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Persistent hepatocyte apoptosis 
promotes tumorigenesis from  
d​iet​hyl​nit​ros​ami​ne‑​tra​nsformed 
hepatocytes through increased 
oxidative stress, independent 
of compensatory liver regeneration
Yasutoshi Nozaki, Hayato Hikita, Satoshi Tanaka, Kenji Fukumoto, Makiko Urabe, 
Katsuhiko Sato, Yuta Myojin, Akira Doi, Kazuhiro Murai, Sadatsugu Sakane, Yoshinobu Saito, 
Takahiro Kodama, Ryotaro Sakamori, Tomohide Tatsumi & Tetsuo Takehara*

Hepatocellular carcinoma highly occurs in chronic hepatitis livers, where hepatocyte apoptosis is 
frequently detected. Apoptosis is a mechanism that eliminates mutated cells. Hepatocyte apoptosis 
induces compensatory liver regeneration, which is believed to contribute to tumor formation. 
Hepatocyte-specific Mcl-1 knockout mice (Mcl-1Δhep mice) developed persistent hepatocyte apoptosis 
and compensatory liver regeneration with increased oxidative stress in adulthood but had not 
yet developed hepatocyte apoptosis at the age of 2 weeks. When diethylnitrosamine (DEN) was 
administered to 2-week-old Mcl-1Δhep mice, multiple liver tumors were formed at 4 months, while wild-
type mice did not develop any tumors. These tumors contained the B-Raf V637E mutation, indicating 
that DEN-initiated tumorigenesis was promoted by persistent hepatocyte apoptosis. When N-acetyl-
L-cysteine was given from 6 weeks of age, DEN-administered Mcl-1Δhep mice had reduced oxidative 
stress and suppressed tumorigenesis in the liver but showed no changes in hepatocyte apoptosis 
or proliferation. In conclusion, enhanced tumor formation from DEN-transformed hepatocytes 
by persistent hepatocyte apoptosis is mediated by increased oxidative stress, independent of 
compensatory liver regeneration. For patients with livers harboring transformed cells, the control of 
oxidative stress may suppress hepatocarcinogenesis based on chronic liver injury.

Abbreviations
HCC	� Hepatocellular carcinoma
HBV	� Hepatitis B virus
HCV	� Hepatitis C virus
DEN	� Diethylnitrosamine
4-HNE	� 4-Hydroxy-2-nonenal
HO-1	� Heme oxygenase-1
NAC	� N-acetyl-L-cysteine

Hepatocellular carcinoma (HCC) is the major form of primary liver cancer and is the sixth most commonly 
diagnosed cancer and the fourth leading cause of cancer-related deaths owing to its poor 5-year survival rate1. 
Approximately 30–40% of HCC patients are suitable to undergo potential curative therapies (e.g., surgical resec-
tion, radiofrequency ablation (RFA), transarterial chemoembolization (TACE) and liver transplantation); how-
ever, the remaining 60–70% of patients are eligible for only palliative treatment2. Although some molecular 
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targeted drugs have been developed3,4, there is still a strong need for novel treatments or preventive strategies 
for HCC.

The strongest risk factor for HCC is chronic liver disease, a condition that is related to liver inflammation 
caused by exposure to one or several risk factors, including hepatitis B virus (HBV), hepatitis C virus (HCV), 
excessive consumption of alcohol, and metabolic syndrome5. Other cofactors, such as tobacco smoke inhalation 
and intake of aflatoxin B1, are well-characterized contributors to HCC6. Independent of the underlying etiol-
ogy, all chronic liver diseases exhibit persistent hepatocyte damage with serum alanine aminotransferase (ALT) 
elevation. Hepatocyte apoptosis is a type of cell death frequently observed in human chronic liver diseases7. In 
livers with chronic liver diseases, various factors, such as oxidative stress, ER stress, HCV core protein, HBx 
protein or genome integration by HBV, induce the malignant transformation of hepatocytes8–11. These trans-
formed cells should be eliminated by apoptosis to result in the suppression of tumor formation. On the other 
hand, hepatocyte apoptosis leads to compensatory liver regeneration, which is believed to contribute to tumor 
formation12. It is unclear whether hepatocyte apoptosis eventually suppresses or enhances tumor formation in 
livers harboring transformed cells.

Apoptosis was originally thought to have a tumor suppressor action to remove tumor cells, but since the 
enhancement of apoptosis in the liver causes compensatory liver regeneration, it was also related to the growth 
progression of tumor cells. Mcl-1 is an anti-apoptotic bcl-2 family proteins. In hepatocytes, Mcl-1 protects against 
mitochondrial pathway-induced apoptosis by inhibiting Bak/Bax activation through cooperation with Bcl-xL, 
another anti-apoptotic bcl-2 family proteins13. Hepatocyte-specific deficiency of Mcl-1 as well as Bcl-xL in mice 
results in persistent hepatocyte apoptosis by Bak/Bax activation in adulthood13–15. In the present study, we used 
hepatocyte-specific Mcl-1 knockout mice to evaluate the effect of hepatocyte apoptosis on tumor formation. Here, 
we show that the enhancement of oxidative stress associated with apoptosis may promote tumor progression 
independent of compensatory liver regeneration.

Results
DEN‑induced tumor formation is promoted in Mcl‑1Δhep mice.  To clarify the effect of hepatocyte 
apoptosis on tumor formation, we injected diethylnitrosamine (DEN) into two-week-old hepatocyte-specific 
Mcl-1 knockout mice (Mcl-1Δhep mice), which showed persistent hepatocyte apoptosis in adulthood13. Six 
months after DEN injection, 54% (7/13) of the DEN-injected wild-type mice developed microscopic liver 
tumors, and 15% (2/13) of them developed macroscopic liver tumors (Fig. 1B,C,D,E). All developed liver tumors 
had the B-Raf V637E mutation (Fig. 1H), which is characteristic of DEN-induced liver tumors16. In contrast, all 
(8/8) DEN-injected Mcl-1Δhep mice developed microscopic and macroscopic liver tumors (Fig. 1B,C,D,E). Most 
liver tumors also had the B-Raf V637E mutation (Fig. 1H). The liver/body weight ratio and maximum tumor 
size were significantly higher in the DEN-injected Mcl-1Δhep mice than in the DEN-injected wild-type mice 
(Fig. 1F,G). Four months after DEN injection, the incidence rates of microscopic and macroscopic liver tumors 
were also higher in the DEN-injected Mcl-1Δhep mice than in the DEN-injected wild-type mice (Fig. 1A,C,D). 
We previously reported that Mcl-1Δhep mice developed liver tumors at the age of 1 year17,18. Indeed, one of eleven 
phosphate buffered saline (PBS)-injected Mcl-1Δhep mice developed microscopic HCC 6 months after PBS injec-
tion (Fig. 1D). However, none of the liver tumors that developed in Mcl-1Δhep mice at the age of 1 year had the 
B-Raf V637E mutation (Fig. 1H).

Hepatocyte apoptosis and compensatory liver regeneration were observed in DEN‑induced 
Mcl‑1Δhep mice after 4 weeks of age.  Mcl-1 is an anti-apoptotic protein, and we previously reported that 
hepatocyte-specific Mcl-1 deficiency induced continuous hepatocyte apoptosis after 6 weeks of age, leading to 
the promotion of liver regeneration13,17. To elucidate the underlying mechanism of promoted tumor formation 
in DEN-treated Mcl-1Δhep mice, we first examined hepatocyte apoptosis, liver regeneration and DNA damage 
after 2 weeks of age when DEN was administered. We confirmed that the expression levels of Mcl-1 decreased 
in Mcl-1Δhep mice at the age of 2 weeks and that DEN treatment did not affect Mcl-1 expression (Fig. 2A). At 
the age of 2 weeks, there were no differences in the serum ALT levels, serum caspase-3/7 activity, or cleaved 
caspase-3-positive hepatocyte ratios between wild-type and Mcl-1Δhep mice regardless of DEN administration 
(Fig.  2B,C), indicating that hepatocyte apoptosis was not enhanced in Mcl-1Δhep mice. At the ages of 4 and 
6 weeks, the cleaved caspase-3-positive hepatocyte ratios, serum ALT levels and caspase-3/7 activity were higher 
in Mcl-1Δhep mice than in wild-type mice with or without DEN injection, indicating that Mcl-1 deficiency in 
hepatocytes induced persistent hepatocyte apoptosis after 4 weeks (Fig. 2B,C). There were no differences in the 
PCNA-positive hepatocyte ratios or Ki-67-positive hepatocyte rates between wild-type and Mcl-1Δhep mice with 
or without DEN injection at the age of 2 weeks, while they were higher at the age of 6 weeks (Fig. 2D,E).

Mcl‑1Δhep mice showed persistent DEN‑induced DNA damage with increased hepatocyte oxi‑
dative stress.  DEN is a potent alkylating agent that induces DNA damage upon conversion into alkyldiazo-
hydroxide by cytochrome P450. DEN injection (2 weeks after birth) increased the positive hepatocyte ratio of 
γ-H2AX, which is one of central component in DNA repair and exerts its actions at nascent DNA double strand 
break sites19, regardless of the Mcl-1 genotype (Fig. 3A). DNA double strand break are repaired by DNA repair 
system19. The DEN-induced high γ-H2AX positive cell rate decreased in the time course (Fig. 3A), consistent 
with a previous report20. At 6 weeks of age, the positive hepatocyte ratio of γ-H2AX in the Mcl-1Δhep mice was 
significantly higher than that in the wild-type mice (Fig. 3A).

Next, we evaluated oxidative stress in the liver, which was previously reported to increase in Mcl-1Δhep mouse 
livers in adulthood17. The 4-hydroxy-2-nonenal (4-HNE)-positive hepatocyte ratio, a marker of lipid peroxida-
tion, was significantly higher in the Mcl-1Δhep mice than in the wild-type mice (Fig. 3B). The expression levels 
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Figure 1.   Mcl-1 deficiency enhanced DEN-induced liver tumor development. At the age of 2 weeks, male Mcl-
1fl/fl and Mcl-1Δhep mice were intraperitonially injected with PBS or DEN (20 mg/kg BW), and their livers were 
harvested after 4 or 6 months. (A,B) Representative images of the livers of PBS- or DEN-treated male Mcl-1 fl/

fl and Mcl-1Δhep mice at the ages of 4 months (A) and 6 months (B). (C,D) Incidence rate of macroscopic (C) or 
microscopic (D) tumors at the age of 4 and 6 months (n ≥ 8 per group, chi-squared test). (E) Representative H&E 
staining images of liver sections from the DEN-treated male 6-month-old Mcl-1fl/fl and 6-month-old Mcl-1Δhep 
mice. The scale bar is 100 µm. (F) Ratio of liver weight to body weight (mean ± SEM, Mann–Whitney test). (G) 
Maximum tumor size (diameters by caliper) at the age of 6 months (mean ± SEM, Mann–Whitney test). (H) 
Mutation rate of B-Raf V637E in liver tumors (chi-squared test, *p < 0.05).
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Figure 2.   Mcl-1 deficiency resulted in increased hepatocyte apoptosis and subsequent compensatory liver 
regeneration after 4 weeks of age. Two-week-old male Mcl-1fl/fl and Mcl-1Δhep mice injected with PBS or DEN 
(20 mg/kg BW) were sacrificed at 2, 4 and 6 weeks of age. (A) Representative immunoblots of the indicated 
proteins in the liver lysates of two-week-old mice. Full-length blots/gels are presented in Supplementary Fig. 1. 
(B) Serum ALT levels and caspase 3/7 activity (n ≥ 8 per group, mean ± SEM, Mann–Whitney test). (C–E) 
Representative images of liver sections stained with anti-cleaved caspase-3 antibody (C), PCNA antibody, and 
Ki-67 antibody (E) (left) (n ≥ 4 per group). The scale bar is 50 µm. Each positive hepatocyte ratio was quantified 
and is shown as a percentage (right) (mean ± SEM, Mann–Whitney test, *p < 0.05).
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Figure 3.   Mcl-1 deficiency impaired DNA damage repair with elevation of oxidative stress. Two-week-old male 
Mcl-1fl/fl and Mcl-1Δhep mice injected with PBS or DEN (20 mg/kg BW) were sacrificed at 2, 4 and 6 weeks of 
age. (A,B) Representative images of liver sections stained with anti-γ-H2AX (A) or anti-4-HNE (B) antibody 
(left). The scale bar is 50 µm. γ-H2AX-positive and 4-HNE-positive hepatocyte ratios were quantified and are 
shown as percentages (right) (n ≥ 4 per group, mean ± SEM, Mann–Whitney test, *p < 0.05). (C) Representative 
immunoblots of HO-1 in the liver of six-week-old mice (left), and expression levels of HO-1 by real- time PCR 
in the liver of six-week-old mice (right) (n = 8 per group, mean ± SEM, Mann–Whitney test, *p < 0.05). Full-
length blots/gels are presented in Supplementary Fig. 2.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3363  | https://doi.org/10.1038/s41598-021-83082-7

www.nature.com/scientificreports/

of heme oxygenase-1 (HO-1), which is induced by oxidative stress though Nrf2 activation21, were significantly 
higher in DEN-treated the Mcl-1Δhep mice than in the DEN-treated wild-type mice (Fig. 3C).

NAC treatment suppresses tumor formation in DEN‑treated Mcl‑1Δhep mice with a reduction 
in DNA damage.  To examine the significance of oxidative stress on the tumor formation of DEN-injected 
mice, we administered N-acetyl-L-cysteine (NAC) in drinking water for 12 weeks to DEN-treated Mcl-1 KO 
mice from the age of 6 weeks, which was 4 weeks after DEN injection. Then, we explored the phenotype of these 
mice at the age of 18 weeks (Fig. 4A). While there was a significant decrease in the 4-HNE-positive cell ratio and 
the HO-1 expression levels in the NAC group (Fig. 4B, 4C), there were no significant differences in the serum 
caspase-3/7 activity between the vehicle group and the NAC group (Fig. 4D). The PCNA- and Ki-67-positive 
hepatocyte ratios also did not differ between the vehicle group and the NAC group (Fig. 4E). In contrast, NAC 
treatment significantly decreased the phospho-H2AX-positive hepatocyte ratio (Fig.  4B). While all 12 mice 
treated with vehicle developed macroscopic liver tumors, only 7 of 11 mice treated with NAC did (Fig. 4F,G). 
The frequency of multiple liver tumors and the maximum size of liver tumors were significantly decreased in the 
NAC group compared with the vehicle group (Fig. 4G).

Discussion
DEN is a well-known chemical carcinogen that induces liver tumors in mice. In the present study, we injected 
DEN into mice, which was followed by persistent hepatocyte apoptosis by the ablation of Mcl-1, an anti-apoptotic 
protein. We demonstrated that DEN-induced, B-Raf-driven, liver tumor formation is promoted by persistent 
hepatocyte apoptosis. The promotion was suppressed by oxidative stress reduction without any change in hepato-
cyte apoptosis or compensatory liver regeneration.

We previously reported that persistent hepatocyte apoptosis causes gene mutations via oxidative stress, 
which is related to liver tumor development18. In the present study, we demonstrated that persistent hepatocyte 
apoptosis-induced oxidative stress accelerates tumor formation in livers harboring transformed hepatocytes. 
Collectively, oxidative stress in livers with persistent hepatocyte apoptosis works at both points of hepatocyte 
transformation and accelerates tumor formation after acquiring transformation. Gentric et al22 reported that 
antioxidant treatment restored hepatocyte pathological polyploidization, so they concluded that oxidative stress 
promoted pathological polyploidization, which was suggested to be an early event in the hepatocarcinogenesis of 
nonalcoholic fatty liver disease (NAFLD). Maeda et al23 reported that hepatocyte-specific IkKβ deletion increased 
oxidative stress and enhanced DEN-induced liver tumor development. In Ma’s report24, ROS decreased CD4 + T 
lymphocytes, which promoted hepatocarcinogenesis in NAFLD livers. Oxidative stress promotes liver tumor 
formation through various pathways.

It has been reported that DEN-induced liver tumor formation in mice is suppressed by the deficiency of BH3-
only protein, Puma25, Bid26, or Bok27. In these reports, based on the results that Puma, Bid or Bok deficiency sup-
pressed both hepatocyte apoptosis and ompensatory liver regeneration after DEN injection, it is speculated that 
hepatocyte apoptosis or compensatory liver regeneration contributes to the acceleration of DEN-induced liver 
tumor formation. Consistent with these reports, in the present study, hepatocyte apoptosis efficiently promoted 
DEN-induced liver tumor formation. However, we clearly demonstrated that the promoting effect was attenu-
ated by antioxidants without any change in hepatocyte apoptosis or liver regeneration. Based on our findings, 
since hepatocyte apoptosis generates oxidative stress18, we speculate that Puma, Bid, and Bok deficiency reduces 
not only hepatocyte apoptosis but also oxidative stress in the livers, which may be involved in the suppressive 
mechanism of DEN-induced tumors in Puma-, Bid-, and Bok-deficient mice.

In clinical settings, it has been previously reported that serum ALT levels are a risk factor for HCC incidence 
in patients with various chronic liver diseases, including viral hepatitis28 and nonviral hepatitis29. Given that the 
presence of hepatocyte apoptosis is reflected as high serum ALT, one of the reasons high ALT is a risk for the 
development of HCC may be that persistent hepatocyte apoptosis accelerates the process from the appearance of 
transformed cells to tumor formation. From this viewpoint, it is important to aim to normalize ALT in patients 
with chronic liver disease. Recently, HCV has been eliminated with direct-acting antiviral (DAA) treatment in 
most cases30. However, some genetic or epigenetic changes have been detected in HCV-eliminated cirrhotic 
livers31,32. HBV DNA levels can be maintained at undetectable levels by nucleos(t)ide analog (NA) treatment33; 
however, inserted HBV DNA cannot be eliminated by NA treatment. In these patients already treated or undergo-
ing treatment for chronic viral hepatitis, from a carcinogenic point of view, although ALT elevation due to viral 
infection is controlled, attention should also be paid to ALT elevation due to other factors, such as metabolic 
dysfunction-associated fatty liver disease and alcoholic liver disease. For patients whose ALT elevation cannot 
be controlled, even if the patients’ hepatocytes already have a genetic mutation, treatments with antioxidants 
may be an option for delaying liver cancer development.

In conclusion, persistent hepatocyte apoptosis accelerates tumor formation in livers harboring DNA-damaged 
hepatocytes via an increase in oxidative stress, which is independent of compensatory liver regeneration. For 
these livers, apoptosis no longer plays a positive role in preventing liver tumors but works negatively.

Materials and methods
Mice.  Hepatocyte-specific Mcl-1 knockout mice (Mcl-1Δhep mice) were generated by crossing Mcl-1fl/fl with 
albumin-Cre transgenic mice, as described previously13. We injected a single intraperitoneal dose of DEN 
(Sigma-Aldrich) (20 mg/kg) into 2-week-old male mice to induce a gene alteration in hepatocytes. As a control 
for DEN injection, we injected PBS. In the NAC treatment group, hepatocyte-specific Mcl-1 KO mice were 
given NAC (Sigma-Aldrich) water at a dose of 1 g/L from 6 to 8 weeks or 18 weeks and then sacrificed. The 
mice were maintained in a specific pathogen-free facility and treated with humane care. All mouse experiments 
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Figure 4.   NAC administration significantly decreased liver tumor formation via the improvement of DNA damage in DEN-treated Mcl-1 
KO mice. Two-week-old male Mcl-1Δhep mice injected with DEN (20 mg/kg BW) were administered NAC in drinking water from the age 
of 6 weeks. (A) Schematic of the experimental design. (B) Representative images of liver sections stained with anti- γ-H2AX or anti-4-
HNE antibody (left). The scale bar is 100 µm. Each positive hepatocyte ratio was quantified and is shown as a percentage (right) (N = 7 or 
more per group, mean ± SEM, Mann–Whitney test). (C) Serum ALT levels and caspase-3/7 activity at the indicated ages (n = 8 or more per 
group, mean ± SEM, Mann–Whitney test, *p < 0.05). (D) Representative immunoblots of HO-1 in the liver (upper), and expression levels 
of HO-1 by real-time PCR in the liver (lower) (n = 8 per group, mean ± SEM, Mann–Whitney test, *p < 0.05). Full-length blots/gels are 
presented in Supplementary Fig. 3. (E) Representative images of liver sections stained with anti-PCNA or Ki-67 antibody (left). The scale 
bar is 50 µm. Each positive hepatocyte ratio was quantified and is shown as a percentage (right) (n ≥ 7 per group, mean ± SEM, Mann–
Whitney test). (F) Representative images of mice with the indicated genotype at the age of 18 weeks. (G) Incidence rate of tumors (chi-
squared test), incidence rate of tumors by tumor number (chi-squared test), maximum size of liver tumors (Mann–Whitney test, *p < 0.05).
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were approved by the Animal Care and Use Committee of Osaka University Medical School (30-015), and we 
performed all mouse experiments in accordance with the approved protocol. All experiments were carried out 
in compliance with the ARRIVE guideline, the relevant guidelines and regulations.

HE staining and immunohistochemistry.  Freshly dissected liver samples were fixed in 10% formalin 
for 24 h and embedded in paraffin. For hematoxylin and eosin (HE) staining, 4-µm tissue sections were stained 
with HE. For immunohistochemistry, cleaved caspase-3, γ-H2AX, 4-HNE, PCNA and Ki-67 were labeled in 
paraffin-embedded liver sections using an anti-cleaved caspase-3 antibody, anti-PCNA antibody, anti-Ki-67 
antibody (Cell Signaling Technology), and anti-4-HNE antibody (Abcam), respectively. The detection of immu-
nolabeled proteins was performed using an avidin–biotin complex with the Vectastain ABC Kit (Vector Labora-
tories). Four visual fields of a magnified image (× 20 or × 40) were randomly selected for each immune-stained 
section, and the positive cell ratio was calculated.

Serum ALT levels and caspase‑3/7 activity measurement.  For measurement of serum ALT levels 
and caspase-3/7 activity, blood was collected from the inferior vena cava of the mice. After centrifugation, serum 
was stored at − 20 °C until use. Serum ALT levels were measured at the Oriental Kobo Life Science Laboratory 
(Nagahama, Japan). Serum caspase-3/7 activity was measured using a luminescent substrate assay for caspase-3 
and caspase-7 (Caspase-Glo assay, Promega, Tokyo, Japan).

Detection of B‑Raf mutation.  To detect B-Raf mutations in liver tumors, we performed direct sequenc-
ing as previously published. In brief, DNA was extracted from frozen materials with the DNeasy Blood and Tis-
sue Kit (Qiagen). The region that included the B-Raf codon 637 was amplified by PCR using appropriate prim-
ers (forward: 5′-gacctcacggtaaaaataggtgac-3′; reverse: 5′-gcaattatgcctggcttacaa-3′) and Platinum PCR SuperMix 
High Fidelity (Invitrogen). The PCR products were purified with the Genomic DNA Purification Kit (Promega) 
and sequenced using the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific) on an Applied 
Biosystems 3730 DNA Analyzer (Thermo Fisher Scientific).

Western blots.  Murine liver lysates were prepared for Western blots as previously described34. We used 
following primary antibodies for detection of the specific proteins: Mcl-1 (#5453, Cell Signaling Technology), 
Bcl-xL (#2764, Cell Signaling Technology), Bak (#3814, Cell Signaling Technology), Bax (#2772, Cell Signaling 
Technology), HO-1(#43966, Cell Signaling Technology) and beta actin (A5316, Sigma-Aldrich). We detected 
the signals using Fusion Solo S (Vilber Lourmat, Collegien, France).

Real‑time PCR.  Complementary DNA form murine livers was prepared as previously described34.
Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) were performed using 

Thunderbird qPCR master mix (Toyobo, Osaka, Japan) and TaqMan probes (Thermo Fisher Scientific). We 
used following probes; HO-1 (Mm00516005_m1) and Actb (Mm02619580_g1). HO-1 expression levels were 
normalized to beta-actin expression levels.

Statistical analysis.  Statistical analysis was performed using JMP software. The data are shown as the 
mean ± standard error of the mean unless otherwise indicated. Comparisons of continuous variables between 
wild-type mice and Mcl-1Δhep mice were performed using the Mann–Whitney test. Comparisons of noncontinu-
ous variables between wild-type mice and Mcl-1Δhep mice were performed using the chi-squared test. P < 0.05 was 
considered significant.
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