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Abstract

With very large sample sizes, biobanks provide an exciting opportunity to identify genetic 

components of complex traits. To analyze rare variants, region-based multiple variant aggregate 

tests are commonly used to increase power for association tests. However, due to the substantial 

computation cost, existing region-based tests cannot analyze hundreds of thousands of samples 

while accounting for confounders, such as population stratification and sample relatedness. Here 

we propose a scalable generalized mixed model region-based association test, SAIGE-GENE, 
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which is applicable to exome-wide and genome-wide region-based analysis for hundreds of 

thousands of samples and can account for unbalanced case-control ratios for binary traits. Through 

the extensive simulation studies and analysis of the HUNT study with 69,716 Norwegian samples 

and the UK Biobank data with 408,910 White British samples, we show that SAIGE-GENE can 

efficiently analyze large sample data (N > 400,000) with type I error rates well controlled.

Introduction

In recent years, large cohort studies and biobanks, such as Trans-Omics for Precision 

Medicine (TOPMed) study1 and UK Biobank2, have sequenced or genotyped hundreds of 

thousands of samples, which are invaluable resources to identify genetic components of 

complex traits, including rare variants (minor allele frequency (MAF) < 1%). It is well 

known that single variant tests are underpowered to identify trait-associated rare variants3. 

Gene- or region-based tests, such as Burden test, SKAT4 and SKAT-O5, can be more 

powerful by grouping rare variants into functional units, i.e. genes. To adjust for both 

population structure and sample relatedness, gene-based tests have been extended to mixed 

models6. For example, EmmaX7 based SKAT4 approaches (EmmaX-SKAT) have been 

implemented and used for many rare variant association studies including TOPMed1,8. The 

generalized linear mixed model gene-based test, SMMAT, has been recently developed6. 

However, these approaches require O(N3) computation time and O(N2) memory usages, 

where N is the sample size, which are not scalable to large datasets.

Here, we propose a novel method called SAIGE-GENE for region-based association 

analysis that is capable of handling very large samples (> 400,000 individuals), while 

inferring and accounting for sample relatedness. SAIGE-GENE is an extension of the 

previously developed single variant association method, SAIGE9, with a modification 

suitable to rare variants. Same as SAIGE, it utilizes state-of-the-art optimization strategies to 

reduce computation cost for fitting null mixed models. To ensure computation efficiency 

while improving test accuracy for rare variants, SAIGE-GENE approximates the variance of 

score statistics calculated with the full genetic relationship matrix (GRM) using the variance 

calculated with a sparse GRM and the ratios of these two variances estimated from a subset 

of genetic markers. Because the sparse GRM, which is constructed by thresholding small 

values in the full GRM, preserves close family structures, this approach provides a more 

accurate variance estimation for very rare variants (minor allele count (MAC) < 20) than the 

original approach in SAIGE9. By combining single variant score statistics, SAIGE-GENE 

can perform Burden, SKAT and SKAT-O type gene-based tests. We have also developed 

conditional analysis to perform association tests conditioning on a single variant or multiple 

variants to identify independent rare variant association signals. Furthermore, SAIGE-GENE 

can account for unbalanced case-control ratios of binary traits by adopting a robust 

adjustment based on saddlepoint approximation10–12 (SPA) and efficient resampling13 (ER). 

The robust adjustment was previously developed for independent samples14 and we have 

extended it for related samples in SAIGE-GENE.

We have demonstrated that SAIGE-GENE controls for type I error rates in related samples 

for both quantitative and binary traits through extensive simulations as well as real data 
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analysis, including the Nord Trøndelag Health Study (HUNT) study for 69,716 Norwegian 

samples15,16 and the UK Biobank for 408,910 White British samples2. By evaluating the 

computation performance, we have shown its feasibility for large-scale genome-wide 

analysis. To perform exome-wide gene-based tests on 400,000 samples with on average 50 

markers per gene, SAIGE-GENE requires 2,238 CPU hours and less than 36 Gb memory, 

while current methods will cost more than > 10 Tb in memory. We have further applied 

SAIGE-GENE to 53 quantitative traits and 10 binary traits in the UK Biobank and identified 

several significantly associated genes.

RESULTS

Overview of Methods

SAIGE-GENE consists of two main steps: 1. Fitting the null generalized linear mixed model 

(GLMM) to estimate variance components and other model parameters. 2. Testing for 

association between each genetic variant set, such as a gene or a region, and the phenotype. 

Three different association tests: Burden, SKAT, and SKAT-O have been implemented in 

SAIGE-GENE. The workflow is shown in the Extended Data Fig. 1.

SAIGE-GENE uses similar optimization strategies as utilized in the original SAIGE to fit 

the null GLMM in Step 1. In particular, the spectral decomposition has been replaced by the 

preconditioning conjugate gradient (PCG) to solve linear systems without calculating and 

inverting the N × N GRM. To reduce the memory usage, raw genotypes are stored in a 

binary vector and elements of GRM are calculated when needed rather than being stored.

One of the most time-consuming part in association tests is to calculate variance of single 

variant score statistic, which requires O(N2) computation. To reduce computation cost, 

existing approaches, such as SAIGE9, BOLT-LMM17, and GRAMMA-Gamma18, 

approximate the variance of single variant score statistics with the full GRM using the 

variance estimate without a GRM and the ratio of these two variances. The ratio, which is 

assumed to be constant, is estimated using a subset of randomly selected genetic markers. 

However, for very rare variants with MAC below 20, the constant ratio assumption is not 

satisfied (Extended Data Fig. 2, left panel). This is because rare variants are more 

susceptible to close family structures. Thus, to better approximate the variance, SAIGE-

GENE incorporates close family structures through a sparse GRM, in which GRM elements 

below a user-specified relatedness coefficient are zeroed out and close family structures are 

preserved. The ratio between the variance with the full GRM and with the sparse GRM is 

much less variable (Extended Data Fig. 2, right panel). To construct a sparse GRM, a small 

subset of randomly selected genetic markers, i.e. 2,000, are firstly used to quickly estimate 

which sample pairs pass the user-specified coefficient of relatedness cutoff, e.g. ≥0.125 for 

up to 3rd degree relatives. Then the coefficients of relatedness for those related pairs are 

further estimated using the full set of genetic markers, which equal to values in the full 

GRM. Given that estimated values for variance ratios vary by MAC for the extremely rare 

variants (Extended Data Fig. 2, left panel), such as singletons and doubletons, the variance 

ratios need to be estimated separately for different MAC categories. By default, MAC 

categories are set to be MAC equals to 1, 2, 3, 4, 5, 6 to 10, 11 to 20, and > 20.
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In Step 2, gene-based tests are conducted using single variant score statistics and their 

covariance estimates, which are approximated as the product of the covariance with the 

sparse GRM and the pre-estimated ratio. SAIGE-GENE can carry out Burden, SKAT, and 

SKAT-O approaches. Since SKAT-O is a combined test of Burden and SKAT, and hence 

provides a robust power, SAIGE-GENE performs SKAT-O by default.

If a gene or a region is significantly associated with the phenotype of interest, it is necessary 

to test if the signal is from rare variants or just a shadow of common variants in the same 

locus. We have developed conditional analysis using linkage disequilibrium (LD) 

information between conditioning markers and the tested gene19. Details are described in the 

Online Methods section.

SAIGE-GENE uses the same generalized linear mixed model as in SMMAT, while SMMAT 

calculates the variances of the score statistics for all tested genes using the full GRM directly 

and hence can be thought of as the “exact” method. When the trait is quantitative, GLMM 

used by SAIGE-GENE and SMMAT is equivalent to the linear mixed model (LMM) of 

EmmaX-SKAT. We have further shown that SAIGE-GENE provides consistent association 

p-values to the two “exact” methods, EmmaX-SKAT and SMMAT (r2 of −log10 p-values > 

0.99), using both simulation studies (Extended Data Fig. 3) and real data analysis for down-

sampled UK Biobank and HUNT (Extended Data Fig. 4), but with much smaller 

computation and memory cost (Figure 1). We have also shown that SAIGE-GENE with 

different coefficient of relatedness cutoffs (0.125 and 0.2) produced nearly identical 

association p-values for automated read pulse rates in UK Biobank (Extended Data Fig. 5).

For binary phenotypes with unbalanced case-control ratios, single variant score statistics do 

not follow the normal distribution, leading to inflated type I error rates for region-based 

test13. To address this problem, we have recently developed an adjustment for independent 

samples14. The approach uses saddlepoint approximation10–12 (SPA) and efficient 

resampling13 (ER) to calibrate the variance of single variant score statistics. We have 

extended this approach to GLMM for SAIGE-GENE, which provides greatly improved type 

I error control than the unadjusted approach of assuming normality (Extended Data Fig. 6). 

Details can be found in Supplementary Note 1.3.3.

Computation and Memory Cost

To evaluate the computation performance of SAIGE-GENE, we randomly sampled subsets 

of the 408,144 UK Biobank participants with the White British ancestry and non-missing 

measurements for waist hip ratio2. We benchmarked SAIGE-GENE, EmmaX-SKAT, and 

SMMAT for exome-wide gene-based SKAT-O tests, in which 15,342 genes were tested with 

assuming that each has 50 rare variants.

Memory usage is plotted in Figure 1A. The memory cost of SAIGE-GENE is linear to the 

number of markers, M1, used for kinship estimation, but using too few markers may not be 

sufficient to account for subtle sample relatedness, leading to inflated type I error rates9,20. 

SAIGE-GENE uses 11.74 Gb with M1 = 93,511 and 35.59 Gb when M1 = 340,447 when the 

sample size N is 400,000, making it feasible for large sample data. In contrast, with N = 

400,000 the memory usages in EmmaX-SKAT and SMMAT are projected to be nearly 10Tb.
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Total computation time for exome-wide gene-based tests is plotted in Figure 1B. 

Computation time for Step 1 and Step 2 are plotted separately in Extended Data Fig. 7 with 

numbers presented in Supplementary Table 1. The computation time for Step 1 in SAIGE-

GENE is approximately O(M1N1.5) and in SMMAT and EmmaX-SKAT is O(N3). In Step 2, 

the association test for each gene costs O(qK) in SAIGE-GENE, where q is the number of 

markers in the gene and K is the number of non-zero elements in the sparse GRM. 

Compared to O(qN2) in Step 2 of SMMAT and EmmaX-SKAT, SAIGE-GENE decreases the 

computation time dramatically. For example, in the UK Biobank (N =408,910) with the 

relatedness coefficient ≥ 0.125 (corresponding to preserving 3rd degree or closer relatives in 

the GRM), K = 493,536, which is the same order of magnitude of N, and hence O(qK) is 

greatly smaller than O(qN2). As the computation time in Step 2 is approximately linear to q, 

the number of markers in each variant set, the total computation time for exome-wide gene-

based tests was projected by different q and plotted in Extended Data Fig. 8. In addition, we 

plotted the projected computation time for genome-wide region-based tests in Extended 

Data Fig. 9, in which 286,000 chunks with 50 markers per chunk were assumed to be tested, 

corresponding to 14.3 million markers in HRC-imputed UK Biobank data with MAF ≤ 1% 

and imputation info score ≥ 0.8.

With M1 = 340,447 and N = 400,000, it takes SAIGE-GENE 2,238 CPU hours for the 

exome-wide analysis and 3,919 CPU hours for the genome-wide analysis for waist hip ratio. 

Compared to EmmaX-SKAT and SMMAT, SAIGE-GENE is 25 times faster for the exome-

wide analysis and 161 times faster for the genome-wide analysis. More details are presented 

in Supplementary Table 1. Additional steps in the robust adjustment for binary traits only 

slightly increases the computation cost (1,269 vs 1,232 CPU hours for exome-wide analysis 

with M1 = 93,511) compared to the unadjusted approach (Supplementary Table 2 and 

Extended Data Fig. 10). Details are described in Supplementary Note 1.4

The computation time for constructing the sparse GRM is O(M1*N2 + M1K), where M1* is 

the number of a small set of markers used for initial determination of related sample pairs, 

which by default is set to be 2,000. The construction of the sparse GRM is needed for each 

data set once and then it will be re-used for all phenotypes. For example, for the UK 

Biobank with N = 408,910, M1= 340,447, M1* = 2000, K = 493,536 with the relationship 

coefficient ≥ 0.125, corresponding to up to 3rd degree relatives, it took 312 CPU hours to 

create the sparse GRM.

Gene-based association analysis of quantitative traits in HUNT and UK Biobank

We applied SAIGE-GENE to analyze 13,416 genes, with at least two rare (MAF ≤ 1%) 

missense and stop-gain variants that were directly genotyped or imputed from HRC for 

high-density lipoprotein (HDL) in 69,716 Norwegian samples from the HUNT study9, 

which has substantial sample relatedness. The quantile-quantile (QQ) plot for the p-values of 

SKAT-O tests from SAIGE-GENE for HDL in HUNT is shown Figure 2A. As Table 1 

shows, eight genes reached the exome-wide significant threshold (p-value ≤ 2.5×10−6) and 

all of them are located in the previously reported GWAS loci for HDL21,22. After 

conditioning on the most significant nearby variants from single-variant association tests 

(500 kilobases upstream and downstream), all genes, except for FSD1L, remained 

Zhou et al. Page 5

Nat Genet. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant, suggesting that SAIGE-GENE has identified associations of rare coding variants 

that are independent from the nearby association signals, pointing to candidate causal genes 

at those loci.

We also applied SAIGE-GENE to analyze 15,342 genes for 53 quantitative traits using 

408,910 UK Biobank participants with White British ancestry2. Heritability estimates based 

on the full GRM are presented in Supplementary Table 3A. Supplementary Table 4A 

presents all genes with p-values reaching the exome-wide significant threshold (p-value ≤ 

2.5×10−6). The same MAF cutoff ≤ 1%, for missense and stop-gain variants were applied. 

Figure 2B shows the QQ plot for automated read pulse rate as an exemplary phenotype. 

MYH6, ARHGEF40 and DBH remain significant after conditioning on the most significant 

nearby variants (Table 1). Gene TBX5, MYH6, TTN, and ARHGEF40 are known genes for 

heart rates by previous GWAS23–26. To our knowledge, KIF1C and DBH have not been 

reported by association studies for heart rates, but Dbh(−/−) mice have decreased heart rates 

compared to their littermate controls Dbh(+/−) mice27. For DBH, no single variant reaches 

the genome-wide significance (the most significant variant is 9:136149399 (GRCh37) with 

MAF = 18.7% and p-value =3.46×10−6). Fifteen genes that were exome-wide significant 

have no genome-side significant single variants (Supplementary Table 5). After conditioning 

on the most significant nearby variants, total 64 genes for 12 traits remained exome-wide 

significant (Supplementary Table 6A). SAIGE-GENE has identified several potentially novel 

gene-phenotype associations, such as DBH for automated read pulse rate (p-valueSKAT-O 

=1.74×10−6), and also replicated several previous findings, such as the association between 

ADAMTS3 and height28. Details have been described in Supplementary Note 2.1. These 

results have demonstrated the value of gene-based tests for identifying genetic factors for 

complex traits.

Gene-based association analysis of binary traits in UK Biobank

We applied SAIGE-GENE to ten binary phenotypes with various case-control ratios in the 

UK Biobank. The heritability estimates in a liability scale are presented in Supplementary 

Table 3B. Nine genes for six binary phenotypes reached the exome-wide significant 

threshold (p-value < 2.5×10−6) (Supplementary Table 4B), all of which have been identified 

by both SAIGE-GENE and single variant tests, including the gene MYOC, known for 

glaucoma29 (Figure 2C). Six genes for six binary phenotypes remained exome-wide 

significant after conditioning on top variants (Supplementary Table 6B).

Simulation Studies

We investigated the type I error rates and power of SAIGE-GENE by simulating genotypes 

and phenotypes for 10,000 samples in two settings. One had 500 families and 5,000 

unrelated samples and the other had 1,000 families. Each family had 10 members based on 

the pedigree shown in Supplementary Figure 1.

Type I error rates

The type I error rates of SAIGE-GENE, EmmaX-SKAT, and SMMAT were evaluated from 

107 simulated gene-phenotype combinations, each with 20 genetic variants with MAF ≤ 1% 

on average. A sparse GRM with a cutoff 0.2 for the coefficient of relatedness was used in 
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SAIGE-GENE. Two different values of the variance component parameter corresponding to 

the heritability h2 = 0.2 and 0.4 were considered for quantitative traits (see ONLINE 

METHODS). The empirical type I error rates at the α = 0.05, 10−4 and 2.5×10−6 are shown 

in the Supplementary Table 7. Our simulation results suggest that SAIGE-GENE relatively 

well controls type I error rates, while the type I error rates are slightly inflated when 

heritability is relatively high (h2 = 0.4). Similar results have been observed on a larger 

sample size with 1,000 families and 10,000 unrelated samples (Supplementary Note 2.2 and 

Supplementary Table 8). Adjusting the test statistics using the genomic control (GC) 

inflation factor has addressed the inflation (Supplementary Note 1.3.4).

Further simulations were conducted to evaluate type I error rates of SAIGE-GENE, 

EmmaX-SKAT, and SMMAT for skewed distributed phenotypes, which are common in real 

data (Supplementary Figure 2A). All three methods had inflated type I error rates for 

phenotypes with skewed distributions (Supplementary Table 9). With inverse normal 

transformation on phenotypes (Supplementary Figure 2B), the inflation has been reduced but 

slight inflation was still observed (Supplementary Table 9). A potential reason is that inverse 

normal transformation disrupts sample relatedness in raw phenotypes, leading to poor fitting 

for the null GLMM. We then conducted a three-step phenotype transformation procedure as 

described in Supplementary Note 2.3, which maintains sample relatedness in raw phenotype, 

and observed well controlled type I error rates by all three methods (Supplementary Table 

10). Further simulation studies using real genotype data from the UK Biobank have shown 

that SAIGE-GENE well controlled type I error rates in the presence of subtle population 

structure or non-negligible cryptic relatedness between families (Supplementary Table 11 

and 12). Details have been described in Supplementary Note 2.4 and 2.5.

We also evaluated the type I error rates of SAIGE-GENE for binary traits with various case-

control ratios. Similar with quantitative traits, a sparse GRM with a cutoff 0.2 was used. The 

variance component parameter τ = 1 was assumed, corresponding to liability-scale 

heritability 0.23. As expected, when case-control ratios were balanced or moderately 

unbalanced (e.g. 1:1 and 1:9), type I error rates were well controlled even without the robust 

adjustment, while when the ratios were extremely unbalanced (e.g. 1:19 and 1:99), inflation 

was observed (Supplementary Table 13A and Extended Data Fig. 6). With the robust 

adjustment, type I error rates were relatively well controlled for the unbalanced case-control 

ratios (Supplementary Table 13B and Extended Data Fig. 6). However, for phenotypes with 

case-control ratio=1:99, slight inflation was still observed, although the inflation has been 

dramatically alleviated compared to the unadjusted method. Then the genomic control 

adjustment can be used to further control the type I error rates (Supplementary Table 13B). 

We also evaluated empirical type I error rates of SAIGE-GENE for binary traits under case-

control sampling with case-control ratios 1:1 and 1:9 based on a disease prevalence 1% in 

the population (Supplementary Note 2.6) and observed well-controlled type I error rates 

(Supplementary Table 14).

Power

We evaluated empirical power of SAIGE-GENE and EmmaX-SKAT for quantitative traits. 

Two different settings of proportions of causal variants were used: 10% and 40%. In each 
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setting, among causal variants, 80% and 100% had negative effect sizes. The absolute effect 

sizes for causal variants were set to be |0.3log10(MAF)| and |log10(MAF)|, respectively, 

when the proportions of causal variants are 0.4 and 0.1. Supplementary Table 15 shows that 

the power of both methods is nearly identical for all simulation settings for Burden, SKAT 

and SKAT-O tests.

We also evaluated empirical power of SAIGE-GENE for binary traits using two different 

study designs: cohort study with various disease prevalence (0.01–0.5); and case-control 

sampling with different case-control ratios (1:1–1:19) based on a disease prevalence 1% in 

the population. In each setting, 40% variants were causal variants. Among them, 80% were 

risk-increasing variants and 20% were risk-decreasing. The absolute effect sizes of causal 

variants were set to be |0.55log10(MAF)| and |0.35log10(MAF)| for cohort study and case-

control sampling, respectively. Supplementary Table 16 shows the empirical power of 

SKAT-O in both simulation studies. SAIGE-GENE had similar empirical power as 

unadjusted SAIGE-GENE in balanced case-control ratios and higher power in unbalanced 

scenarios. The power is small when case: control ratio is 1:99 due to the limited number of 

cases (100 cases), which can be alleviated with larger sample size.

DISCUSSION

In summary, we have presented a method, SAIGE-GENE, to perform gene- or region-based 

association tests in large cohorts or biobanks in the presence of sample relatedness. Similar 

to SAIGE9, which was previously developed for single-variant association tests, SAIGE-

GENE uses GLMM to account for sample relatedness, scalable computational approaches 

for large sample sizes, and the robust adjustment14 to account for unbalanced case-control 

ratios of binary traits.

SAIGE-GENE uses several optimization strategies that are similar to those used in SAIGE 

to make fitting the null GLMM feasible for large sample sizes. For example, instead of 

storing the GRM in the memory, SAIGE-GENE stores genotypes in a binary vector and 

computes the elements of the GRM as needed. PCG is used to solve linear systems instead 

of inverting a matrix. However, some optimization approaches are specifically applied in the 

gene-based tests in regard of rare variants. As estimating the variances of score statistics for 

rare variants are more sensible to family structures, we use a sparse GRM to preserve close 

family structures rather than ignoring all sample relatedness. In addition, the variance ratios 

are estimated for different MAC categories, especially for those extremely rare variants with 

MAC lower than or equal to 20.

For binary phenotypes, SAIGE-GENE uses the robust adjustment, thereby also relatively 

well controls the type I error rates for both balanced and unbalanced case-control 

phenotypes. However, slight inflation is still observed in extremely unbalanced phenotypes 

(≤1:99). To address this, we suggest using the genomic control to further control type I error.

In numerical optimization, using good initial values can improve the model convergence. In 

the analysis of 24 quantitative traits in the UK Biobank with sample size (N) ≥ 100,000, we 

note that the models with the full GRM and the sparse GRM produced different variance 
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component estimates, but they are relatively concordant (Pearson’s correlation R2 = 0.66, 

Supplementary Figure 3). This indicates that the parameter estimates from the sparse GRM 

can be used as initial values to facilitate the model fitting. We implemented this approach in 

SAIGE-GENE.

SAIGE-GENE has some limitations. First, similar to SAIGE and other mixed-model 

methods, the time for algorithm convergence may vary among phenotypes and study 

samples given different heritability levels and sample relatedness. Second, similar to 

SAIGE9 and SMMAT6, SAIGE-GENE uses penalized quasi-likelihood (PQL)30 for binary 

traits to estimate the variance component which is known to be biased. However, as shown 

in simulation studies in SAIGE9 and SMMAT6, PQL-based approaches work well to adjust 

for sample relatedness.

Overall, we have shown that SAIGE-GENE can account for sample relatedness while 

maintaining test power through simulation studies. By applying SAIGE-GENE to HUNT9 

and UK Biobank2, we have demonstrated that SAIGE-GENE can identify potentially novel 

association signals. Currently, our method is the only available mixed effect model approach 

for gene- or region-based rare variant tests for large sample data, while accounting for 

unbalanced case-control ratios for binary traits. By providing a scalable solution to the 

current largest and future even larger datasets, our method will contribute to identifying trait-

susceptibility rare variants and genetic architecture of complex traits.

METHODS

Generalized linear mixed model

In a study with sample size N, we denote the phenotype of the ith individual using yi for 

both quantitative and binary traits. Let the 1 × (p + 1) vector Xi represent p covariates 

including the intercept, the N × q matrix Gi represent the allele counts (0, 1 or 2) for q 
variants in the gene to test. The generalized linear mixed model can be written as

g μi = Xiα + Giβ + bi,

where μi is the mean of phenotype, bi is the random effect, which is assumed to be 

distributed as N(0, τ ψ), where ψ is an N × N genetic relationship matrix (GRM) and τ is 

the additive genetic variance parameter. The link function g is the identity function for 

quantitative traits with an error term ε~N(0,ϕI) and logistic function for binary traits. The 

parameter α is a (p + 1) × 1 coefficient vector of fixed effects and β is a q × 1 coefficient 

vector of the genetic effect.

Estimate variance component and other model parameters (Step 1)

Same as in the original SAIGE9 and GMMAT31, to fit the null GLMM in SAIGE-GENE, 

penalized quasi-likelihood (PQL) method30,32 and the computational efficient average 

information restricted maximum likelihood (AI-REML) algorithm31,33 are used to iteratively 

estimate (τ, α, b) under the null hypothesis of β = 0. At iteration k, let (τ k , α k , b k ) be 
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estimated (τ, α, b), μi
k  be the estimated mean of yi and Σ k = {W (k)}

−1
+ τ k ψ be an N × N 

matrix of the variance of working vector yi, in which ψ is the N × N GRM. For quantitative 

traits, W k = ϕ−1I and yi = Xiα k + bi
k . For binary traits, W k = diag[μi

(k)(1 − μi
(k))] and 

yi = Xiα k + bi
k + yi − μi

k / μi
(k) 1 − μi

(k) . To obtain the log quasi-likelihood and average 

information at each iteration, SAIGE and SAIGE-GENE use the preconditioned conjugate 

gradient approach (PCG)31,32 to obtain the product of inverse of Σ(k) and any other vector by 

iteratively solving a linear system with Σ(k). This approach is more computationally efficient 

than using Cholesky decomposition to obtain {Σ(k)}
−1

. The numerical accuracy of PCG has 

been evaluated in the SAIGE paper9.

Gene-based association tests (Step 2)

Test statistics of the Burden, SKAT and SKAT-O tests for a gene can be constructed based 

on score statistics from the marginal model for individual variants in the gene. Suppose there 

are q variants in the region or gene to test. The score statistic for variant j (j=1,..,q) under H0: 

βj = 0 is Tj = gjT (Y − μ) where gj and Y are N × 1 genotype and phenotype vectors, 

respectively, and μ is the estimated mean of Y under the null hypothesis.

Let uj denote a threshold indicator or weight for variant j and U = diag(u1,…,uq) be a 

diagonal matrix with uj as the jth element. Similar to the original SKAT and SKAT-O 

papers4,5, to upweight rare variants, the default setting in SAIGE-GENE is uj = Beta(MAFj, 

1, 25), which upweight rarer variants. The Burden test statistics can be written as 

QBurden = (∑j = 1
q ujTj)

2
. Suppose G = G − X(XTW X)−1XTW G  is the covariate adjusted 

genotype matrix, where G = (g1,…,gq) is the N × q genotype matrix of the q genetic 

variants, and P = Σ−1 − Σ−1X(XTΣ−1X)
−1

XTΣ−1 with Σ = W −1 + τψ . Under the null 

hypothesis of no genetic effects, QBurden followed λBχ1
2, where λB = JTUGTPGUJ, J is a q × 

1 vector with all elements being unity and χ1
2 is a chi-squared distribution with 1 degree of 

freedom3. The SKAT test4 can be written as QSKAT = ∑j = 1
q uj2Tj

2, which follows a mixture 

of chi-square distribution ∑j = 1
q λSjχ1

2, where λSj are the eigenvalues of UGTPGU. The 

SKAT-O test5 uses a linear combination of the Burden and SKAT tests statistics 

QSKATO = (1 − ρ)QSKAT + ρQBurden, 0 ≤ ρ ≤ 1. To conduct the test, the minimum p-value 

from grid of ρ is calculated and the p-value of the minimum p-value is estimated through 

numerical integration. Following the suggestion in Lee et al34, we use a grid of eight values 

of ρ = 0, 0.12, 0.22, 0.32, 0.42, 0.52, 0.5, 1  to find the minimum p-value.

Approximate GT PG

For each gene, given P , the calculation of GTPG  requires applying PCG for each variant in 

the gene, which can be computationally very expensive. Suppose g  represents a covariate 

adjusted single variant genotype vector. To reduce computation cost, an approximation 
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approach has been used in SAIGE, BOLT-LMM17 and GRAMMAR-GAMMAR18, in which 

the ratio between gTPg  and gTg is estimated by a small subset of randomly selected genetic 

markers. The ratio has been shown to be approximately constant for all variants. Given the 

estimated ratio r = gTPg /gTg, gTPg for all other variants can be obtained as rgTg. However, 

the variations of the estimated r for extremely rare variants are large and including some 

closely related samples in the denominator helps reduce the variation of r as shown in 

Supplementary Figure 2. Let ψS denote a sparse GRM that preserves close family structure 

and ψf denote a full GRM. We estimate the ratio rs = gTPg /gTPsg, where 

Ps = Σs
−1 − Σs

−1X(XTΣs
−1X)

−1
XTΣs

−1 and Σs = W −1 + τ ψs.

In ψs, elements below a user-specified relatedness coefficient cutoff, i.e. > 3rd degree 

relatedness, are zeroed out with only close family structures being preserved. To construct 

ψs, a subset of randomly selected genetic markers, i.e. 2,000, is firstly used to quickly 

estimate which related samples pass the user-specified cutoff. Then the relatedness 

coefficients for those samples are further estimated using the full set of genetic markers, 

which equal to corresponding values in the ψf. In the model fitting using ψs, Σs
−1X and 

Σs
−1g need to be calculated. For this we use a sparse-LU based solve method35 

implemented in R. The constructed ψs is also used for approximating the variance of score 

statistics with ψf. For a biobank or a data set, ψs only needs to be constructed once and can 

be re-used for any phenotypes in the same date set.

SAIGE-GENE estimates variance ratios for different MAC categories. By default, MAC 

categories are set to be MAC equals to 1, 2, 3, 4, 5, 6 to 10, 11 to 20, and is greater than 20. 

Once the MAC categorical variance ratios are estimated, for each genetic marker in tested 

genes or regions, rs can be obtained according to its MAC. Let Rs be a q × q diagonal matrix 

whose jth diagonal element is the ratio rs for the jth marker in the gene (i.e. 

gj
TPgj /gj

TPsgj). For the tested gene with q markers, GTPG can be approximated as 

Rs

1
2GTPsGRs

1
2  (See Supplementary Note for more details).

Robust adjustment for Rs

1
2GTPsGRs

1
2  to account for unbalanced case-control ratios

To account for unbalanced case-control ratios of binary traits in region- or gene-based tests, 

we recently developed a robust adjustment for independent samples14. The approach first 

obtains well-calibrated p-values of single variant score statistics using SPA10–12 and ER13. 

SPA is a method to calculate p-values by inverting the cumulant generating function (CGF). 

Since CGF completely specifies the distribution, SPA can be far more accurate than using 

the normal distribution. However, since SPA is still an asymptotic based approach, it does 

not work well when variants are very rare (ex. MAC ≤10). For those variants, we use ER, 

which resamples the case-control status of only individuals carrying a minor allele and is 

extremely fast for very rare variants. To account for the fact that individuals can have 

different non-genetic risk of diseases (due to covariates), the resampling was done with the 

estimated disease risk μi. Next, variances of single variant score statistics are obtained by 
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inverting those p-values, which are then used to calibrate the variances of region- or gene-

based test statistics. We have extended the approach for related samples in SAIGE-GENE. 

For variants with MAC > 10, single-variant p-values are obtained by SAIGE, which 

basically applies SPA to GLMM. For variants with MAC ≤10, we use ER with GLMM 

estimated μi, which includes the random effect to maintain the correlation structure among 

samples. After calculating p-values of Tj for j=1,…,q, the variance of Tj is calibrated by 

inverting the corresponding p-value. Then the calibrated variance is applied to Rs

1
2GTPsGRs

1
2

to compute robust p-value for the region- or gene-based test. The details can be found in 

Supplementary Note.

Conditional analysis

In SAIGE-GENE, we have implemented the conditional analysis to perform gene-based 

tests conditioning on a given markers using the summary statistics from the unconditional 

gene-based tests and the linkage disequilibrium r2 between testing and conditioning 

markers19. Let G be the genotypes for a gene to be tested for association, which contains q 
markers, and G2 be the genotypes for the conditioning markers, which contains q2 markers. 

Let β denote a q × 1 coefficient vector of the genetic effect for the gene to be tested and β2 

be a q2 × 1 coefficient vector of the genetic effect for the conditioning markers. The 

genotype matrix with the non-genetic covariates projected out G = G − X XTW X −1XTW G

and G2 = G2 − X XTW X −1XTW G2. In the unconditioned association tests, the test statistics 

T = GT (Y − μ) and T2 = G2
T (Y − μ). In conditional analysis, under the null hypothesis, E(T) 

= E(GTP G2β2 = GTPG2β2  and E(T2) = E G2
TP G2β2 = G2

TPsG2β2 . T and T2 jointly 

follow the multivariate normal with mean (E(T), E(T2)) and variance S =
GTPG GTPG2

G2
TPG G2

TPG2
.

Thus under the null hypothesis of no association of T, i.e. H0: β = 0, the T|T2 follows the 

conditional normal distribution with E(T |T2) = GTPG2 (G2
TPG2)

−1
T2 and 

var(T |T2) = GTPG − GTPG2 (G2
TPG2 )

−1
G2

TPG, and p-values can be calculated from the 

conditional distribution.

Data simulation

We carried out a series of simulations to evaluate and compare the performance of SAIGE-

GENE, EmmaX-SKAT5,7 and SMMAT6. We used the sequence data from 10,000 European 

ancestry chromosomes over 1Mb regions that was generated using the calibrated coalescent 

model in the SKAT R package5. We randomly selected 10,000 regions with 3Kb from the 

sequence data, followed by the gene-dropping simulation36 using these sequences as founder 

haplotypes that were propagated through the pedigree of 10 family members shown in 

Supplementary Figure 11. Only variants with MAF ≤ 1% were used for simulation studies. 

Quantitative phenotypes were generated from the following linear mixed model 

yi = X1 + X2 + Giβ + bi + εi, where Gi is the genotype value, β is the genetic effect sizes, bi is 
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the random effect simulated from N 0, τ ψ , and εi is the error term simulated from 

N 0, 1 − τ I . Two covariates, X1 and X2, were simulated from Bernoulli(0.5) and N(0,1), 

respectively. Binary phenotypes were generated from the logistic mixed model 

logit(πi0) = α0 + bi + X1 + X2 + Giβ, where β is the genetic log odds ratio, bi is the random 

effect simulated from N(0, τ ψ) with τ = 1. The intercept α0 was determined by the disease 

prevalence (i.e. case-control ratios). Given τ = 1, the liability scale heritability is 0.2337.

To evaluate the type I error rates at exome-wide α=2.5×10−6, we first simulated 10,000 

regions, and then simulated 1000 sets of quantitative phenotypes for each simulated region 

with different random seeds under the null hypothesis with β = 0. Gene-based association 

tests were performed using SAIGE-GENE, EmmaX-SKAT, and SMMAT therefore in total 

107 tests for each of Burden, SKAT, and SKAT-O tests were carried out. Two different 

settings for τ were evaluated: 0.2 and 0.4 and two different sample relatedness settings were 

used: one has 500 families and 5,000 independent samples and other one has 1,000 families, 

each with 10 family members. We also simulated 1,000 sets of binary phenotypes for case-

control ratios 1:99, 1:19, 1:9, 1:4, and 1:1 for 500 families and 5,000 independent samples. 

Burden, SKAT, and SKAT-O tests were performed on the 10,000 genome regions using 

SAIGE-GENE, in total 107 tests for each method for each case-control ratio.

For the power simulation, phenotypes were generated under the alternative hypothesis β ≠ 0. 

Two different settings for proportions of causal variants are used: 10% and 40%, 

corresponding to |β| = |log10(MAF)| and |β| = |0.3log10(MAF)|, respectively. In each setting, 

80% and 100% had negative effect sizes. We simulated 1,000 datasets in each simulation, 

and power was evaluated at test-specific empirical α, which yields nominal α=2.5×10-6. The 

empirical α was estimated from the type I error simulations. Similarly, 1,000 sets of binary 

traits were generated for 10,000 samples (500 families and 5,000 independent samples) 

under the alternative hypothesis β ≠ 0 using two different settings: cohort study with various 

disease prevalence (0.01, 0.05, 0.1, and 0.5); and case-control sampling with three different 

case-control ratios (1:19, 1:9, and 1:1) based on a disease prevalence 1% in the population 

(Supplementary Note 2.5). 40% variants are simulated as causal variants, among which 80% 

are risk-increasing variants and 20% are risk-decreasing. The absolute effect sizes of causal 

variants are set to be |0.55log10(MAF)| and |0.35log10(MAF)| for cohort study and case-

control sampling, respectively.

HUNT and UK Biobank data analysis

We applied SAIGE-GENE to the high-density lipoprotein (HDL) levels in 69,500 

Norwegian samples from a population-based HUNT study15,16. About 70,000 HUNT 

participants were genotyped using Illumina HumanCoreExome v1.0 and 1.1 and imputed 

using Minimac338 with a merged reference panel of Haplotype Reference Consortium 

(HRC)39 and whole genome sequencing data (WGS) for 2,201 HUNT samples. Variants 

with imputation r2 < 0.8 were excluded from further analysis. Participation in the HUNT 

Study is based on informed consent, and the study has been approved by the Data 

Inspectorate and the Regional Ethics Committee for Medical Research in Norway. Total 

13,416 genes with at least two rare (MAF ≤ 1%) missense and/or stop-gain variants with 

imputation r2 ≥ 0.8 were tested. Variants were annotated using Seattle Seq Annotations 
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(http://snp.gs.washington.edu/SeattleSeqAnnotation138/). We used 249,749 pruned 

genotyped markers to estimate relatedness coefficients in the full GRM for Step 1 and used 

the relative coefficient cutoff ≥ 0.125 for the sparse GRM.

We have also analyzed 53 quantitative traits and 10 binary traits using SAIGE-GENE in the 

UK Biobank for 408,910 participants with White British ancestry2. UK Biobank protocols 

were approved by the National Research Ethics Service Committee and participants signed 

written informed consent. Markers that were imputed by the HRC39 panel with imputation 

info score ≥ 0.8 were used in the analysis. Total 15,342 genes with at least two rare (MAF ≤ 

1%) missense and stop-gain variants that were directly genotyped or successfully imputed 

from HRC (imputation score ≥ 0.8) were tested. We used 340,447 pruned markers, which 

were pruned from the directly genotyped markers using the following parameters, were used 

to construct GRM: window size of 500 base pairs (bp), step-size of 50 bp, and pairwise r2 < 

0.2. We used the relative coefficient cutoff ≥ 0.125 for the sparse GRM.

DATA AVAILABILITY STATEMENT

SAIGE-GENE is implemented as an open-source R package available at https://github.com/

weizhouUMICH/SAIGE/master.

The summary statistics and QQ plots for 53 quantitative phenotypes and 10 binary 

phenotypes in UK Biobank by SAIGE-GENE are currently available for public download at 

https://www.leelabsg.org/resources.

Genome build

All genomic coordinates are given in NCBI Build 37/UCSC hg19.

Statistical analysis

We performed gene-based Burden, SKAT and SKAT-O tests using SAIGE-GENE on 15,342 

genes for 53 quantitative traits and 10 binary traits in 408,910 UK Biobank participants with 

White British ancestry, who passed the quality control in the UK Biobank2. In the linear 

mixed model for quantitative traits, the first four genetic principal components (PCs), gender 

and age when attended assessment center were included as the non-genetic covariates. In the 

logistic mixed model for binary traits, the first four genetic principal components, gender 

and birth year were included as the non-genetic covariates. We also performed the same 

gene-based tests 13,416 genes for HDL levels in 69,500 Norwegian samples from the HUNT 

study15,16. In the linear mixed model for HDL, age, sex, genotyping batch, and first four PCs 

were included as non-genetic covariates. The numbers of samples used for analysis are 

included in the legend of each figure.

Life Sciences Reporting Summary

Further information on study design is available in the Nature Research Reporting Summary 

linked to this article.
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Extended Data

Extended Data Fig. 1. Workflow of SAIGE-GENE.
SAIGE-GENE consists of two steps: (1) Fitting the null generalized linear mixed model 

(GLMM) to estimate variance components and other model parameters; (2) Testing for 

association between each genetic variant set, such as a gene or a region, and the phenotype.
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Extended Data Fig. 2. Plots of the variance ratio of the score statistics by MAC for rare variants 
with and without the full GRM for sample relatedness (left) and with the full GRM and a sparse 
GRM for closely related samples (right).
a, Genotypes were simulated for 500 families and 5,000 independent individuals based on 

the pedigree structure shown in Supplementary Fig. 1 and the null model was fitted for the 

simulated quantitative trait with h2 = 0.2. The sparse GRM was constructed using a 

coefficient of relatedness cutoff 0.2. b, 20,000 samples with White British ancestry were 

randomly selected from the UK Biobank and the null model was fitted for the automated 

read pulse rate. The sparse GRM was constructed using a coefficient of relatedness cutoff 
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0.125. c, 20,000 samples were randomly selected form the HUNT study and the null model 

was fitted for HDL. The sparse GRM was constructed using a coefficient of relatedness 

cutoff 0.125.

Extended Data Fig. 3. Scatter plots of association P-values from SAIGE-GENE versus SMMAT 
and EmmaX-SKAT for the Burden, SKAT, and SKAT-O tests based on simulation data on the 
−log10 scale.
1,000,000 genes were tested with 1,000 families, each having 10 members, as shown in the 

Supplementary Fig. 1. The Pearson’s correlation coefficients r2 > 0.99 for −log10(P-values) 
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between SAIGE and SMMAT and between SAIGE and EmmaX-SKAT. a, h2 = 0.2. b, h2 = 

0.4.

Extended Data Fig. 4. Scatter plots of association P-values from SAIGE-GENE versus SMMAT 
and EmmaX-SKAT for the Burden, SKAT, and SKAT-O tests based on real data analysis on the 
−log10 scale.
a,b, 12,000 genes were tested for automated read pulse rate on 20,000 randomly selected 

white British samples in the HRC-imputed UK Biobank (a) and for HDL on 20,000 

randomly selected samples in HUNT (b). Missense and stop-gain variants with MAF ≤ 1% 

Zhou et al. Page 18

Nat Genet. Author manuscript; available in PMC 2021 February 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were included. The Pearson’s correlation coefficients r2 > 0.99 for −log10(P-values) between 

SAIGE and SMMAT and between SAIGE and EmmaX-SKAT.

Extended Data Fig. 5. Scatter plots of association P-values on the −log10 scale from SAIGE-
GENE with two sample relatedness cutoffs for the sparse GRM, 0.125 and 0.2. 15,338 genes were 
tested for automated read pulse rate in white British samples in the HRC-imputed UK Biobank 
(N = 385,365).
N, sample size. Missense and stop-gain variants with MAF ≤ 1% were included. a, Burden. 

b, SKAT. c, SKAT-O.

Extended Data Fig. 6. Quantile-quantile plots of association P-values for 10 million variant sets 
from the simulation study for phenotypes with various case-control ratios (N = 100,000).
a, Case:Control = 1:9. b, Case:Control = 1:19. c, Case:Control = 1:99. N, sample size.
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Extended Data Fig. 7. Empirical computation time.
a,b, Step 1 for fitting a null mixed model (a) and Step 2 for association tests (b), 

respectively, by sample sizes (N) for gene-based tests for 15,342 genes, each containing 50 

rare variants. Benchmarking was performed on randomly sub-sampled UK Biobank data 

with 408,144 White British participants for waist-to-hip ratio. The reported run time was 

median of five runs with samples randomly selected from the full sample set using different 

sampling seeds. The reported computation time for EmmaX-SKAT and SMMAT was 

projected when N > 20,000. As the number of tested markers varies by sample sizes, the 

computation time was projected for 50 markers per gene for plotting. Numerical data are 

provided in Supplementary Table 1.
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Extended Data Fig. 8. Log-log plot of the estimated run time as a function of number of markers 
per gene.
Benchmarking was performed on randomly sub-sampled 400,000 UK Biobank data with 

408,144 white British participants for waist-to-hip ratio on 15,342 genes. The plotted run 

time was median of five runs with samples randomly selected from the full sample set using 

different sampling seeds. The computation time for other different number of markers per 

gene was projected based on the benchmarked time.
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Extended Data Fig. 9. Log-log plots of the estimated run time and memory usage as a function of 
sample size (N) for genome-wide tests for 286,000 chunks.
a, Run time. b, Memory usage. Each chunk contains 50 variants on average, given that there 

are 14.3 million markers in the HRC-imputed UK Biobank with MAF ≤ 1% and imputation 

info score ≥ 0.8. Numerical data are provided in Supplementary Table 1. Benchmarking was 

performed on randomly sub-sampled UK Biobank data with 408,144 white British 

participants for waist-to-hip ratio. The plotted run time and memory were medians of five 

runs with samples randomly selected from the full sample set using different sampling seeds.

Extended Data Fig. 10. Log-log plots of the estimated run time for as a function of sample size 
(N) for SAIGE-GENE with and without using the robust adjustment.
a, Exome-wide gene-based tests for 15,871 genes. b, Genome-wide tests for 286,000 

chunks. Each gene or chunk contains 50 variants on average. Benchmarking was performed 

on randomly sub-sampled UK Biobank data with 402,163 white British participants tested 

for glaucoma (PheCode: 365, 4,462 cases and 397,701 controls). The case-control ratio 

remained the same in subsampled data sets. The reported run time was median of five runs 

with samples randomly selected from the full sample set using different sampling seeds. As 

the number of tested markers varies by sample sizes, the computation time was projected for 

50 markers per gene for plotting. Numerical data are provided in Supplementary Table 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimated and projected computation cost by sample sizes (N) for gene-based tests for 

15,342 genes, each containing 50 rare variants.

Benchmarking was performed on randomly sub-sampled UK Biobank data with 408,144 

White British participants for waist-to-hip ratio. The reported run times and memory are 

medians of five runs with samples randomly selected from the full sample set using different 

sampling seeds. The reported computation time and memory for EmmaX-SKAT and 

SMMAT is the projected computation time when N > 20,000. A. Log-log plots of the 

memory usage as a function of sample size (N) B. Log-log plots of the run time as a function 

of sample size (N). Numerical data are provided in Supplementary Table 1.
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Figure 2. 
Quantile-quantile plots of exome-wide gene-based association results.

A. Results for high-density lipoprotein (HDL) in the HUNT study (N = 69,214). SKAT-O 

test in SAIGE-GENE was performed for 13,416 genes with stop-gain and missense variants 

with MAF ≤ 1%, of which 10,600 having at least two variants are plotted. B. Results for 

automated read pulse rate in the UK Biobank (N = 385,365). The SKAT-O test in SAIGE-

GENE was performed for 15,338 genes with stop-gain and missense variants with MAF ≤ 

1%, of which 12,636 having at least two variants are plotting. C. Results for glaucoma in the 

UK Biobank (N cases = 4,462; N controls = 397,761). SKAT-O approach in SAIGE-GENE 

was performed for 15,338 genes with stop-gain and missense variants with MAF ≤ 1%, of 

which 12,638 having at least two variants are plotting. N: sample size.
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Table 1.

Genes that are significantly associated with automated read pulse rate (N = 385,365) and glaucoma (N cases = 

4,462; N controls = 397,761) in the UK Biobank and high-density lipoprotein (HDL) in the HUNT study (N = 

69,214) with SKAT-O p-values < 2.5×10−6 from SAIGE-GENE. Conditional analysis was performed when the 

top hit in the locus (+/− 500kb of the start and end positions of the gene) is not included in the gene-based test. 

The p-value of conditional analysis is NA when the top hit is a rare missense or stop gain variant included in 

the gene-based test. N: sample size.

Gene Number of 
Markers

SAIGE-GENE
SKAT-O Test Top Hit in the Locus

p-value p-value 
Conditional Variant (GRCh37/hg19) p-value MAF

Pulse Rate (UK 
Biobank)

TBX5 4 9.69E-35 NA 12:114837349_C/A 7.73E-35 0.0049

MYH6 14 3.61E-15 2.56E-13 14:23861811_A/G 1.04E-168 0.3698

TTN 368 3.18E-10 3.41E-06 2:179721046_G/A 8.73E-100 0.0885

KIF1C 12 4.78E-10 NA 17:4925475_C/T 3.18E-10 0.0063

ARHGEF40 7 7.02E-08 2.57E-10 14:21542766_A/G 3.30E-52 0.1688

FNIP1 8 3.58E-07 4.31E-02 5:131107733_C/T 1.22E-08 0.0027

DBH 12 1.74E-06 1.74E-06 9:136149399_G/A 3.46E-06 0.1870

HDL (HUNT)

LCAT 3 7.34E-50 NA 16:67974303_A/T 1.78E-48 0.0008

LIPC 4 1.25E-29 6.63E-31 15:58723939_G/A 7.50E-89 0.1889

FSD1L 3 7.40E-15 1 9:107793713_T/C 1.45E-20 0.0021

ABCA1 14 3.32E-11 1.28E-11 9:107620797_A/G 3.64E-48 0.0055

LIPG 3 2.15E-10 2.41E-10 18:47156926_C/A 5.92E-40 0.2348

NR1H3 2 6.53E-09 1.69E-09 11:47246397_G/A 3.66E-13 0.3220

CKAP5 7 1.62E-08 1.21E-09 11:47246397_G/A 3.66E-13 0.3220

RNF111 11 1.18E-07 1.37E-09 15:58856899_C/G 2.82E-24 0.0047

Glaucoma (UK 
Biobank) MYOC 6 1.23E-06 NA 1:171605478_G/A 9.13E-16 0.0014
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