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Abstract

Objective: Acute respiratory distress syndrome (ARDS) is frequently under recognized, and 

associated with increased mortality. Previously, we developed a model that utilized machine 

learning and natural language processing (NLP) of text from radiology reports to identify ARDS. 

The model showed improved performance in diagnosing ARDS when compared to a rule-based 

method. In this study, our objective was to externally validate the NLP model in patients from an 

independent hospital setting.

Design: Secondary analysis of data across five prospective clinical studies.

Setting: An urban, tertiary care, academic hospital

Patients: Adult patients admitted to the medical intensive care unit and at-risk for ARDS

Interventions: None

Measurements and Main Results: The NLP model was previously derived and internally 

validated in burn, trauma, and medical patients at Loyola University Medical Center. Two machine 

learning models were examined with the following text features from qualifying radiology reports: 

(1) word representations (n-grams); (2) standardized clinical named entity mentions mapped from 

the National Library of Medicine Unified Medical Language System. The models were externally 

validated in a cohort of 235 patients at the University of Chicago Medicine, among which 110 

(47%) were diagnosed with ARDS by expert annotation. During external validation, the n-gram 

model demonstrated good discrimination between ARDS and non-ARDS patients (c-statistic 0.78; 

95% CI 0.72–0.84). The n-gram model had a higher discrimination for ARDS when compared to 

the standardized named entity model, although not statistically significant (c-statistic 0.78 vs 0.72, 

P=0.09). The most important features in the model had good face validity for ARDS 

characteristics but differences in frequencies did occur between hospital settings.

Conclusions: Our computable phenotype for ARDS had good discrimination in external 

validation and may be used by other health systems for case-identification. Discrepancies in 

feature representation are likely due to differences in characteristics of the patient cohorts.
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INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a common condition that is associated with 

multiple organ failure, severe hypoxemia, and a high rate of mortality.1 ARDS is 

traditionally hard to recognize because of complex and heterogenous phenotypic 

representations.2 In addition, ARDS recognition requires extensive effort to integrate 

information from laboratory results, radiology reports, respiratory data, and disease 

characteristics in a timely manner.3–6 Methods for automated ARDS detection that utilize a 

keyword-based search on chest radiograph reports have previously been developed;7,8 

however, they have not been updated to reflect current definitions of ARDS and do not 

include computed tomography (CT) reports. Additionally, these methods may not be 

applicable in other hospital settings due to variations in documentation, clinical practice, and 

patient case-mix. Prior work reported a high rate of false positives when these techniques 

were applied in an independent setting.9–11 The development of a generalizable model that 

can accurately identify ARDS onset irrespective of setting may facilitate research in the 

current digital era of electronic health record (EHR) data. Further, they may also guide 

clinical decision support for better and more timely recognition of ARDS at point of care.
12,13

In a recent study, we developed a novel supervised machine learning model based on natural 

language processing (NLP) of text from radiology reports to identify ARDS patients.14 The 

model was developed in a cohort of 533 medical, trauma, and burn patients that were 

admitted to Loyola University Medical Center, among which 138 (26%) developed ARDS.5 

The model demonstrated improved performance in ARDS identification compared to 

traditional methods (accuracy 77% vs. 67%, positive predictive value 55% vs. 42%) in a 

Loyola test cohort. Further, in a test dataset of 24-hour radiology reports within a qualifying 

PaO2/FiO2 ratio, the model had an area under the receiver operating characteristic curve 

(AUC) of 0.73 (95% CI: 0.61–0.85). However, the external applicability of the model was 

not measured because the model was derived and validated at a single center.

The aim of this study was to externally validate the Loyola NLP model for the prediction of 

ARDS in a separate, independent hospital setting. We hypothesized that the NLP model 

developed at Loyola will have good discrimination for ARDS in patients receiving 

mechanical ventilation at University of Chicago Medicine (UCM). We further hypothesized 

that utilizing standardized clinical terminology as input features would improve 

discrimination performance compared to using raw text-based features.

METHODS

Setting and study population

The analysis cohort at UCM comprised of mechanically ventilated intensive care unit (ICU) 

patients enrolled in three clinical trials (helmet ventilation ARDS,15 early mobilization,16 

and Dexmedetomidine versus Propofol for ICU sedation [ClinicalTrials.gov Identifier: 

NCT01059929]) and two observational studies (delirium assessments during daily 

awakening of sedation17 and assessment of biomarkers in shock [IRB18–1163]). A total of 

477 patient admissions were considered for the analytic cohort, out of which 338 had a 
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qualifying PO2/FiO2 ratio of less than 300.5 Further inclusion criteria were: (1) patients 

received mechanical ventilation (n=316); (2) the qualifying PO2/FiO2 ratio occurred within 

7 days of hospital admission (n=244); and (3) availability of chest radiology reports 

(radiograph and CTs) within 24 hours of qualifying PO2/FiO2 ratio (n=235) (Figure 1). The 

study was approved by the University of Chicago Institutional Review Board (IRB18–0119).

Data sources

All radiology reports within a 24-hour period of qualifying oxygenation criteria were 

extracted from the electronic health record (EHR; Epic, Verona, WI). Other variables such as 

patient demographics and discharge disposition were collected from administrative data. All 

data were extracted from the Clinical Research Data Warehouse maintained by the Center 

for Research Informatics (CRI) at the University of Chicago.

Analysis Plan

The NLP model that was trained at Loyola was applied to a test dataset of chest radiology 

reports at UCM to predict ARDS. The primary outcome of ARDS at UCM was established 

by expert review of chest radiographs and chest CT images obtained during the entire 

hospital encounter for each patient. Expert review was performed by a board-certified 

pulmonary and critical care medicine physician and ARDS researcher (BP) and was in 

accordance with the Berlin definition of ARDS.5 Baseline characteristics were presented as 

means with standard deviations for continuous variables, medians with interquartile ranges 

for variables that are not likely to be normally distributed, and proportions for categorical 

variables. Descriptive statistics were used to assess differences at baseline between ARDS 

and non-ARDS patients, with t-test for comparing means, nonparametric Wilcoxon rank 

sum test for comparing medians, and chi-square tests for comparing of two or more 

proportions.

We considered validation of two distinct Loyola NLP model configurations based on the 

processing of text within radiology reports from UCM patients. In the first method, we 

constructed a feature matrix from text within radiology reports based on counts of word n-

grams which are sequences of words of length n (e.g., unigram = “consolidation”; bigram = 

“bilateral consolidation”). We utilized unigram (n=1) representations and applied a term-

frequency, inverse document-frequency normalization similar to prior work.14 Additional 

filtering included removing stop words and character normalization including removal of 

punctuation. The unigram features from the ARDS computable phenotype that was 

previously derived and internally validated at Loyola14 was applied to the UCM external 

validation cohort. As a comparison, we implemented a keyword-based search model that 

utilized joint occurrence of exact and synonym matches of ‘bilateral’ and ‘opacities’, as 

determined by Azzam et al., to predict ARDS. Explicit mentions of ARDS and pulmonary 

edema were also included in accordance with the methods in Azzam et al.7

In the second method, clinical radiology reports from UCM were processed using the 

clinical Text Analysis and Knowledge Extraction System (cTAKES, http://

ctakes.apache.org) to map text to named entity mentions related to diseases/disorders, signs/

symptoms, findings, procedures, anatomical sites etc., that were derived from the Unified 
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Medical Language System (UMLS).18 Entity mentions were mapped to a concept unique 

identifier (CUI) followed by negation analyzation using the cTAKES negation module as 

illustrated in prior work.14 For instance, the term “consolidation” is a finding and mapped to 

the CUI “C0239027”, while the term “bilateral” is a spatial concept mapped to CUI 

“C0238767”. Other examples of CUI-based mappings for radiology notes are illustrated in a 

recent review.19 The CUI features from the Loyola model were also applied to the UCM 

external validation cohort. We created separate support vector machine classifiers for both 

the text-based and CUI-based features. The following parameters were applied from the 

trained model: (1) linear kernel; (2) regularization parameter with degree of tolerance (C)=1; 

(3) balanced class weight. Platt scaling was applied to convert the binary classifications into 

predicted probabilities for ARDS.20 Further details on derivation of both models are 

available in Afshar et al,14 and the model is available at https://github.com/

AfsharJoyceInfoLab/ARDS_Classifier.

Model performance

We utilized AUC as our main metric to assess the discrimination of both the CUI-based and 

the text-based models for identifying ARDS. AUC comparisons between the models were 

performed using the DeLong’s method.21 To further evaluate performance in a clinical 

context, we compared area under the precision-recall curve as well as sensitivity, specificity, 

positive predictive value, and negative predictive value measures of both models at various 

thresholds of predicted probabilities.

Best practices for reporting the validation of prediction models were followed using the 

Transparent Reporting of multivariable prediction model for Individual Prognosis or 

Diagnosis (TRIPOD) (checklist in Supplementary Table 1). All analyses were performed 

using Python Version 3.6.2 and R version 3.6.2 (R Project for Statistical Computing) with P 

< 0.05 indicating statistical significance.

RESULTS

Patient Characteristics

Among 235 patients in the UCM validation cohort, 110 (47%) had a confirmed diagnosis of 

ARDS. In comparison to patients without ARDS, patients with ARDS had a lower mean age 

(55 years vs. 60 years, P = 0.02), had a lesser proportion of black race (57% vs 72%, P = 

0.04), had a lower mean P/F ratio (138 vs. 190, P < 0.001), had a longer median hospital 

length of stay (14 days vs 9 days, P < 0.001), had a longer median ICU length of stay (8 

days vs. 4 days, P < 0.001), and had a greater proportion who died in-hospital (34% vs 18%, 

P = 0.007). There was no difference between the median number of qualifying chest 

radiograph reports (4 vs 4, P = 0.446), and the median number of qualifying CT reports (1 

vs. 0, P = 0.823) between patients with ARDS and those without ARDS. The most frequent 

diagnoses in the ARDS group were sepsis/infection (48%) and hepatitis/liver-failure (12%).

Model Performance

Figure 2 depicts the AUC for both text-based and CUI-based models. As observed, the text-

based model demonstrated a higher AUC in comparison to the CUI-based model, although 
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this difference was not statistically significant (0.78 [95% CI: 0.72–0.84] vs. 0.72 [95% CI: 

0.66–0.78], P=0.09). The text-based model also had a higher area under the precision-recall 

curve than the CUI-based model (0.73 vs 0.68), as illustrated in Supplementary Figure 1. 

The text-based model performance dropped when utilizing only text from the first radiology 

report (AUC: 0.65 [95% CI: 0.58–0.72]) as well as using only using CT reports (AUC 0.60 

[95% CI: 0.49–0.70]). Performance for the text-based model was equivalent between using 

both CT and chest radiograph reports and only using chest radiograph reports (AUC for both 

0.78 [95% CI 0.72–0.84]) vs. AUC using only chest radiograph 0.79 [95% CI, 0.73–0.85]).

Table 2 compares different prediction metrics (sensitivity, specificity, positive and negative 

predictive values) between the text-based and CUI-based models. At a specificity of 

approximately 88%, the text-based model showed higher sensitivity (42% vs 37%), higher 

positive predictive value (77% vs. 73%), and a higher negative predictive value (64% vs. 

62%) compared to the CUI-based model. Conversely, at a sensitivity of around 72%, the 

text-based model reported higher specificity (72% vs 57%), positive predictive value (69% 

vs 59%), and a higher negative predictive value (75% vs. 69%).

We further compared prediction metrics between the text-based model and the keyword rule-

based model. At a similar threshold for specificity (32% vs. 31%), the text-based model had 

a higher sensitivity (95% vs. 93%), similar positive predictive values (55 % vs 54%) and a 

higher negative (predictive value (87% vs 83%) than the keyword rule-based search model.

Figure 3 depicts the calibration plots across deciles of predicted probabilities corresponding 

to both the text-based and CUI-based models in the UCM cohort. The text-based model 

calibration (Figure 3a) had an intercept of 1.24 [95% CI: 0.97–1.52] and a slope of 1.31 

[95% CI: 0.90–1.72] (P <0.001 for H0: slope=1, intercept=0). The CUI-based model 

calibration (Figure 3b) had an intercept of 0.43 [95% CI: 0.14–0.73] and a slope of 0.72 

[95% CI: 0.65–0.78] (P=0.002 for H0: slope=1, intercept =0). The distribution of predicted 

probabilities for both models are illustrated in Supplementary Figure 2.

Supplementary Figure 4 highlights the frequencies of the top text (unigram) features, based 

on weights returned by SVM in the original machine learning model, for both the derivation 

(Loyola) and external validation (UCM) cohort. Comparisons are shown for the top 25 

positive features, i.e., features predictive of ARDS (Supplementary Figure 4a), and top 25 

negative features, i.e., features not predictive of ARDS (Supplementary Figure 4b). Most of 

the important unigram features are represented well in both UCM and Loyola, underlining 

the power of the model in utilizing features consistent across medical practice. Some 

important disparities in frequencies between sites for the positive features include 

“subclavian”, “diffuse”, and “lung”, which are over-represented in Loyola. Examples of 

differences in frequencies between sites for the negative features include “suspicious” that is 

over-represented in UCM and “consolidations” and “infectious” that are over-represented in 

Loyola.
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DISCUSSION

We externally validated two models that incorporate the information in radiology reports to 

identify patients with ARDS. The models developed at Loyola were: (a) text-based model 

that used textual features to identify ARDS, and (b) CUI-based model to account for 

semantic ambiguities and lexical variation by using UMLS-based named entity terms for 

identifying ARDS. In the validation cohort of 235 patients from UCM, the text-based model 

showed improved performance over the CUI-based model in discriminating ARDS from 

non-ARDS patients (although the improvement was not statistically significant), while the 

CUI-model demonstrated better calibration in an external setting.

Several studies have highlighted the challenges in reliable recognition of ARDS in patients.
11 For example, Sjoding et al. recently sought to measure agreement between physicians in 

ARDS diagnosis.22 In a cohort of 205 patients with hypoxic respiratory failure, the study 

reported moderate inter-clinician reliability (a kappa of 0.50), in diagnosing ARDS.22 Most 

of the disagreement was explained by different interpretations of chest imaging studies. A 

follow-up study suggested that clinician disagreement over-diagnosis could be further 

attributed to the wide spectrum of risk factors and measures of lung injury observed in 

ARDS patients.23 It is also well known that ARDS manifests with heterogenous phenotypes 

and etiologies that vary with cohort differences such as trauma versus medical patients.2,24 

These imperfect clinical criteria have likely contributed to the poor recognition of ARDS 

and a need for automated systems to augment recognition for providers.

While machine learning algorithms have been shown to improve detection of findings in 

radiology images and reports, the application for identification or resolution of ARDS is in 

its infancy.19,25 Rule-based models that focus on searching keywords within chest 

radiograph reports have been proposed for ARDS recognition.7 However, such models have 

shown high false positive rates in external validation.11 A recent study demonstrated that 

keyword-based sniffer algorithms are limited in utility because of poor specificity.10 This is 

presumably a result of variation in terminology within hospital systems.6 Models that 

incorporate NLP methods have been developed to identify patients with ARDS.9 However, 

similar to keyword-based models, these NLP models utilized older American European 

Consensus Conference definitions, did not incorporate CT reports, and only considered text 

and not standardized medical terminology.9,10 In recent work, we developed a unigram-

based linear SVM model using a mixed cohort of medical and surgical patients that was 

referenced against the Berlin definition and incorporated CT reports.14 The model achieved 

an AUC of 0.73 in internal validation using 24-hour radiology reports.

At UCM, we applied the same model using the same inclusion criteria. In our cohort of 235 

medical and surgical patients at UCM, the Loyola text-based model, consisting of both 

unigram and bigram features, identified ARDS patients with an AUC of 0.78. Similar model 

performance was achieved at Loyola thereby demonstrating generalizability to identify 

ARDS across multiple settings. The text-based model also demonstrated better sensitivity 

and specificity than the CUI-based model at various thresholds. The choice of an operational 

threshold is dependent on whether the model is to be used as an initial screening tool (with 

Mayampurath et al. Page 6

Crit Care Med. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



minimal false negative rates), or as a diagnostic tool to enable intervention (with minimal 

false positive rates to avoid alarm fatigue).

Analysis of the unigram features that were important predictors for ARDS revealed 

similarities between sites. Features with high frequency for predicting ARDS at both Loyola 

and UCM included “bilateral”, “opacities”, and “edema”. These are also hallmark 

morphologic features of ARDS and therefore offer good face validity for our model. 

Features such as “nodular”, “administered”, and “mildly” were negative predictors for 

ARDS and frequently encountered at both Loyola and UCM. The negative features are also 

indicative of non-pathologic chest imaging. Our results also show medical centers frequently 

use the same words to express radiographic characteristics of ARDS and non-ARDS 

patients.

Several reasons may exist for the text-based model outperforming the CUI-based model in 

detecting ARDS in the UCM cohort. For example, UMLS-derived CUI features are limited 

in accounting for synonyms for words such as ‘bilateral’, which are characteristic of ARDS 

and certain text words like ‘bibasilar’ do not have a CUI. This loss in granularity may have 

occurred when mapping the raw text to CUIs because the CUI model was derived on 1504 

unique CUI features compared to the raw text model with over 6000 unique features. The 

differences in case mix could be another factor. Approximately 60% of the Loyola cohort 

consisted of burn and trauma patients with inhalation injuries and venous access away from 

facial features,14 whereas the UCM cohort did not have any burn or trauma patients. 

Accordingly, terms such as “subclavian” and “bibasilar” have relatively lower representation 

in the UCM cohort. These results indicate that standardizing to medical vocabularies such as 

CUIs for detecting ARDS may not be necessary and variability in language is likely not 

contributing to the machine learning model’s ability to identify ARDS. It is possible that 

text-to-CUI mapping within cTAKES for ARDS-related terms may be suboptimal. The text-

based model also requires less pre-processing in comparison to the CUI-based model, 

thereby underlining a more pragmatic application.

Even though the text model performed well in detecting ARDS in an external setting, the 

calibration was not optimal, with the model under-predicting the case-rate of ARDS at all 

predicted probability thresholds. From the calibration plot, we can deduce that the 

calibration-at-large correspondence was poor and likely due to differences in case mix 

between Loyola and UCM. For example, the Loyola cohort is more likely to observe 

conditions that mimic ARDS symptoms such as lung contusions due to their trauma/burn 

patient population, as opposed to the medical ICU patients in the UCM cohort. Further, the 

prevalence rate at Loyola was about half of UCM’s prevalence rate. The calibration for the 

text model had a linear slope indicating that moderate shrinkage would be required for the 

model to be effective at UCM. This highlights the difficulty in operationalizing the text-

based model without further re-calibration to account for variations in patient population. 

Notably, the CUI model demonstrated better calibration than the text-based model. This 

suggests that the CUI terms provide better fit when there is heterogeneity in case-mix and 

ARDS prevalence rates across settings, but at the expense of lower discrimination for ARDS 

possibly due to loss in granularity of medical terminology. The very close match between 
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predicted probabilities and actual prevalence of ARDS indicate that the CUI-based model 

may be implemented in a hospital without need for re-calibration.

The choice between the two models is dependent on the goals within a hospital setting. If the 

objective is to utilize the model as a screening tool without implementing cTAKES, then the 

text-based model is proficient at ARDS discrimination. However, if the motivation is to 

acquire highly accurate estimates of ARDS risk without need for further calibration, then the 

CUI-based model is the better choice.

Our model provides a pragmatic approach at detecting ARDS that is feasible at point-of-

care. Once deployed, all radiology reports collected within 24 hours of a patient meeting the 

oxygenation criteria can be utilized by our model to determine risk of ARDS. Early 

recognition of patients at-risk for ARDS using our model can facilitate timely intervention 

and rescue. Some factors that need to be considered before deploying our model are as 

follows: (1) hospital infrastructure must facilitate feeding radiology reports to our machine 

learning model, (2) hospital infrastructure must facilitate interfacing with the model using 

Python to determine predicted probabilities for ARDS, and (3) a preliminary study must be 

conducted to account for possible calibration of the model to account for cohort differences, 

including prevalence.

Our study has several limitations. First, due to the retrospective study design and use of a 

single reviewer, there may be misclassification bias in our annotation of ARDS and non-

ARDS cases. In particular, cases with cardiogenic edema or opacities that are not typical of 

ARDS are important patient populations where ARDS determination is more difficult. 

Second, we utilized the Berlin definition of ARDS which has shown limited reproducibility 

among clinicians. However, we utilized both chest radiographs and CT scans as 

confirmation; therefore, providing a high degree of confidence in ARDS diagnosis. 

Additionally, our study is based on data from randomized controlled trials that represent a 

high prevalence of ARDS and excludes patients not meeting a time frame for oxygenation 

criteria and not having available radiology notes. Determining the impact of the model in a 

more general population across all intensive care unit patients is a priority for future studies. 

Finally, we only validated a linear-SVM model utilizing Platt scaling for approximating 

predicted probabilities.20,26 Other models, such as neural networks or models that 

incorporate structured data (images, vitals, laboratory results, etc.), information from all 

clinical notes and reports, or patient characteristics (underlying conditions, risk factors, etc.) 

may potentially lead to better identification of ARDS patients but also raises model 

complexity and hampers pragmatic application.

CONCLUSION

We externally validated a computable phenotype for ARDS using NLP in a separate health 

system with a different prevalence of ARDS as well as different types of patients. To our 

knowledge, this is the first study that externally validates an NLP-based model for ARDS 

identification in accordance with Berlin criteria. Our model may help providers and health 

systems to more comprehensively and expeditiously identify cases of ARDS, and may serve 

as a tool for recruitment into clinical trials for patients with ARDS.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Workflow indicating patient selection at University of Chicago Medicine
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Figure 2: 
ROC curves for both CUI- and Text-based models along with corresponding AUCs
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Figure 3: 
Calibration plots demonstrating alignment between predicted probability of ARDS from (a) 

the text-based model and (b) the CUI-based model against true rate of outcome in the 

validation cohort at UCM.
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Table 1:

Patient Characteristics of ARDS Validation Cohort

Patient Characteristics Patients with ARDS (n=110) Patients without ARDS (n=125) P-value

Age, years, mean (sd) 55 (16) 60 (16) 0.020

Female, n (%) 56 (51) 67 (54) 0.779

Race, n (%)

 Black 63 (57) 90 (72) 0.040

 White 40 (36) 27 (22)

 Other 7 (6) 8 (6)

Primary Diagnosis, n (%)

 Acute Respiratory Failure 15 (14) 32 (26) 0.001

 Cardiovascular Disease/ CHF 2 (2) 6 (5)

 Chronic Lung Disease 4 (4) 13 (11)

 Hepatitis/Liver Failure 13 (12) 6 (5)

 Kidney Failure 2 (2) 4 (3)

 Malignancy 10 (9) 8 (7)

 Sepsis/Infection 53 (48) 33 (27)

 Other 11 (10) 22 (18)

P/F ratio, mean (sd) 138 (68) 190 (71) <0.001

Number of qualifying X-ray reports, median (IQR) 4 (3–5) 4 (3–5) 0.446

Number of qualifying CT reports, median (IQR) 1 (0–1) 0 (0–1) 0.823

Length of hospital stay, days, median (IQR) 14 (8–19) 9 (5–15) <0.001

Length of ICU stay, days, median (IQR) 8 (5–11) 4 (3–8) <0.001

In-hospital deaths, n (%) 37 (34) 22 (18) 0.007
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Table 2:

Sensitivity, specificity, positive, and negative predictive values for Text and CUI-based models. Bolded lines 

are referenced in text.

Model Threshold Sensitivity Specificity Positive Predictive Value Negative Predictive Value

CUI-based model

≥ 0.1 98% 16% 50% 91%

≥ 0.2 88% 41% 57% 80%

≥ 0.3 71% 57% 59% 69%

≥ 0.4 57% 75% 66% 67%

≥ 0.5 46% 80% 67% 63%

≥ 0.6 37% 88% 73% 62%

≥ 0.7 24% 94% 79% 59%

≥ 0.8 8% 97% 75% 55%

≥ 0.9 1% 100% 100% 54%

Text-based model

≥ 0.1 95% 32% 55% 87%

≥ 0.2 72% 72% 69% 75%

≥ 0.3 42% 89% 77% 64%

≥ 0.4 19% 96% 81% 58%

≥ 0.5 8% 98% 75% 55%

≥ 0.6 3% 100% 100% 54%
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