of the biggest GRN inference algorithm benchmarks with its 35 
methods included, assessed the accuracy of predicted interactions. Another bench-
mark performed by [26] instead assessed network inference methods’ ability to preserve 
topology and complexity of GRNs. These benchmarks all draw the conclusion that net-
work inference methods show a generally poor performance with no method being the 
clear winner in all settings. The poor performance of network inference methods on data 
from different sources was also observed for predicting hubs in GRNs. There is no uni-
versal inference method that will perform well on data from all sources. This varying 
performance between GRN inference methods makes choosing one method suitable for 
a specific dataset a difficult task. To solve this problem we developed ComHub, which by 
combining multiple methods produces estimations of degree. ComHub was evaluated 
on data from four different data sources, continuously producing hub predictions among 
the top performing methods.

A potential limitation of ComHub, compared to the evaluated network inference 
methods, is that the regulatory strength of regulator-target gene interactions should not 
be explicitly interpreted. To infer hubs as well as regulator-target gene interactions other 
network inference methods would be necessary to use. As of today, methods that pre-
dict gene-gene interactions are abundant, although the DREAM5 comparison pinpoints 
that their performance to predict specific interactions vary greatly across different data-
sets. Few methods, however, focus on the importance of gene regulators, i.e. hubs. We 
designed ComHub to combine individual interaction predictions of independent edge-
inference methods, and benchmarked ComHub by comparing the results with outde-
gree rankings of the DREAM5 methods. Moreover, we note that the primary focus of 
DREAM5 did not include hub predictions. Nevertheless, summating the outdegrees in a 
predicted gene regulatory network remains one of the most common means to also pre-
dict hubs. Degree is contrary to global topological measures as betweenness centrality 

Fig. 5  The performance of ComHub (red) compared to the WGCNA hub approach (blue). The performance 
was assessed using Spearman correlation coefficient (SCC). Interestingly, ComHub outperformed WGCNA 
in all comparisons, and in particular succeeded on the human gene expression data, whereas WGCNA even 
resulted in a negative correlation between predicted hub rankings and the gold standard
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a local measure of importance that is robust to false individual interaction inferences. 
Therefore, our intention was to show that this property could be inferred robustly with 
higher accuracy than edge predictions. The main reason being that it is an aggregated 
sum over many individual edge predictions, which by the central limit theorem has 
lower expected relative variance than the average individual predictions.

We built ComHub with the hypothesis that the combination of several GRN inference 
methods improves hub predictions. Combining methods to produce community predic-
tions has successfully been applied to GRN inference, with one example being the com-
munity approach from the DREAM5 challenge. In here, we tested a similar strategy for 
the inference of genes with high outdegrees, i.e. hubs. As hubs have been found to have 
a particular impact in systems biology, we believe the inference of such to be a signifi-
cant advancement within systems biology of differentiation studies [14, 28] and systems 
medicine central to complex diseases and cancers [15, 16].

We discovered that the greatest improvement in performance occurs when combin-
ing only a few methods, with no significant gain in performance made when combining 
more than approximately six methods. Hence, ComHub can improve hub inference from 
as little as six GRN inference methods, which makes ComHub a relatively calculation 
efficient tool to use. Furthermore, the number of interactions used for hub predictions 
is often chosen by setting an arbitrary threshold [14]. We observed that this threshold 
largely affects the performance of the predictions and can differ widely depending on 
the dataset. ComHub utilizes a data-driven approach to in an unbiased way select how 
many interactions the GRN predictions should contain to maximise the accuracy of hub 
predictions. The need for a data-driven approach was clearly shown by the big difference 
in optimal threshold for the in silico and E. coli networks.

We implemented ComHub as a Python package, aiming to provide an easy-to-use 
method for hub predictions. ComHub includes the possibility to run six independent 
network inference methods using the same formatted input data. In addition, the user 
has the option to incorporate in-house network inference methods, providing a flex-
ibility which we believe will broaden the use of ComHub. Herein, we focused on tran-
scription factors as the main regulators of gene expression. Nevertheless, ComHub can 
take an arbitrary set of genes to use as explanatory variables, and in extension, rank by 
node outdegree. Future work will also include integrating ComHub into a user friendly 
web application with focus on disease biomarker discovery, to make it available for the 
broader research community.

Conclusions
We developed ComHub, a tool which improves hub predictions by combining the pre-
dictions of several GRN inference methods. ComHub is built as a Python package, with 
six well-used GRN inference methods incorporated and the option to include in-house 
network inference methods. A data-driven approach is applied to select how many edges 
to include from the GRN predictions, before averaging the regulator outdegrees. Com-
Hub continuously produced robust hub predictions when benchmarked on data from 
the DREAM5 challenge as well as two independent datasets. Furthermore, ComHub 
offers possible applications in hub-based biomarker discovery, which could benefit the 
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field of network medicine. For example, ComHub could be used to discover disease reg-
ulators important for the prognoses and treatment of complex diseases.

Methods
ComHub workflow

Herein we present ComHub, a novel tool for predicting network hubs from reverse engi-
neered GRNs. ComHub makes hub predictions by averaging regulator outdegrees over 
a compendium of reverse engineered GRNs (Fig. 1). ComHub operates in three steps. 
First, if no a priori putative networks exist, ComHub takes gene expression data and a 
list of potential gene expression regulators as input, e.g. transcription factors. ComHub 
applies a set of GRN inference methods. The GRN inference methods outputs predicted 
regulator-target interactions, ranked based on a method specific confidence score. Sec-
ond, a threshold on the number of predicted edges to include from the GRN predictions 
is set. ComHub includes the number of top ranked edges that maximises the correlation 
between the regulator outdegrees of the GRN predictions. Last, ComHub calculates the 
average outdegree of each regulator according to:

where N is the number of GRN predictions and R is the number of regulators. The out-
put of ComHub is a list of regulators ranked on the average outdegree ( scorek).

We implemented ComHub as a Python 3 package which utilizes widely used GRN 
inference methods. To capture properties across all types of approaches, we sough 
to include default methods of a broad set of inference classes. From the field of linear 
regression, we implemented a bootstrap ElasticNet (bootstrap =  1000) [3], and the 
“trustful inference of gene regulation with stability selection” (TIGRESS) [4]. Mutual 
information methods added were the “context likelihood of relatedness” (CLR) [5] and 
the “algorithm for the reconstruction of accurate cellular networks” (ARACNE) [6]. 
We also incorporated the correlation-based method of calculating the absolute value of 
the PCC [7], and the tree-based GRN inference method “gene network inference with 
ensemble of trees” (GENIE3) [8]. To not limit ComHub to the default methods, we also 
added the option for the user to directly input GRNs of any chosen inference method.

Benchmarking ComHub on the DREAM5 challenge

We benchmarked ComHub on predictions of 35 network inference methods from the 
DREAM5 challenge, where networks were reverse engineered from E. coli, and in silico 
gene expression data. The DREAM5 challenge included methods covering a variety of 
approaches such as regression, mutual information, correlation, Bayesian and meta pre-
dictors. In the DREAM5 challenge, each of the 35 participants delivered a maximum 
of 100,000 ranked inferred interactions between transcription factors and target genes. 
We also compared ComHub to the outdegree rankings that resulted from the commu-
nity approach developed by [12] that is based on integrating predictions across inference 
methods by averaging over the ranked edges. The performances of the methods were 
evaluated with the gold standard networks that were accompanied with the DREAM5 

scorek =
1

N

N∑

l=1

outdegreekl , k ∈ {1,R}, l ∈ {1,N },
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challenge. Furthermore, the performances were defined as the PCC between regulator 
outdegree in the GRN predictions and the gold standard.

Benchmarking ComHub on independent data

We applied ComHub to two independent gene expression datasets; B. subtilis gene 
expression data [23], and a compendium of gene expression data across tissues and 
cell lines from the Human Protein Atlas [24]. The B. subtilis gene expression data con-
sisted of microarray data from two studies (GSE67023, GSE27219). Known transcrip-
tion factors were obtained from the database of transcriptional regulation in B. subtilis 
(DBTBS) [29] and a gold standard were obtained from [23]. The Human Protein Atlas 
data consisted of RNA-Seq data from 37 tissues and 64 cell lines. For the human dataset 
we used a list of possible transcription factors from the DBD: Transcription factor pre-
diction database [30]. As a gold standard we used a protein-protein interaction network 
obtained from STRINGdb version 10.5 [25], where edges with a confidence score > 700 
were included.

ComHub compared to hub predictions of the WGCNA

We compared the performance of ComHub to a hub detection approach based on 
WGCNA [31]. First, an adjacency matrix was constructed from the gene expression 
data, adapting the soft-thresholding power for each dataset, and transformed into a 
topological overlap matrix. Second, the genes were divided into modules by perform-
ing hierarchical clustering, cutting the tree using dynamic tree cut, and lastly merging 
modules with similar expression. Third, the module connectivity of each transcription 
factor was calculated, by first calculating the module eigengenes and then correlating 
the gene expression profiles with the module eigengenes. Lastly, the transcription factors 
were ranked based on module connectivity, where transcription factors with a high con-
nectivity is considered as hubs. The performance was evaluated towards the transcrip-
tion factor outdegrees in the gold standard for respective dataset. The performance of 
the WGCNA approach were compared to the performance of ComHub using Spearman 
correlation coefficient.
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