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ABSTRACT

BACKGROUND AND PURPOSE: Traditional statistical models and pretreatment scoring systems have been used to predict the out-
come for acute ischemic stroke patients (AIS). Our aim was to select the most relevant features in terms of outcome prediction
on the basis of machine learning algorithms for patients with acute ischemic stroke and to compare the performance between
multiple models and the Stroke Prognostication Using Age and National Institutes of Health Stroke Scale (SPAN-100) index model.

MATERIALS AND METHODS: A retrospective multicenter cohort of 1431 patients with acute ischemic stroke was subdivided into
recanalized and nonrecanalized patients. Extreme Gradient Boosting machine learning models were built to predict the mRS score
at 90days using clinical, imaging, combined, and best-performing features. Feature selection was performed using the relative
weight and frequency of occurrence in the models. The model with the best performance was compared with the SPAN-100 index
model using area under the receiver operating curve analysis.

RESULTS: In 3 groups of patients, the baseline NIHSS was the most significant predictor of outcome among all the parameters,
with relative weights of 0.36~0.69; ischemic core volume on CTP ranked as the most important imaging biomarker with relative
weights of 0.29~0.47. The model with the best-performing features had a better performance than the other machine learning
models. The area under the curve of the model with the best-performing features was higher than SPAN-100 model and reached
statistical significance for the total (P < .05) and the nonrecanalized patients (P < .001).

CONCLUSIONS: Machine learning—based feature selection can identify parameters with higher performance in outcome prediction.
Machine learning models with the best-performing features, especially advanced CTP data, had superior performance of the recov-
ery outcome prediction for patients with stroke at admission in comparison with SPAN-100.

ABBREVIATIONS: AlS = acute ischemic stroke; CBS = clot burden score; GBM = Gradient Boosting Machine; IQR = interquartile range; NECT = non-con-
trast-enhanced CT; SPAN = Stroke Prognostication Using Age and National Institutes of Health Stroke Scale; TIMI = Thrombolysis in Myocardial Infarction;
XGB = Extreme Gradient Boosting; AUC = area under the receiver operating curve

I schemic stroke still ranks as the fifth leading cause of death
and the second leading cause of disability in the United
States." Although recent reports show a trend toward a decreas-
ing incidence of ischemic stroke for individuals 65 years of age
remains stable for individuals

or older, the incidence
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18~65 years of age." Revascularization therapies such as endo-
vascular thrombectomy have extended the treatment window
up to 16-24 hours after symptom onset as demonstrated in
selected patients in Endovascular Therapy Following Imaging
Evaluation for Ischemic Stroke (DEFUSE 3)* and Clinical
Mismatch in the Triage of Wake Up and Late Presenting
Strokes Undergoing Neurointervention with Trevo (DAWN)
trials.” However, up to 55% of patients in the endovascular ther-
apy group and 83% in the medical therapy group remained
functionally dependent, with 90-day mRS scoresof >2.°
Therefore, physicians taking care of patients with acute ische-
mic stroke (AIS) not only need to predict the individual bene-
fit of endovascular treatment but should also be able to
estimate prognosis in both treated and untreated patients and
to select patients for acute treatment, inform all involved per-
sons about the prognosis, and plan for rehabilitation and
long-term care.*
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Many publications have addressed the issues of predicting
outcome in patients with acute large-vessel ischemic stroke.
These include (but are not limited to) traditional logistic regres-
sion statistical models and pretreatment scoring systems such as
the DRAGON score (Dense cerebral artery sign/early infarct
signs on admission CT scan, prestroke modified Rankin Scale,
Age, Glucose level at baseline, Onset-to-treatment time, and base-
line National Institutes of Health Stroke Scale score),”” the
Stroke Prognostication Using Age and National Institutes of
Health Stroke Scale (SPAN-100) index,’ the Acute Stroke
Registry and Analysis of Lausanne (ASTRAL) score, the
Pittsburgh Response to Endovascular Therapy (PRE) score,'” the
Totaled Health Risks in Vascular Events (THRIVE) score,!! the
Houston Intra-Arterial Therapy (HIAT) score, and the HIAT2
score.'> The components considered in these predicting scoring
systems were either clinical parameters only such as age and the
NIHSS or non-contrast-enhanced CT (NECT) parameters such
ASPECTS. None of these models take into account advanced
imaging parameters. In addition, these models were built on the
basis of the hypothesis of a linear relationship between the pa-
rameters and the outcome, but some studies have highlighted a
nonlinear correlation,'>'*

In comparison with traditional modeling methods, machine
learning algorithms have much higher scalability, allowing large
numbers of features and parameters to be incorporated into the
models. Machine learning models have been trained not only for
outcome prediction following intravenous thrombolysis'®> and
intra-arterial therapy'®'” after AIS but also for subtype classifica-
tion,'® hemorrhagic transformation,'® and clot-characteristic
identification.”® All the above-mentioned models use clinical fea-
tures as input; 2 studies also used baseline NECT*!® or MR
imaging gradient recalled-echo sequence features,” and 1 study
used MR perfusion."®

The hypothesis of our study was that machine learning algo-
rithms can help select the most powerful features in outcome pre-
diction, and the model with features from advanced perfusion
CTP data would have more robust prognostic ability in compari-
son with the other machine learning models and SPAN-100
model.’

MATERIALS AND METHODS

Study Population

This retrospective study was conducted using a registry of 1782
patients with AIS from January 2008 to December 2018 at the
Lausanne University Hospital (1310 patients) and Stanford
University (472 patients). Institutional review board approval was
obtained from both institutional review boards, with a waiver of
informed consent due to the retrospective nature of the study.
Inclusion criteria were the following: 18 years of age or older;
clinical examination and baseline CT imaging confirming acute
ischemic infarction with the infarct area within the ICA/MCA
territory; availability of complete clinical (onset-to-baseline time;
baseline NIHSS; glucose, lipid, and blood pressure levels at
admission; history of cardiac disease, statin use, smoking status;
stroke mechanism according to the Trial of Org 10172 in Acute
Stroke Treatment [TOAST] trial;*' and treatment and 90-day
mRS) and imaging parameters (baseline NECT, CTP, and CTA;

early [<72hours from baseline] recanalization CTA). Patients
with subacute, chronic, remote, and/or hemorrhagic infarctions
were excluded from this study. The type of revascularization
treatment (intravenous thrombolysis and endovascular treat-
ment) was recorded if performed on the basis of the treating
physician’s decision.

Initial Clinical and Imaging Data

All the clinical and imaging parameters assessed in our study are
summarized in Online Table 1. The 90-day mRS was dichotom-
ized into favorable (mRS 0-2) and unfavorable outcome (mRS
3-6).

NECT, CTP, and CTA data were collected at admission as
baseline studies. A blinded neuroradiologist evaluated the imag-
ing features for all of the imaging studies. Features including the
ASPECTS and hyperdense middle cerebral artery sign were
extracted from the NECT. CTP datasets were processed on a
workstation (Brain Perfusion, Version 6.0.0; Philips Healthcare).
Automatic segmentation of ischemic core and penumbra vol-
umes was performed on the basis of previously published thresh-
olds.** The sidedness of cerebral ischemia was evaluated as well.
The site of occlusion, Thrombolysis in Myocardial Infarction
(TIMI) score, and collateral status were interpreted on the MIP
CTA images. The TIMI? score was assessed as follows: 0, com-
plete occlusion; 1, subocclusion with no distal branch filling; 2,
subocclusion with incomplete or slow distal branch filling; and 3,
completely open artery. A previously reported scoring system>*
was used for grading the collaterals into 4 levels in comparison
with the normal side on baseline CTA. In addition, the clot bur-
den score® (CBS), reflecting the extent of intracranial clot, and
degree of stenosis of the carotid bifurcation according to the
NASCET criteria were assessed on baseline CTA images. The
total cohort was divided into 2 subgroups depending on the re-
canalization status. A TIMI score of =2 on recanalization studies
was considered recanalization, while <2 was considered persis-
tent arterial occlusion.

Model Construction

Our dataset had 2 distinctive characteristics: low dimensionality
with <100 features and high nonlinearity for both qualitative and
quantitative clinical/imaging features. We, therefore, decided to
use Extreme Gradient Boosting (XGB), which is a specialized
Gradient Boosting Machine (GBM), for our dataset. There are 2
core elements of the GBM. The first is a decision tree, which is
the approach to generate and approximate non-linear-relation-
ship mapping between input features and final outcome. The sec-
ond is boosting. Initially raised by the authors of Adaptive
Boosting (AdaBoost),?®
creating many weaker, simpler machine learning classifiers dur-

the concept of boosting consists of first

ing training. Then, the final model is constructed by pooling the
results from all weaker models and creating a fine-tuned, stronger
classifier. XGB was developed on the basis of the GBM with supe-
riority of performance in multiple data science contests, and its
multicore algorithms allow multiple computations to run simul-
taneously in parallel, thus enabling the algorithm to scale to large
datasets.”’
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A previous study”® using GBM demonstrated that machine
learning methods with decision tree and boosting algorithms
were capable of predicting patient outcomes after AIS. In that
study, both XGB and GBM were used, and XGB was found to
have a relatively better performance when the cohort was divided
into subgroups. XGB was also shown to perform very well in
another study when segmenting stroke infarct regions using both
clinical and imaging features.*

Sixteen clinical and 11 imaging parameters were introduced
in our models (Online Table 1). The dataset was broken down
into 5 groups with a relatively equal number of patients in each
group for 5-fold cross-validations. Data of each patient were ran-
domly enrolled into 1 of the 5 folds as a testing set. In the remain-
ing 4 folds, the patient data were used as a training set. For each
model’s training and testing phase, 5 identical models were
trained, each using 1 group as the test set, with the remaining 4
groups as a training set. Then the overall model performance was
evaluated on the basis of results from all 5 models on 5 test sets.
At first, 3 types of feature group combinations, clinical features,
imaging features, and clinical plus imaging features, were used in
the XGB models to predict the 90-day mRS of the entire cohort
and recanalized and nonrecanalized subgroups, respectively, cre-
ating 9 total combinations. To improve the performance of the
machine learning models, we selected a subset of clinical and
imaging features from all the predictors according to their contri-
butions to the models. Features were selected on the basis of the
following criteria: They had a relative weight of =0.2 or a relative
weight of =0.1 and were in the top 5 highest weights in the 9
above-mentioned models. The SPAN-100 XGB model was built
by introducing age and the NIHSS at admission based on the
definition.

Statistical Analysis

Overall and by recanalization status, continuous characters were
summarized as medians and interquartile ranges (IQRs) and as
counts and percentages for categoric characters. For each of the 3
cohorts, measures of prediction sensitivity, specificity, accuracy,
and area under the receiver operating curve (AUC) were esti-
mated for the machine learning models, as well as for the refer-
ence SPAN-100 index model, with SPAN-100 defined as the sum
of patient age and the NTHSS score.” The machine learning model
with the highest AUC was then compared with the SPAN-100
index model, with the Delong test of pair-wise AUCs assessed
using the pROC R package (https://www.rdocumentation.org/
packages/pROC/versions/1.16.2).>%*!

Finally, confusion matrices for 90-day mRS prediction were
constructed, by cohort, for all models on the basis of 7-fold cross-
validation and visualized as heatmaps. All analyses were con-
ducted in the R statistical computing framework,>? Version 3.6
(http://www.r-project.org/), and statistical significance was
assessed at the .05 « level.

RESULTS

There were 1431 patients included in this study, including 899
patients with recanalization and 532 patients with no recanaliza-
tion (Online Fig 1). Online Table 1 illustrates the clinical and
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imaging characteristics for the total cohort and for the 2
subgroups.

Feature Selection with Machine Learning

Among the clinical and imaging parameters, the baseline NIHSS
was the most important predictor of outcome for the whole
cohort, as well as in the recanalized and nonrecanalized groups,
with relative weights ranging from 0.36 to 0.69. Age and glucose
levels at admission ranked as the next most important parameters
in both the model using only clinical parameters and the model
using all the clinical and imaging parameters (Online Table 2).
The NIHSS and age are both components of the SPAN-100 scor-
ing system.

Among the imaging parameters, ischemic core volume on
CTP came in first place for all 3 groups of patients, with relative
weights of 0.29~0.47 (Online Table 2). The CTA-CBS score, pe-
numbra volume on CTP, and infarct side were the second strong-
est imaging predictors in the full cohort, the recanalized patients,
and the nonrecanalized patients, respectively.

Clinical features such as baseline NIHSS score and age out-
weighed all the imaging features in importance in all 3 groups.
Glucose level at admission appeared to be the third most impor-
tant clinical biomarker in the total cohort and in recanalized
patients, but not in nonrecanalized patients. In the nonrecanal-
ized group, infarct and penumbra volume on CTP and time from
onset to the baseline study came before the glucose level
Accordingly, the model with the best-performing features (total
of 6 features) was built by including 3 clinical features (baseline
NIHSS, age, glucose at admission) and 3 imaging features (ische-
mic core volume on CTP, penumbra volume on CTP, and CTA-
CBS) (Online Table 3).

Model Performance in the Full Cohort and Recanalized
and Nonrecanalized Cohorts

The sensitivity, specificity, accuracy, AUC, and heatmap of each
model in the full cohort, as well as in the recanalized and the non-
recanalized subgroups are demonstrated in the Table, Figure, and
Online Fig 2. The models with both imaging and clinical features
performed better than those with only clinical or imaging input.
The model with 6 features performed better than models with
clinical features only, models with imaging features only, and
models with both clinical and imaging features. This finding was
true in all 3 groups of participants, with the highest AUC value of
0.83 for the nonrecanalized patients.

Comparison between Machine Learning Models and the
SPAN Scoring Model

Our best model, the model with the best-performing features,
was compared with the SPAN-100 index (Figure and Online Fig
2). The AUCs for the machine learning models with the 6 best-
performing features in the total cohort and recanalized and non-
recanalized groups were 0.80, 0.79, and 0.82, respectively. The
AUCs for SPAN-100 were 0.78, 0.76, and 0.78, respectively.
The optimal cutoff values of SPAN-100 were 85, 94, and 64 for
the total, recanalized, and nonrecanalized cohorts, respectively.
The AUCs of the XGB models with the 6 best-performing fea-
tures were higher than those of SPAN-100 and reached the
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Performance of machine learning models and the SPAN-100 index in 3 cohorts

Cohorts/Models Sensitivity (%) Specificity (%) Accuracy (%) AUC
Full cohort
Clinical features only (16 features) 781 65.5 735 0.77
Imaging features only (11 features) 53.5 79.9 63.2 0.69
Both clinical and imaging features (27 features) 74.4 69.8 72.8 079
Best-performing clinical and imaging features (6 features) 722 74.0 72.8 0.80°
SPAN-100 80.6 64.3 735 0.78
Recanalized
Clinical features only (16 features) 731 704 719 0.76
Imaging features only (11 features) 537 69.4 60.9 0.61
Both clinical and imaging features (27 features) 74.5 68.9 72.0 0.77
Best-performing clinical and imaging features (6 features) 76.9 69.9 738 0.79%
SPAN-100 78.8 63.8 719 0.76
Nonrecanalized
Clinical features only (16 features) 80.0 65.8 741 078
Imaging features only (11 features) 633 67.8 643 0.70
Both clinical and imaging features (27 features) 713 80.5 733 0.81
Best-performing clinical and imaging features (6 features) 81.9 75.4 80.5 0.82°
SPAN-100 65.5 77.1 68.1 0.78

*Model with the highest AUC value.

statistical significance for the total cohort (P < .05) and the
nonrecanalized patients (P < .001). In the recanalized group,
the difference was not significant (P = .05).

DISCUSSION

Our study shows that machine learning models trained with best-
performing clinical and imaging features, including advanced
CTP parameters, can predict the outcome of patients with stroke
more accurately than a conventional scoring system.

Bacchi et al*

used deep learning models to predict the out-
come in patients with AIS who underwent intravenous throm-
bolysis. The combined convolutional-plus-artificial neural
network model based on both clinical and imaging data per-
formed best in predicting patient outcomes. Heo et al**
attempted to predict favorable outcome in a large group of 2043
patients with stroke using 3 machine learning models. By incor-
porating 38 demographic/clinical variables into their models,
they found that the deep neural network model performed bet-
ter than the other 2 models (random forest and logistic regres-
sion) and the ASTRAL score, while the performance of the deep
neural network did not differ significantly from the ASTRAL
score when trained on only the same 6 variables used for calcu-
lating the ASTRAL score. Nishi et al'” built 9 models, including
5 previously reported scoring models, 1 logistic regression sta-
tistical model, and 3 machine learning models to predict the
clinical outcome in a cohort of 387 patients with stroke who
underwent endovascular treatment. Machine learning models
were superior to the other models. These above-mentioned
models used ASPECTS as the only imaging variable to make the
outcome prediction, and the overwhelming clinical variables in
these models seemed not quite practical in an emergency sce-
nario because a physician has to input many variables to get val-
uable prognostic information. Our models with the best-
performing features were trained on more advanced imaging
data such as CTP and CTA parameters, which provide
improved accuracy compared with models using only parame-

ters from the NECT. Furthermore, clinical features are

important predictors, but when they are broken down into
recanalized and nonrecanalized groups, CTP imaging data were
a more potent contributor, especially for those nonrecanalized
patients.

The commonly used machine learning models in cerebrovas-
cular diseases include random forest, support-vector machines,
the neural network, decision trees, and logistic regression. In this
study, we used a supervised XGB model, which is a decision tree—
based machine learning method. Previous publications®®****
highlighted the adaptability of XGB in dealing with redundant
and nonlinear datasets. Compared with other machine learning
models, XGB makes more powerful predictions with less chance
of overfitting, especially in predictions of binary outcomes.

Our modeling filtered 6 parameters that best predicted the
90-day mRS score. Baseline NIHSS, age, and glucose on admis-
sion are clinical components of most of the conventional pre-
treatment prognostic systems developed for patients with
stroke.”'? Previous studies have shown that baseline NIHSS and
age are strongly associated with prognosis.'>*®?” Hyperglycemia
on admission is known to be an independent predictor of worse
outcome because of its association with lactic acidosis and accel-
erated conversion of penumbra to infarct.*®*® The relevant
imaging features (CTP ischemic core volume, penumbra vol-
ume, and CTA-CBS) are also well-established stroke imaging
biomarkers."> Collateral scores and the CBS have been reported
to be equally important in outcome prediction.*” In our study,
collaterals played an important role in the recanalized group, but
not in the nonrecanalized group.

It is beneficial to have a simple model because it makes clinical
deployment faster and easier. A model requiring few features to
yield a useful prediction is also less prone to overfitting. In addi-
tion, the 3 imaging features used in our model can be automati-
cally extracted within a machine learning pipeline embedded in
the daily workflow. It is practical for our best-performing model
to provide a prompt outcome prediction.

The SPAN-100 index has been shown to have the ability to
predict patient outcome and the risk of complications after endo-
vascular therapy in several stroke cohorts.”'> Mébius et al® found
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ROC Curve Analysis: All Cases
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FIGURE. Receiver operating characteristics (ROCs) of XGB prediction models with clinical features, imaging features, both clinical and imaging
features, best-performing features, and SPAN-100 for predicting a 90-day mRS score of >2. For all patients and recanalized and nonrecanalized
patients, the AUCs of models with the best-performing features were higher than those in SPAN-100, and statistical significance was reached in
the total and nonrecanalized groups. The AUCs for machine learning models with the 6 best-performing features in the total cohort and recan-
alized and nonrecanalized groups were 0.80, 0.79, and 0.82, respectively. The AUCs for SPAN-100 were 078, 0.76, and 0.78, respectively. The
AUCs of XGB models with the best-performing features were higher than those in SPAN-100 and reached statistical significance for the total
cohort (P < .05) and the nonrecanalized patients (P <.001). In the recanalized group, the difference was not significant (P = .05).

that the patients positive on the basis of SPAN-100 demonstrated
a 9-fold increase in the odds ratio of poor outcome compared
with those negative on the basis of SPAN-100, with an AUC of
0.74. The NIHSS ranked as the most highly relevant parameter
among all of the clinical and imaging biomarkers in our study,
while age was the second-best predictor in nonrecanalized
patients and the third-best predictor in all and recanalized
patients. When combined with imaging features, the ability of
outcome prediction improved from 0.78, 0.76, and 0.78 to 0.80,
0.79, and 0.82 for all and recanalized and nonrecanalized patients.
The major limitation of SPAN-100 is its inapplicability to
younger patients, for it cannot reach a positive status because of
the age component. However, our model overcomes this limita-
tion and is applicable to any patient with AIS older than 18 years
of age.

There are several limitations to this study. First, this was a ret-
rospective study, and our model will need to be validated
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prospectively. Second, we used only XGB models in this machine
learning study, and other machine learning algorithms need be
considered in future study designs. Third, prognostic models
other than the SPAN-100 may have superior long-term predictive
values for handicap and mortality, which will be incorporated
into our future study design.*’

CONCLUSIONS

Machine learning-based feature selection can identify param-
eters with higher performance in long-term recovery-outcome
prediction for patients with stroke at admission, while remov-
ing redundant and less predictive parameters. Moreover, the
models with input from the best-performing features had bet-
ter predictive value than the other models using clinical fea-
tures only, imaging features only, both clinical and imaging
features, and the SPAN-100 index. Finally, the prognostic



ability of machine learning models with advanced imaging
features such as CTP data can be improved, especially for
nonrecanalized patients.
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