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Abstract 18 

The initial phase of the COVID-19 pandemic in the US was marked by limited diagnostic testing, 19 

resulting in the need for seroprevalence studies to estimate cumulative incidence and define epidemic 20 

dynamics. In lieu of systematic representational surveillance, venue-based sampling was often used to 21 

rapidly estimate a community’s seroprevalence. However, biases and uncertainty due to site selection 22 

and use of convenience samples are poorly understood. Using data from a SARS-CoV-2 23 

serosurveillance study we performed in Somerville, Massachusetts, we found that the uncertainty in 24 

seroprevalence estimates depends on how well sampling intensity matches the known or expected 25 

geographic distribution of seropositive individuals in the study area. We use GPS-estimated foot traffic 26 

to measure and account for these sources of bias. Our results demonstrated that study-site selection 27 

informed by mobility patterns can markedly improve seroprevalence estimates. Such data should be 28 

used in the design and interpretation of venue-based serosurveillance studies.  29 
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 2 

Introduction 31 

Studies estimating SARS-CoV-2 seroprevalence have been critical to our understanding of COVID-19 32 

pandemic dynamics, particularly in times when diagnostic testing was limited and the extent of 33 

community spread was unknown [1–4]. However, many of these estimates were derived from non-34 

representational convenience sampling [4–6], thus making these estimates subject to multiple sources of 35 

bias and uncertainty that remain poorly understood [7]. Low precision can obscure differences in 36 

estimated seroprevalence between populations, limiting efforts to understand heterogeneity in epidemic 37 

intensity or vaccination coverage and reducing the effectiveness of public health interventions. As cost, 38 

speed, and logistical concerns continue to motivate the use of convenience sampling [8], identifying and 39 

accounting for bias and uncertainty are therefore critical to improving the design and interpretability of 40 

these studies. 41 

Convenience sampling involves inherently non-uniform sampling across demographic or geographic 42 

subgroups. For example, in venue-based (or “walk-up”) studies, in which participants are recruited from 43 

among visitors to a central or highly trafficked location [4,9], the geographic distribution of participants 44 

is expected to be skewed toward individuals living closer to the study location. A similar concern 45 

applies to studies using discarded blood samples, where the catchment area of a given hospital or 46 

clinical laboratory may strongly constrain the geographic distribution of samples available for analysis 47 

[5].  48 

Multiple recent studies have underscored the utility of GPS- and mobile phone-associated human 49 

mobility data in understanding COVID-19 epidemiology. These studies have clarified the role of highly-50 

visited “super-spreader” locations [10,11] in local COVID-19 epidemics and identified higher aggregate 51 

mobility as a predictor of neighborhood-level COVID-19 risk [3]. Prospective applications of these data 52 

sources, including their use in the design and implementation of epidemiological studies, are limited.  53 
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Here, we examine seroprevalence estimates obtained via venue-based sampling [4,9], with direct 54 

applications to other forms of convenience sampling [5,12,13]. We performed a venue-based 55 

serosurveillance study in Somerville, Massachusetts and used these data to analyze bias and uncertainty 56 

arising from inherent geographic variation in sampling intensity. This analysis showed that substantial 57 

loss of precision can occur if the distribution of sampling intensity poorly matches the geographic 58 

distribution of true seropositive individuals in the study area. As GPS-estimated foot traffic offers a 59 

proxy measurement for the geographic distribution of visitors to different locations, we evaluated the 60 

extent to which informed selection of locations for venue sampling reduces uncertainty and bias 61 

introduced by geographic heterogeneity in underlying seropositivity. Our results thus offer an approach 62 

to significantly improve the design and interpretation of seroprevalence studies that use venue-based 63 

convenience sampling with little if any impact on cost and speed.  64 

Methods 65 

SARS-CoV-2 seroprevalence study design and participant information 66 

We obtained serological and participant demographic data for 398 asymptomatic adults tested at a 67 

temporary study site near an essential business location in Somerville, Massachusetts. The study was 68 

conducted over 4 days (June 4th, 5th, 8th, and 9th, 2020), approximately 6 weeks after the first wave of the 69 

COVID-19 epidemic peaked in Massachusetts [14]. The study was designated minimal risk human 70 

subjects research and approved by institutional review boards at Massachusetts General Hospital and the 71 

Harvard T.H. Chan School of Public Health (Protocol number: 2020P001081). The study recorded 72 

participant demographic information including age, gender, and self-reported home locations (by ZIP 73 

code and electoral ward). We also collected information on how participants learned about the study in 74 

order to distinguish participants directly recruited on site at the study location from those who learned 75 

about the study from friends, family, or social media. We did not advertise or announce enrollment for 76 

the study prior to its implementation, with the goal of increasing the proportion of individuals recruited 77 
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on site at the study location. We used this data to calculate 𝑃j
direct, the proportion of all directly recruited 78 

participants from Somerville with self-reported home locations in electoral ward 𝑗 ∈ {1, . . . ,7}. We refer 79 

to {𝑃1
direct, . . . , 𝑃7

direct} as the “survey participant catchment distribution.” 80 

Public health acute infection data 81 

We obtained data on 916 PCR-confirmed COVID-19 cases with documented home addresses in 82 

Somerville (collected from the onset of the epidemic through June, 2020) from the Massachusetts 83 

Virtual Epidemiologic Network (MAVEN). COVID-19 cases are reported to MAVEN by state and local 84 

health agencies, and cases are designated as “confirmed” if they have a positive result for SARS-CoV-2 85 

RNA detection using an FDA-approved molecular amplification detection test, for example RT-PCR. 86 

The total number of Somerville residents tested for SARS-COV-2 via RT-PCR was also obtained from 87 

MAVEN. Data were anonymized and aggregated by electoral ward prior to analysis. We calculated the 88 

cumulative incidence of PCR-confirmed infections by ward (𝜃+PCR) and the proportion of all PCR tests 89 

with positive results (“PCR positivity"). 90 

GPS-estimated business foot traffic  91 

We used GPS-estimated foot traffic (SafeGraph, safegraph.com) to approximate the distribution of 92 

home locations for daytime visitors for different locations of interest, which we refer to as the “GPS-93 

estimated catchment area.” We use these data to estimate home and work locations at the level of census 94 

block group (CBG) for visitors to designated points-of-interest, such as businesses, and specific CBGs. 95 

We used CBG-level visitor data for June 2020 as the primary data source for visitors in our analysis. 96 

These data were filtered for CBGs with low visitor counts and re-aggregated from CBGs to electoral 97 

wards prior to analysis (Supplementary Material, Figures S1 and S2). We used the filtered, re-98 

aggregated data to obtain GPS-estimated visitor catchment distributions for two locations: (1) the actual 99 

study venue, located in Somerville electoral Ward 2 (denoted 𝑉j
site) and (2) a hypothetical alternative 100 

study venue located in Somerville electoral Ward 1 (denoted 𝑉j
alt). 101 
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Simulations 102 

We used numerical simulation to examine bias and uncertainty in estimated seroprevalence (𝜃-pop) as a 103 

function of subgroup sizes, true subgroup seropositivity, and sample allocation. Here, “subgroup” is 104 

used to describe any potential stratification of the overall population, including by demographic and/or 105 

geographic characteristics. Briefly, we used demographic [15] and SARS-CoV-2 acute infection data 106 

from Somerville, MA to generate a simulated population with varying true seropositivity 𝜃j,k across 107 

subgroups stratified by age group j and location k (where locations are electoral wards in Somerville). 108 

Briefly, the simulation randomly draws 𝑛j,k individuals from each subgroup, calculates weighted 109 

population-level seroprevalence (adjusted for serological test performance), and repeats this process 110 

10000 times to generate distributions of 𝜃-pop values. We report 𝑊, the width of the 95th percentile 111 

interval for each distribution, as an approximate measure of uncertainty for 𝜃-pop for a given set of 112 

simulation parameters. Additional details are available in the Supplementary Material. R code for the 113 

numerical simulations is available at https://github.com/svsero/COVID19serosurveillance-Somerville. 114 

Results 115 

Study participant catchment distributions and geographic heterogeneity in COVID-19 epidemic intensity 116 

We first examined how participant catchment distributions align with, or mismatch, the geographic 117 

distribution of seropositive individuals in a given study area. We observed that the survey participant 118 

catchment distribution in our serosurveillance study was skewed strongly toward locations near the 119 

study site (Figure 1A). Among directly recruited participants with home locations in Somerville, 43% 120 

(43/100) reported home locations in Somerville Ward 2 (where the study site was located) compared to 121 

4% in Ward 1 and 4% in Ward 4. In contrast, the cumulative incidence of PCR-confirmed SARS-CoV-2 122 

infections (𝜃+012) was approximately three-fold higher in electoral Ward 1 compared to Wards 2 and 6 123 

(Figure 1B) and the proportion of SARS-CoV-2 PCR tests with positive results was approximately five-124 

fold higher (Supplementary Figure S3A). Both of these proxy measures of epidemic intensity (𝜃+012	and 125 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2021. ; https://doi.org/10.1101/2021.02.03.21251011doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.03.21251011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

PCR test positivity) are limited by potential biases, some of which are likely to still be present even if 126 

PCR testing rates are relatively equal by ward [16]. Nonetheless, these measures suggest substantial 127 

heterogeneity in the underlying epidemic intensity, with an apparent higher rate of previously infected 128 

individuals (as a proportion of the population) in Somerville Wards 1 and 4. Thus, we observed that the 129 

venue location chosen for this study, and its associated survey participant catchment distribution, 130 

resulted in relative under-sampling of wards with expected higher seropositivity and oversampling of 131 

those with lower expected seropositivity (Figure 1C). 132 

GPS-estimated visitor catchment distributions 133 

Recognizing that survey participant catchment distributions can be poorly matched to the underlying 134 

geographic distribution of seropositivity, we explored the use of GPS-estimated foot traffic data as a tool 135 

for evaluating actual or candidate locations for venue-based sampling. We evaluated correlations 136 

between the observed participant catchment distribution for the actual Somerville study location, GPS-137 

estimated visitor catchment distributions for this site and a hypothetical alternative site in Somerville 138 

Ward 1, and the cumulative incidence of PCR-confirmed infections by ward. The participant catchment 139 

distribution at the actual study site (𝑃+direct) closely matched its corresponding GPS-estimated visitor 140 

catchment distribution, 𝑉j
4567 (Pearson’s 𝑟 = 0.90, 𝑝 =0.0131, Figure S4). However, the GPS-estimated 141 

visitor catchment distribution for the actual study site was poorly correlated with the cumulative 142 

incidence of PCR-confirmed infections (𝑟= -0.11, 𝑝 = 0.55, Figure 2C). 143 

We evaluated whether choosing an alternative study site could improve the correlation between sample 144 

allocation and cumulative incidence of PCR-confirmed infections by ward, with the goal of reducing 145 

uncertainty in estimated seroprevalence. We observed that the GPS-estimated visitor catchment 146 

distribution at the alternative site (𝑉j
:;6) is strongly correlated with ward-level cumulative incidence of 147 

PCR-confirmed infections (𝑟=0.93, 𝑝=0.0072, Figure 2D). If subgroup sizes are known and differences 148 

in subgroup-level seropositivity can be inferred or assumed, allocating more samples to larger subgroups 149 
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and those with higher expected seropositivity will improve precision for weighted population-level 150 

seroprevalence estimates (Figure S5 and Equation 2) [17]. This suggests that, if the GPS-estimated 151 

visitor catchment distribution reliably predicts the survey participant catchment at the alternative study 152 

site, this location would yield improved sample allocation across geographic subgroups that more 153 

closely approximates optimal sample allocation.  154 

Venue location and uncertainty in SARS-CoV-2 seroprevalence estimates 155 

We used numerical simulation to quantify uncertainty in estimated SARS-CoV-2 seroprevalence under 156 

different survey participant catchment distributions. Specifically, we constructed a simple synthetic 157 

population with seven geographic subgroups, corresponding to the seven electoral wards in Somerville, 158 

each divided into three age-based subgroups. We specified the size of each subgroup using local census 159 

data [15] and specified the true underlying seropositivity for each age-location subgroup by assuming 160 

these values are proportional to the observed cumulative incidence of PCR-confirmed infections for 161 

each subgroup. Using this model, we compared three sample allocation scenarios: (1) optimal allocation, 162 

in which the number of individuals sampled from each age-location subgroup is specified to optimally 163 

reduce uncertainty in the resulting seroprevalence estimates (per Equation 2 in the Supplementary 164 

Information); (2) allocation according to the observed survey participant catchment distribution for the 165 

actual study site; (3) allocation according to the GPS-estimated visitor distribution at the hypothetical 166 

alternative study site. (Additional details on model specification and sensitivity testing for model 167 

parameters are available in the Supplementary Information.) 168 

We observed 1.5- to 2-fold higher uncertainty when sampling effort was allocated according to the 169 

participant catchment distribution at the study site compared to the alternative site or optimal allocation 170 

(Figure 3). This observation suggests that choice of recruitment location can result in suboptimal sample 171 

allocation and higher uncertainty. 172 
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Bias due to unappreciated heterogeneity in seropositivity across geographic subgroups 173 

Biased seroprevalence estimates can result if geographic heterogeneity in sample allocation results in 174 

substantial over- or under-sampling in locations with higher (or lower) seropositivity, and if procedures 175 

for generating weighted prevalence estimates do not appropriately account for geographic heterogeneity 176 

in underlying seropositivity. We compared estimated seroprevalence versus true seroprevalence for 177 

numerical simulations in which the final seroprevalence estimates were weighted by the sampling 178 

probability for each age-location group or by the sampling probability of each age subgroup alone 179 

(Figure 4). The first weighting procedure accounts for heterogeneity across age and location subgroups, 180 

whereas the second procedure accounts only for heterogeneity across age subgroups. Using the second 181 

procedure resulted in over- or under-estimation of seroprevalence, depending on whether sample 182 

allocation enriches for participants from areas with high or low underlying seropositivity, respectively. 183 

Discussion 184 

Convenience sampling, despite its inherent limitations, may have continued utility in the public health 185 

response to the COVID-19 pandemic and for infectious disease outbreaks generally. Cost and logistical 186 

considerations may limit the feasibility of randomized structured sampling, particularly in resource-187 

constrained contexts or in situations where census data, population rosters, or household mapping data 188 

are unavailable or unreliable. Certain forms of convenience sampling are better suited for reaching 189 

important subgroups compared to structured approaches. Lower-wage or frontline workers who are at 190 

higher risk of SARS-CoV-2 exposure [18-20], including undocumented workers [20], may be less likely 191 

to participate if recruited using conventional survey outreach methods (e.g., mail or phone contact) due 192 

to constraints on their time [21-23] and lack of incentives [21]. Convenience sampling at highly visited 193 

community locations such as essential businesses may be an attractive alternative to structured sampling 194 

in this important population, similar to sampling approaches developed to study so-called “hidden 195 

populations” [24]. 196 
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Geographic heterogeneity in SARS-CoV-2 epidemic intensity within cities has been a repeatedly 197 

observed feature of the pandemic [1–3]. This phenomenon poses unique challenges for seroprevalence 198 

studies that employ venue-based and other convenience sampling strategies, in which sample allocation 199 

across subgroups cannot be pre-specified and is non-uniform across geographic space.  200 

Examining data from our seroprevalence study in Somerville, MA, we observed that venue-based 201 

sampling resulted in substantial undersampling of areas where proxy measures (cumulative incidence of 202 

PCR-confirmed infections and PCR test positivity rates) suggest higher epidemic intensity. This 203 

mismatch between the survey participant catchment distribution and the geographic distribution of 204 

seropositive individuals can result in suboptimal sample allocation and higher variance in resultant 205 

seroprevalence estimates. 206 

Study locations can have widely divergent participant catchment distributions. These distributions can 207 

be heavily enriched for participants living in the immediate vicinity of the study location. This limitation 208 

has important implications for bias and uncertainty of resulting seroprevalence estimates (as detailed 209 

here) and raises questions about potential undersampling or exclusion of important subgroups in venue-210 

based studies. Multiple studies have identified geographic location as a strong surrogate for multiple risk 211 

factors associated with severe infection, hospitalization, and/or death due to COVID-19 [25] and 212 

undersampling in neighborhoods where these risk factors co-localize together can compromise the 213 

reliability and interpretability of seroprevalence estimates. Recruiting participants directly from such 214 

communities, where rates of COVID-19 related hospitalization and deaths are often higher, has yielded 215 

seroprevalence estimates that are substantially higher than city-level or state-level estimates [4,9]. 216 

Notably, the areas that were most undersampled in our study strongly overlap neighborhoods with lower 217 

socioeconomic status, larger proportions of non-white residents, lower proportions of English-speaking 218 

households (Figure 1A, Supplementary Figure S3C). 219 

Our work has three practical findings that are applicable to the design, implementation, and 220 

interpretation of convenience-based seroprevalence studies.  221 
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(1) Uncertainty in population-level seroprevalence estimates is minimized when sample allocation is 222 

proportional to the size and underlying seropositivity of individual subgroups in the population 223 

(Equation 2 and Figure S5). The practical application of this finding may be limited because of 224 

challenges in reliably ascertaining differences in the underlying seroprevalence between subgroups a 225 

priori. For example, this may arise when access to diagnostic testing for acute infections is limited or 226 

disparate across subgroups. However, even in this situation, allocating sampling effort proportional to 227 

subgroup sizes alone can substantially reduce uncertainty (Figure S1). Applying this finding may also be 228 

difficult because an inherent feature of venue-based sampling is that allocation of sampling effort is not 229 

pre-specified, but instead results from a stochastic process that depends on the location of the study 230 

venue. Thus, although optimal sample allocation is likely not achievable via venue-based sampling, 231 

careful selection of venue locations, with the objective of enriching for participants from geographic 232 

subgroups with larger populations and/or higher expected seroprevalence, can at least improve sample 233 

allocation and help reduce uncertainty. 234 

(2) GPS-estimated foot traffic can inform the selection of venue-based recruitment locations. The GPS-235 

estimated visitor catchment distribution at our study location correlated closely with the survey 236 

participant catchment distribution. Validation against other data sources that directly measure the 237 

geographic distributions of visitors to locations of interest (for example, aggregated geographic and 238 

registration data from COVID-19 mobile testing programs) can help further evaluate this potentially 239 

important data source. 240 

(3) Convenience sampling can produce biased seroprevalence estimates if geographic heterogeneity in 241 

underlying subgroup-level seropositivity is not properly accounted for (Figure 5). Consistent with prior 242 

studies [2, 3], we observed that COVID-19 incidence can vary widely, even over a relatively small 243 

geographic area. To avoid this problem, studies that employ convenience sampling should collect 244 

geographic data on participants’ home locations that is granular enough to capture potential geographic 245 

heterogeneity in seroprevalence within the study area. This information, combined with data on the 246 
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catchment distributions of individual recruitment sites (including GPS-estimated foot traffic data, as 247 

examined here), can be used to quantify what would otherwise be an unmeasured source of bias in 248 

resulting seroprevalence estimates. 249 

Multiple considerations are important for contextualizing our findings and the recommendations above. 250 

These include participation bias that may result in exclusion of individuals with disabilities or others 251 

who are less likely to leave their homes. Methods designed to account for participation bias, including 252 

those developed for use with time-location sampling [26], may be applicable here. Likewise, collecting 253 

information on non-respondents in venue-based sampling—for example, brief demographic surveys 254 

collected before recruitment for serological testing—can help measure and account for potential sources 255 

of participation bias. 256 

The GPS-estimated foot traffic data used in our study have several important limitations. Identification 257 

of visitors and their home locations in this data may be biased by differences in mobile device usage 258 

between demographic groups, potentially under-sampling visitors from important populations or 259 

oversampling others. In addition, this data can be sparse and thus more subject to stochastic variation 260 

when only small numbers of users are captured in either the point of interest or home location. Different 261 

forms of participation bias (described above) are expected to skew the geographic distribution of study 262 

participants away from GPS-estimated catchment distributions, potentially making it difficult to use this 263 

data source in real-world public health practice. 264 

Lastly, we make several simplifying assumptions in our numerical model. The numerical model assumes 265 

that the true seropositivity in each age-location subgroup is proportional to its observed cumulative 266 

incidence of PCR-confirmed SARS-CoV-2 infections (per local public health data from Somerville, 267 

MA). However, wards with higher PCR positivity rates (an indicator of greater epidemic intensity) have 268 

relatively the same rates of overall PCR testing per capita (Supplementary Figure S3B), indicating that 269 

there were gaps in testing effort in areas of Somerville with more incident infections overall [16]. The 270 

assumed true underlying seroprevalence of each age-location group, which is specified using the 271 
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observed cumulative incidence of PCR-confirmed infection and does not account for the testing gap 272 

described above, are less dispersed across age-location groups than what would be expected if PCR 273 

testing effort better matched epidemic intensity by ward (i.e., greater PCR testing effort in heavily 274 

impacted areas would likely reveal even larger differences in cumulative incidence between wards). This 275 

misspecification, and resultant smaller dispersion in assumed true cumulative incidence by ward, is 276 

expected to result in more conservative values for the uncertainty in estimated population-level 277 

seroprevalence; otherwise, this limitation is not expected to change our primary findings from the 278 

numerical model. 279 

In summary, we have examined how geographic heterogeneity in sample allocation, combined with 280 

underlying heterogeneity in geographic distribution of seropositive individuals, can influence 281 

seroprevalence estimates derived from venue-based sampling. Our findings are relevant to studies 282 

employing venue-based recruitment and are also applicable to other kinds of convenience sampling, for 283 

example, studies using a hospital’s discarded blood specimens from patients drawn from the hospital’s 284 

geographic catchment area.  285 
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Figures 351 

  352 

Figure 1. Sample allocation and geographic heterogeneity in proxy measures of epidemic 353 

intensity. (A) Survey participant catchment distribution. Wards are shaded by 𝑃j
direct, the proportion of 354 

all directly recruited participants from each of Somerville Wards 1-7; (B) Cumulative incidence of prior 355 

PCR-confirmed SARS-CoV-2 infections by Ward as of June 8th, 2020 (𝜃+012); (C) Correlation between 356 

𝑃j
direct	and 𝜃+012 . Significance of the correlation is calculated via permutation testing, as described in the 357 

Supplementary Material. 358 

 359 
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 360 

Figure 2. GPS-estimated visitor catchment distributions for actual and hypothetical alternative 361 

study sites. GPS-estimated visitor catchment distributions for (A) the actual study location 𝑉j
site or (B) 362 

a hypothetical alternative study site in Somerville Ward 1 𝑉j
alt. Correlations between 𝑉j

site, 𝑉j
alt, and the 363 

cumulative incidence of PCR-confirmed SARS-CoV-2 infection 𝜃+012  are shown in (C) and (D). 364 

 365 

 366 
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 367 

Figure 3. Uncertainty in estimated SARS-CoV-2 seroprevalence obtained using different 368 

sample allocation strategies. The uncertainty (𝑊, the width of the 95th percentile interval for 369 

10000 estimated seroprevalence values) versus mean estimated seroprevalence for different values 370 

of 𝑛 (the total number of individuals sampled) when individuals are sampled using (1) in the left 371 

panel, the optimal sample allocation according to Equation 2 in the Supplementary Material (Sop); 372 

(2), in the center panel, the sampling distribution of participants in the Somerville seroprevalence 373 

survey (Ssite); (3) the sampling distribution at the proposed alternative study site (Salt).  374 

 375 
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 376 

Figure 4. Bias in estimated seroprevalence by sampling strategy and weighting procedures. Left: 377 

Estimated seroprevalence, weighted only by age subgroups. Right: Estimates weighted by age-location 378 

subgroups are shown in the right panel. Blue: Sample allocation specified by the observed participant 379 

distribution catchment distribution in the Somerville study. Red: Sample allocation specified by the 380 

catchment distribution of GPS-estimated visitors to the proposed alternate study site. Dotted line 381 

indicates where estimated equals true seroprevalence. 382 
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