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Abstract
Neutrophils are predominant immune cells that protect the human body against infections by deploying sophisticated anti-
microbial strategies including phagocytosis of bacteria and neutrophil extracellular trap (NET) formation. Here, we provide 
an overview of the mechanisms by which neutrophils kill exogenous pathogens before we focus on one particular weapon 
in their arsenal: the generation of the oxidizing hypohalous acids HOCl, HOBr and HOSCN during the so-called oxidative 
burst by the enzyme myeloperoxidase. We look at the effects of these hypohalous acids on biological systems in general 
and proteins in particular and turn our attention to bacterial strategies to survive HOCl stress. HOCl is a strong inducer of 
protein aggregation, which bacteria can counteract by chaperone-like holdases that bind unfolding proteins without the need 
for energy in the form of ATP. These chaperones are activated by HOCl through thiol oxidation (Hsp33) or N-chlorination 
of basic amino acid side-chains (RidA and CnoX) and contribute to bacterial survival during HOCl stress. However, neu-
trophil-generated hypohalous acids also affect the host system. Recent studies have shown that plasma proteins act not only 
as sinks for HOCl, but get actively transformed into modulators of the cellular immune response through N-chlorination. 
N-chlorinated serum albumin can prevent aggregation of proteins, stimulate immune cells, and act as a pro-survival factor 
for immune cells in the presence of cytotoxic antigens. Finally, we take a look at the emerging role of HOCl as a potential 
signaling molecule, particularly its role in neutrophil extracellular trap formation.
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Introduction

The immune system protects the body against infection and 
diseases. Neutrophils are the dominant leukocyte in the 
blood and a key component of the innate immune response. 
In response to injury or infection, neutrophils are the first 
immune cells recruited to the affected tissue, where they 
deploy a variety of highly microbicidal weapons against a 
broad range of pathogens. Once arrived, neutrophils actively 
phagocytize microbes or form neutrophil extracellular traps 
(NETs) to bind and eliminate exogenous invaders (recently 
reviewed in [1, 2]).

Pathogen killing is initiated by the assembly of the 
superoxide (O2·−)-generating NADPH oxidase complex 

at the phagosomal membrane for the production of reac-
tive oxygen/nitrogen species (ROS/RNS) and concomitant 
delivery of the heme enzyme myeloperoxidase (MPO) and 
other antimicrobial enzymes into the phagosome. This pro-
cess is called “respiratory burst” or “oxidative burst” and 
comprises a central component of the neutrophil’s arsenal 
against pathogens (extensively reviewed in [3–5]).

MPO, once released into phagosomal compartments, cat-
alyzes the production of the hypohalous acids hypochlorous 
acid (HOCl), hypobromous acid (HOBr) and hypothiocy-
anous acid (HOSCN) from hydrogen peroxide (H2O2) and 
the respective halide or pseudohalide ions [6–8]. HOCl and 
HOBr are kinetically two of the most reactive species gen-
erated in vivo, both exhibiting strong oxidizing and halo-
genating abilities [9]. As their reactivity with biomolecules 
is orders of magnitude higher than that of peroxynitrite 
(ONOO–) and H2O2, these acids appear indispensable for 
fulfilling the primary function of neutrophils in host immune 
defense: to protect the body against infectious diseases.
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Due to their high reactivity toward a variety of bio-
logical molecules, HOCl and HOBr effectively contribute 
to the killing of phagocytized pathogens by causing oxi-
dative damage to their proteins [10], DNA [11, 12], and 
lipids [13]. Although these oxidants can principally target 
all components of a pathogen, the major mechanism of 
killing, particularly by HOCl, is thought to be through 
the oxidative unfolding and aggregation of their proteins 
[10]. Oxidative stress-induced protein aggregation results 
in the loss of function of numerous proteins. Thus, if left 
unchecked, it can lead to cytotoxicity and ultimately cell 
death.

During their evolution bacteria, and other pathogens 
developed different strategies to avoid the detrimental effects 
of accumulating misfolded proteins and maintain a func-
tional proteome during oxidative stress. It is well-established 
that ATP-dependent molecular chaperones (e.g. GroEL/
GroES or DnaK/DnaJ/GrpE system) can actively assist in 
correct protein folding and protect misfolded proteins from 
aggregation, while proteases degrade stably misfolded and 
aggregated protein species via ATP-dependent mechanisms 
(recently reviewed in [14]). Under severe hypohalite-induced 
oxidative stress, however, these defenses seem to be inca-
pacitated and alternative strategies are needed. Evidence 
emerging during the last few years shows that specific 
redox-regulated proteins play a pivotal role in protecting 
bacterial cells from neutrophil-derived oxidative stress. To 
date a number of proteins have been identified, which, upon 
exposure to oxidizing agents, particularly HOCl, turn into 
general, ATP-independent and highly active chaperone-like 
holdases capable of protecting essential proteins against 
stress-induced aggregation [10, 15, 16]. In these (known) 
cases, the HOCl-induced repurposing of proteins is trig-
gered by oxidation of their thiol residues or N-halogenation 
of their basic amino acids. The temporary employment of 
additional chaperones in response to oxidative stress pro-
vides an efficient mechanism to specifically counteract and 
resist the strong oxidizing properties of MPO-derived hypo-
halous acids during infection or inflammation.

The effects of these MPO-derived oxidants, however, are 
not in any way selective for the pathogens but act rather 
nonspecific; therefore, their generation is not without risk to 
the host. Elevated levels of MPO and excessive generation of 
its products, particularly at sites of acute inflammation, can 
evidentially lead to undesired, collateral host tissue damage 
(recently reviewed in [17–21]). During inflammatory pro-
cesses, hypohalous acid production by MPO is accompanied 
by additional stresses, such as increased temperature (fever) 
and lowered pH, which are themselves capable of inducing 
protein misfolding. It is, therefore, little surprise that the 
inflammatory nature of a variety of diseases, e.g. cardio-
vascular disease, neurodegenerative disorders, rheumatoid 
arthritis, chronic kidney disease, and some cancers [17–23], 

leads to a pathology associated with accumulation of mis-
folded proteins in the affected tissue.

Due to their high abundance in blood and interstitial fluid, 
human serum albumin (HSA) and other plasma proteins 
were found to effectively scavenge hypohalous acids in the 
vicinity of infection or inflammation [24–30]. Exposure to 
high concentrations of these oxidants, particularly HOCl, 
usually leads to various modifications of the plasma pro-
teins. The resulting products, generally termed “advanced 
oxidation protein products” (AOPPs), have, therefore, been 
acknowledged as in vivo markers of chronic inflammation 
[23].

Plasma proteins, however, are no longer considered just 
passive sinks for hypohalous acids. The role of AOPPs dur-
ing infectious and inflammatory processes has been an active 
area of research for many years and they appear to be both 
protective and detrimental in their effects [22, 31–37]. For 
example, we and others found that HOCl-modified plasma 
proteins exhibit chaperone-like function and prevent aggre-
gation of other proteins and accelerate the host immune 
response by activating immune cells at sites of infection 
[36–39]. Although the latter effect may allow for faster 
pathogen clearance due to increased ROS/RNS generation, 
such a positive feedback loop could also ultimately lead to 
chronic inflammation.

In this review, we will illustrate recent advances in our 
understanding of the role of neutrophils during inflammation 
and infection and will provide an overview of the mecha-
nisms by which neutrophils kill exogenous pathogens before 
we focus on the antimicrobial and inflammatory effects of 
hypohalous acids produced by neutrophils in infected or 
inflamed tissues. We discuss the role of hypohalous acid-
induced modifications on the function of pathogen and host 
proteins and describe, how some of these protein modifi-
cations confer survival advantages to bacteria while others 
modulate the host immune response to infection or inflam-
mation. Finally, we review recent developments in the under-
standing of the role of hypohalous acids, and particularly 
HOCl, as potential cellular signaling molecules and their 
role in a range of physiological processes.

Neutrophil killing strategies 
against pathogens

Neutrophil life cycle

So-called neutrophils, or polymorphonuclear leukocytes 
(PMNs), are the predominant type of leukocytes in the 
blood, comprising ~ 50–70% of the total white blood cells 
in most mammals. Around 1011 neutrophils are produced 
daily in the bone marrow from hematopoietic stem cells in 
a process called “granulopoiesis”. Neutrophil progenitors 
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proliferate and continue to develop until recruited into the 
blood [40]. Neutrophil homeostasis in the bone marrow is 
maintained through a tight regulation of their production, 
release into blood and clearance from circulation (recently 
reviewed in [4, 41]). For decades, neutrophils have been 
regarded as short-lived cells with a circulating lifespan of 
6–8 h before they return to the bone marrow for clearance 
[42]. More recent studies, however, found that under homeo-
static conditions, neutrophils may circulate in human blood 
for 5.4 days, far longer than previously thought [43, 44].

Generally, neutrophil life span within tissues is thought to 
be two- to threefold longer than in circulation. Particularly 
at sites of inflammation, neutrophils have been reported to 
survive for up to 7 days due to the inhibition of cell apopto-
sis, an effect triggered by various inflammatory stimuli such 
as cytokines, pathogen-associated and damage-associated 
molecular pattern molecules (PAMPs and DAMPs) or envi-
ronmental factors [45–48]. Indeed, an abnormally prolonged 
neutrophil life span can be observed in patients with chronic 
inflammatory diseases, thereby increasing disease severity 
through the excessive generation of antimicrobial products 
which may be injurious to host tissues [49, 50]. To prevent 
excessive tissue damage, neutrophils must, therefore, be 
quickly removed from inflammatory sites. Once they have 
completed their functions and reach the end of their life 
span, neutrophils undergo apoptosis and then are eliminated 
locally by resident macrophages and dendritic cells through 
the process of phagocytosis [42, 51]. Senescent neutrophils 
in circulation, however, were found to return to the bone 
marrow for final clearance upon upregulating expression of 
the cytokine receptor CXCR4, a central regulator of neutro-
phil trafficking under homeostatic conditions [52].

Neutrophil recruitment to sites of infection 
and inflammation

Neutrophil activation and migration across endothelium in 
response to pathogen invasion or tissue injury have been 
comprehensively reviewed recently [53–55]. Briefly, cir-
culating neutrophils patrol the blood continuously, until 
they encounter pathogen-derived chemoattractants and 
inflammatory signals released by immune cells and non-
hematopoietic epithelial and endothelial cells in response 
to tissue injury or infection. The first signals that lead to 
neutrophil recruitment to injured tissues are thought to be 
DAMPs secreted by damaged and necrotic cells [56, 57]. 
DAMPs can act as chemoattractants or induce the produc-
tion of several proinflammatory cytokines such as IL-1β 
and TNF-α by innate immune cells, primarily macrophages 
and dendritic cells in surrounding tissues. These cytokines 
then create a chemokine gradient, through which neutrophils 
migrate to the affected tissue. In the setting of microbial 
infection, PAMPs derived from the invading microbes are 

recognized by pattern recognition receptors (PRRs) present 
in the cytosol or at the cell surface of macrophages and other 
innate immune cells. Upon PAMP recognition, PRRs trigger 
a myriad of intracellular signaling cascades ultimately lead-
ing to the expression of a broad range of proinflammatory 
molecules [55, 58].

These inflammatory signals attract more circulating neu-
trophils and activate vascular endothelial cells near the site 
of infection to express cellular adhesion molecules, includ-
ing selectins, on their surface. These molecules cause the 
neutrophils to slow down, tether to and roll along the luminal 
surface of the endothelium [59–61]. With further stimula-
tion, neutrophils adhere firmly to the vessel wall and spread 
on the endothelial cells [62, 63]. During inflammation, the 
endothelial barrier is compromised due to the opening of 
intercellular gaps, leading to an increased vascular per-
meability which allows leukocytes and plasma proteins to 
enter tissues [64]. Once they pass through the gaps between 
endothelial cells in a process known as diapedesis, neutro-
phils migrate up the chemoattractant gradient to the site of 
injury or infection [54]. The neutrophil-derived chemokines 
also lead to the recruitment of other types of immune cells, 
such as monocytes, macrophages and dendritic cells [65]. 
These other cells also produce chemokines that promote 
neutrophil survival and recruitment, thus providing a posi-
tive feedback loop that sustains the inflammatory response 
[42, 66, 67].

Several human pathogens, however, have developed an 
impressive range of strategies to prevent neutrophil recruit-
ment and activation. Staphylococcus aureus or Streptococ-
cus species, for instance, secrete virulence factors, which 
can inhibit neutrophil recruitment by blocking neutrophil 
receptors responsible for binding chemokines, DAMPs or 
PAMPs [68–70], or by degrading chemotactic factors [70], 
such as IL-8, which is released by epithelial and endothelial 
cells to promote neutrophil recruitment [71]. For a detailed 
review of these evasion mechanisms, please refer to [72–74].

Neutrophil arsenal against pathogens: phagocytosis 
and the “respiratory burst”

When neutrophils are released into circulation, they are 
already fully equipped with an assortment of weapons 
against a wide range of infectious pathogens including bac-
teria, fungi and protozoan parasites [75]. If microorganisms 
manage to pass through the physical and chemical barriers 
provided by the skin, mucous membranes and endothelia 
throughout the human body, neutrophils become rapidly 
attracted to the site of infection. Once arrived, they kill 
pathogens through phagocytosis, production of ROS/RNS 
and the formation of NETs (Fig. 1).

Phagocytosis is a specific form of receptor-mediated 
endocytosis wherein neutrophils and other phagocytic 
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immune cells engulf pathogens into a vacuole within the 
cell, the phagosome [76]. This process is most efficient in 
the presence of opsonins such as immunoglobulins (e.g. 
IgG) and complement factors, the predominant opsonins in 
serum.

Recognition of microbial pathogens is mediated by a 
diverse set of receptors present on the neutrophil surface, 
including PRRs (e.g. TLRs), G-protein-coupled receptors 
(GPCRs), and opsonic receptors (e.g. FcγR and comple-
ment receptors). These receptors recognize PAMPs, such 
as bacterial DNA or lipopolysaccharides (LPS), and host 
proteins that were used to opsonize the pathogen (e.g. IgG 
and complement).

When neutrophils ingest pathogenic invaders into phago-
somes, they undergo a burst of oxygen consumption, also 
known as the “respiratory burst” (recently reviewed in [77]). 
This coincides with the release of a variety of antimicro-
bial effectors, including proteases, nucleases, antimicro-
bial peptides, lysozyme, and MPO, into the phagosomal 
lumen [78] (Fig. 1). The latter process, collectively termed 

phagosome “maturation”, involves a sequence of strictly 
coordinated membrane fusion and fission events between 
the phagosome and compartments of the endo/lysosomal 
network [79, 80] and ultimately culminates with the forma-
tion of the phagolysosome, a highly degradative organelle 
equipped with potent microbicidal properties [81, 82]. It has 
also been proposed that the neutrophil phagosome undergoes 
a progressive acidification during maturation similar to that 
of other phagocytes [83]. These measurements, however, 
utilized HOCl-reactive fluorescent dyes so that interference 
from MPO-catalyzed reactions cannot be excluded. More 
recent studies revealed that pH of neutrophil phagosomes 
remains rather unchanged over the duration of the respira-
tory burst or can even initially rise [84]. This defective acidi-
fication of neutrophil phagosomes is largely attributed to the 
reduced insertion of proton-pumping vacuolar-type (V-type) 
ATPases into the phagosomal membrane in the presence 
of an active NADPH oxidase [84] and the consumption of 
protons during dismutation of NADPH oxidase-derived 
superoxide, since the lack of NADPH oxidase seen in CGD 

Fig. 1   Neutrophil strategies to kill invading pathogens. Neutrophils 
are equipped with multiple weapons against pathogens, such as bac-
teria (light green) including uptake into phagosomes (phagocytosis). 
Subsequently, pathogens are degraded in the phagosome by several 
means. These include reactive oxygen and nitrogen species (ROS/
RNS) generated by NADPH oxidase (NOX2) and inducible nitric 
oxide synthase (iNOS) as well as the release of antimicrobial effec-
tors [i.e. neutrophil elastase (NE; orange), myeloperoxidase (MPO; 
blue), lysozyme and other degradative enzymes (brown)] into the 
phagosome (degranulation), and the formation of neutrophil extracel-
lular traps (NETs). The NETs themselves are associated with antimi-

crobial proteins including histones, and the aforementioned NE and 
MPO. Inside the phagolysosome MPO reacts with H2O2 to form 
Compound I, the most oxidatively reactive state of MPO. Compound 
I can then react with an electron-rich organic substrate (RH) to form 
radical species (R·) and Compound II. Compound II subsequently 
reacts with another substrate (RH) to return to the native state of the 
MPO, completing the peroxidation cycle. But much more impor-
tantly, in the halogenation cycle (pseudo-)halide ions (X−) such as 
chloride (Cl−), bromide (Br−) or thiocyanate (SCN−) are oxidized by 
Compound I to yield the respective hypohalous acids (HOX), HOCl, 
HOBr or HOSCN, directly regenerating native MPO
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patients or chemical inhibition of this enzyme led to a rapid 
and extensive fall in pH [85].

The increased utilization of oxygen by neutrophils during 
or following phagocytosis is mostly related to the assem-
bly and activation of the NADPH oxidase (NOX2) in the 
plasma membrane, but more importantly in the phagosomal 
membrane (which is derived from the plasma membrane) 
[77]. Neutrophil NADPH oxidase, also commonly referred 
to as the phagocyte oxidase (Phox or NOX2) complex, is 
a multi-subunit enzyme comprising the cytosolic compo-
nents p40phox, p47phox, p67phox and the membrane com-
ponent flavocytochrome b558, a complex of gp91phox and 
p22phox. Upon stimulation, p47phox and p67phox form a 
complex that translocates to the plasma and/or phagosomal 
membrane, where it associates with flavocytochrome b558 
to assemble the active oxidase. Activation also requires the 
participation of the small G-protein Rac 1/2 and Rap 1A. 
Aside from microorganisms, other stimuli such as phorbol-
12-myristate-13-acetate (PMA) can also promote NOX2 
assembly [86].

During phagocytosis, activation of the NADPH oxidase 
was found to occur mainly at the phagosomal membrane 
[87]. Active NOX2 moves electrons from cytosolic NADPH 
to oxygen to form highly unstable superoxide radical ani-
ons (O2·−) in the phagosomal lumen [88] (Fig. 1). Although 
O2·− itself is poorly reactive with most biological substrates 
in aqueous environments [89], it serves as a progenitor for 
a number of other, more microbicidal ROS and plays a 
critical role in mediating a wide range of cellular signaling 
processes. Dismutation of O2·− (either spontaneously or, at 
a significantly faster rate, through a reaction catalyzed by 
MPO itself [90]) gives rise to oxygen and H2O2, the lat-
ter being a precursor of one of the most powerful naturally 
occurring oxidants, the hydroxyl radical (·OH). However, 
in the phagosomal space, the H2O2 is mostly consumed by 
MPO for the oxidation of (pseudo-)halide ions (i.e. Cl−, 
Br−, SCN−) to the corresponding highly reactive hypoh-
alous acids (HOCl, HOBr, HOSCN) (see below). Moreo-
ver, O2·− can be protonated in the low pH of the phagocytic 
vacuole to form the more oxidizing hydroperoxyl radical 
HO2· (E°′ = 1.06 V for HO2· and E°′ = 0.94 V for O2·−) [91, 
92]. In addition, O2·− can react with equimolar concentra-
tions of nitric oxide, synthesized by inducible nitric oxide 
synthase (iNOS), to produce the reactive nitrogen species 
peroxynitrite (OONO−). Once protonated, peroxynitrous 
acid (HOONO) can, albeit to a limited extent [93, 94], fur-
ther decompose to ·OH and nitrogen dioxide (·NO2), both 
of which are more reactive than their common precursor 
[95–97]. The importance of O2·− production for an effective 
antimicrobial and antifungal defense is best illustrated in 
chronic granulomatous disease (CGD), a primary immuno-
deficiency, where the lack of a functional NADPH oxidase 
results in recurrent infections and uncontrolled inflammatory 

responses due to the inability of neutrophils to generate oxi-
dative metabolites [98–101].

Throughout the last two decades, there has been consider-
able debate about the role of ROS in eliminating pathogens 
by neutrophils [102, 103]. It is still controversial if ROS 
or microbicidal peptides and proteolytic enzymes are the 
more important components of the neutrophil antimicrobial 
arsenal [104, 105].

From the oxidative killing defect seen in CGD phagocytic 
cells, there is no doubt that ROS play an important role, but 
the actual mechanisms by which ROS damage pathogenic 
invaders in the phagosome are poorly understood [100]. 
Several lines of evidence suggest that ROS can contribute 
both directly and indirectly to killing by causing oxidative 
damage to various biomolecules or by stimulating patho-
gen elimination through various non-oxidative mechanisms 
[106].

The indirect role of ROS in promoting microbe clearance 
has been extensively reviewed [103] with a recent update 
of the literature [106, 107]. Briefly, ROS are produced not 
only in phagosomes during the phagocyte respiratory burst 
but also in other cell compartments, such as mitochondria 
or peroxisomes, as intermediaries in a number of different 
signal transduction pathways in the innate immune system 
[108], e.g. leukocyte PRR signaling. In addition, it has 
been demonstrated that ROS are also actively involved in 
the formation of NETs [109], autophagy [110–112], chem-
oattraction and activation of the inflammasome [113–115], 
programmed cell death of infected reservoirs [116, 117], 
antigen presentation, T-helper cell activation and lympho-
cyte proliferation [118–121]. Moreover, there is evidence 
suggesting that NADPH oxidase-dependent generation of 
ROS also plays a critical role in microbe killing by activating 
antimicrobial serine proteases and facilitating their release 
from the granules into the phagosome [105]. The lack of 
particular proteolytic enzymes has been reported to drasti-
cally impair both antibacterial and antifungal host defense, 
leading some investigators to postulate that activation of 
proteases is the major mechanism by which NADPH oxi-
dase mediates host protection against infections [105, 122, 
123]. It is still not fully understood how these various oxida-
tive and non-oxidative mechanisms interconnect and there 
is conflicting data about which parts are just coincidental, 
which are necessary, and which are sufficient by themselves 
for effective pathogen elimination.

Neutrophil extracellular traps (NETs)

NADPH oxidase-derived oxidants are thought to medi-
ate activation of other neutrophil killing strategies against 
pathogens. It is commonly accepted that ROS are essential 
to initiate the formation of extracellular traps by activated 
neutrophils during infection and inflammation [124]. NETs 
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represent a powerful and specific tool that allows neutrophils 
to capture and effectively destroy a broad range of patho-
gens while minimizing damage to host tissue [125]. They are 
characterized as extracellular fibrous structures composed of 
decondensed intracellular DNA associated with antimicro-
bial proteins such as neutrophil elastase (NE), lactoferrin, 
MPO, calprotectin and cathepsin G, and histones and some 
other cytoplasmic proteins [109, 126] (Fig. 1). All of these 
proteins can potentially kill or at least inhibit microorgan-
isms by degrading virulence factors or disrupting their mem-
brane integrity [127, 128]. Once released, NETs maintain a 
high concentration of these antimicrobial factors directly at 
the site of infection and support pathogen clearance. This 
is of particular importance, as in some cases neutrophils 
will no longer be able to produce ROS upon NET release. 
One enzyme that is thought to substantially contribute to 
NET antimicrobial activity is MPO. In vitro studies using 
isolated NETs revealed that MPO is present on NETs and 
exhibits significant activity upon addition of H2O2 [129, 
130]. Assuming that there is enough extracellular H2O2 
present at sites of infection, NET-bound MPO could gener-
ate reactive hypohalous acids in the immediate vicinity to 
trapped pathogens and thus effect their killing. However, 
direct experimental evidence that this, in fact, occurs in vivo 
is still lacking. The role of MPO and MPO-derived oxidants, 
particularly HOCl, in NET-mediated microbial killing will 
be discussed in detail later. Besides these antimicrobial prop-
erties, NETs were found to bind and trap microorganisms to 
reduce proliferation and prevent further spread of the patho-
gen in the body [109].

Since their discovery more than 15 years ago by Brink-
mann and colleagues [109, 131], NETs have been the subject 
of extensive research in the field of innate immunity, but the 
molecular mechanisms behind NET formation are still not 
understood in detail.

First, NET formation was considered a particular form 
of cell death (“NETosis”) and thus, to be suicidal to neu-
trophils. This view, however, has been challenged by recent 
reports, which found that some neutrophils can survive this 
event and remain structurally intact, suggesting two mecha-
nisms of NETosis: suicidal and vital [125, 131].

Suicidal and vital NETosis differ in their activation path-
way and the nature of the stimulation. The mechanism of sui-
cidal NETosis was found to be dependent on the activity of 
NADPH oxidase, NE, and MPO. It can be triggered by PMA 
[124, 132], IL-8, LPS [133] or different pathogens such as 
Candida albicans [134, 135]. In contrast, vital NETosis usu-
ally occurs independently of NADPH oxidase activity and 
is induced by some bacteria including Escherichia coli and 
Staphylococcus aureus, and bacteria-specific molecular pat-
terns recognized by host PRRs, such as TLRs [132, 136]. 
Although both pathways have not been fully characterized 
yet, they appear to share similarities regarding the sequence 

of events leading to NET formation. In general, all forms 
of NETosis require intracellular membrane reorganization 
that allows the association of antimicrobial proteins from 
intracytoplasmic granules and chromatin to create NETs. 
Azurophilic granule proteins such as NE and MPO have to 
translocate to the nucleus to decondensate chromatin which 
then diffuses into the cytoplasm where additional antimi-
crobial and cytoplasmic proteins are attached to form early-
stage NETs. The final result of the NET formation process 
depends on whether the suicidal or vital NETosis pathway 
has been activated. In suicidal NETosis, intracellular NET 
formation is followed by the rupture of the cell envelope 
resulting in the NET release into the extracellular surround-
ings, but also in neutrophil death and the loss of viable cell 
functions, such as chemotaxis and the ability to phagocyt-
ize pathogens. In contrast, vital NETosis ends up with the 
production of a DNA-filled vesicle that fuses with the outer 
membrane to release NETs [125, 131]. Since the plasma 
membrane remains intact, neutrophils that undergo vital 
NETosis remain temporarily functional as anuclear cyto-
plasts, still able to multitask. It is worth to emphasize that 
vital NETosis occurs completely independent of NADPH 
oxidase-mediated ROS generation and far more rapidly 
(5–15 min) compared with suicidal NETosis (1–4 h), which 
suggests different functions [137].

The strict dependence of suicidal NETosis on ROS gen-
eration by the NADPH oxidase has been demonstrated by 
some recent studies, which found that the absence of a func-
tional NADPH oxidase in CGD patients or NOX2-deficient 
mice effectively suppressed NET formation [124, 135, 
138]. Consistently, exogenous supplementation of H2O2 or 
reconstitution of NADPH oxidase function by gene therapy 
restored the ability of CGD neutrophils to produce NETs 
[124, 139]. In addition, some investigators observed a cor-
relation between the level of NET formation, NET cell death 
and the amount of ROS produced, when they used different 
inbred mouse strains [135]. Although it is now commonly 
accepted that NADPH oxidase function is essential for sui-
cidal NETosis, it is still unknown which ROS are involved 
downstream of the oxidase. Assigning the specific ROS 
required for NETosis is challenging as the site of NOX2 acti-
vation and the degree of degranulation, both of which affect 
the amount of the different ROS produced, vary depending 
on the stimulus. Hence, definite proof for many oxidants is 
still lacking.

Although generally considered important, directly NOX2-
derived ROS are not the only crucial factor involved in the 
process of NETosis. For many years, NE and MPO have 
been also widely considered essential for death-mediated 
NETosis, but some aspects of their mechanisms of action 
are still unclear [140, 141]. This assumption, however, has 
been challenged by more recent studies demonstrating that 
NETosis can principally also occur in the absence of these 
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enzymes and that their involvement depends on the nature of 
the stimuli that initiated the process of NET formation [134].

In response to ROS, NE leaves the azurophilic granule 
and translocates to the nucleus, where it initiates relaxation 
and decondensation of chromatin by cleaving histones, a 
crucial event in NET formation. Importance of NE has been 
demonstrated in a study by Papayannopoulos et al., where 
pharmacological inhibition of NE activity led to a complete 
block of NETosis and mice lacking NE also did not form 
NETs in a pulmonary model of Klebsiella pneumoniae infec-
tion [140]. On the other hand, it was recently reported that 
NE-deficient mice are still able to efficiently form NETs in 
response to non-infectious stimuli in vitro, indicating that 
NE may be not essential for NETosis per se [142]. Appar-
ently, there are still a lot of discrepancies concerning the role 
of azurophilic enzymes in NET formation.

Several bacterial pathogens, however, have evolved 
impressive mechanisms to suppress, escape and/or resist 
NETs (for a detailed review see [143]). These evasion strat-
egies can be classified into three categories. First, NETosis 
can be inhibited by the pathogens through the downregu-
lation of host immune responses (e.g. attenuation of ROS 
generation [144], degradation of inflammatory chemokines 
[71] or via induction of the NET-suppressive cytokine inter-
leukin-10 [145]). Second, pathogens can release nucleases 
to degrade the DNA backbone of NETs, ultimately leading 
to NET destruction [146, 147]. Finally, pathogens can also 
resist the microbicidal components of NETs [148]. Anti-
microbial peptides attached to NETs are mostly cationic, 
creating an electrostatic force that attracts bacteria due to 
their negatively-charged surface. Therefore, several bacte-
rial species have either a polysaccharide capsule to mask 
the negatively charged surface or have developed the ability 
to modify their surface charge via specific enzymes [148].

Role of myeloperoxidase: not only a cytotoxic 
weapon against invaders

The green heme protein MPO is one of the most abun-
dantly expressed pro-inflammatory enzymes in neutrophils 
accounting for ~ 5% of their dry mass (~ 10 × 10−6 μg MPO/
cell) [149, 150]. MPO is stored in large amounts in the 
matrix of azurophil (primary) granules, which subsequently 
fuse with the phagocytic compartment after pathogen inter-
nalization. With the common membrane ruptured, MPO and 
other contents of the granules are discharged into the form-
ing phagolysosome, where they manifest their antimicrobial 
potential toward a range of bacteria and fungi. While the 
majority of MPO remains in the phagolysosome, up to 30% 
of total cellular MPO can be secreted into the extracellular 
surroundings via degranulation, leakage during phagocyto-
sis, or by association with NETs [129]. At sites of inflam-
mation, the amount of MPO generated by accumulated 

phagocytes has been reported to reach a concentration of 
1–2 mM [151–153]. The effects of elevated extracellular 
MPO levels on host cells and tissues are discussed later.

MPO, as a classical heme peroxidase, utilizes H2O2 to 
oxidize a variety of aromatic compounds (RH) by a 1-elec-
tron mechanism to give substrate radicals (R·) [154–156] 
(Fig. 1). The ability to generate the strong non-radical oxi-
dant HOCl from H2O2 in the presence of chloride ions, 
however, has been thought to be unique to MPO among the 
mammalian heme peroxidases, serving as a biochemical 
fingerprint for the presence of enzymatically active MPO 
in tissue [157, 158]. Later observations expanded this view 
and showed that peroxidasin or its mammalian ortholog 
vascular peroxidase 1 (VPO1) [159] are other members of 
the heme peroxidase family, which are also capable of gen-
erating HOBr and HOCl, however, with significantly lower 
efficiency than MPO, providing a potential role for these 
peroxidases in innate immunity and host defense [160]. Even 
more important might be the recent finding, that peroxidasin 
also uses HOBr to form sulfilimine crosslinks in collagen 
IV scaffolds, a critical event for the assembly of basement 
membranes and tissue development [161]. This and the fact 
that chloride does not act as a two-electron donor of com-
pound I in vitro in a truncated variant of human peroxidasin 
1 suggests that HOBr is probably the relevant product of this 
protein in vivo [162–165].

MPO is also found in monocytes, however only at about 
one-third of the amount present in neutrophils [162–166]. 
Differentiation of monocytes to mature tissue macrophages 
is generally associated with a reduction of their microbi-
cidal activity, partly due to a substantial decrease in oxygen-
dependent mechanisms of toxicity leading to a much lower 
level of respiratory burst and MPO function [167–170]. 
However, significant amounts of MPO could be detected 
in various macrophage subpopulations (e.g. Kupffer cells 
of human liver [171], alveolar macrophages and microglia 
[172]), and in macrophages in human atherosclerotic lesions 
[163, 165]. Along this line, granulocyte–macrophage col-
ony-stimulating factor (GM-CSF) has been found to regulate 
the ability of macrophages to express MPO and generate 
HOCl in vitro [173]. Alternatively, significant MPO activity 
in macrophages could also result from endocytosis of apop-
totic neutrophils or the uptake of extracellular MPO [174]. 
These findings suggest that MPO is expressed and present in 
both neutrophils and macrophages throughout inflammation, 
albeit the MPO levels appear to vary dependent on the stage 
of inflammation: neutrophils were found to peak earlier, at 
the initial stage of inflammation, whereas in macrophages 
MPO was most abundant later [175].

Furthermore, it has been thought that only myeloid-lin-
eage cells produce MPO, however, growing evidence sug-
gests that MPO may also be a regular constituent of T lym-
phocytes [176] and B lymphocytes [177]. Thus, in addition 
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to its known antimicrobial activity, MPO could have other, 
unanticipated cellular functions.

Since the discovery of MPO in the early 1970s as one of 
the granule enzymes being discharged into phagosomes by 
human neutrophils [178], there has been a surge of interest in 
elucidating the contribution of MPO-derived oxidants to the 
bactericidal and toxic properties of these cells. A plethora 
of studies showed that HOCl is the major strong oxidant 
produced by neutrophils and that it exhibits high activity 
against a wide range of bacterial, viral and fungal human 
pathogens, leading to the prevailing view that MPO is pri-
marily responsible for phagocyte toxicity [179]. However, 
this concept has been challenged: more than 95% of indi-
viduals with hereditary MPO deficiency are asymptomatic 
and not at increased risk for life-threatening infectious com-
plications suggesting that the MPO oxidant system is ancil-
lary rather than essential for phagocyte-mediated microbi-
cidal activity. Although MPO deficient neutrophils usually 
retain much of their ability to kill, they have been reported 
to have a pathogen killing time that is three to four times as 
long compared to neutrophils with functional MPO [180]. 
Moreover, in cases of fungal infection it has been shown 
that microbe clearance by MPO-deficient cells is much less 
efficient than that of normal neutrophils. One reason may 
be impaired or attenuated NET formation by neutrophils in 
the absence of MPO [130, 134, 140, 181]. In vitro, phago-
cytes deficient in MPO exhibit a severe defect in killing 
C. albicans and hyphal forms of Aspergillus fumigatus, and 
patients with hereditary MPO deficiency have an increased 
susceptibility to infections with these fungi [101, 182–185]. 
Together, one might conclude that action of MPO in innate 
host defense might be essential only in case of serious fungal 
infections and/or in situations where exposure of pathogens 
overwhelms the capacity of other host defense mechanisms. 
Along this line, recurrent severe infections with C. albicans 
have mostly been observed in patients who also suffered 
from other conditions, such as diabetes mellitus or cancer 
[186, 187].

The fact, that MPO deficient neutrophils are generally 
effective at killing microbes, albeit with a slower rate, indi-
cates that the major NADPH oxidase products, superoxide 
and H2O2, must compensate for the lack of MPO and MPO-
derived oxidants, and thus, be responsible for the observed 
killing activity. As they are not consumed by MPO, they will 
likely reach higher levels in the phagosomes of MPO-defi-
cient neutrophils than in those of normal neutrophils [90]. 
Moreover, MPO deficient neutrophils have been reported to 
have a prolonged respiratory burst and an extended NADPH 
oxidase activity, leading to an increased production of super-
oxide and H2O2 [188–190]. Both oxidants are significantly 
less microbicidal compared to MPO-derived HOCl [191], 
providing a possible explanation for the delayed microbial 
killing by MPO deficient neutrophils.

Irrespective of the exact contribution of MPO to phago-
cyte toxicity, it is clear that highly efficient generation of 
reactive halogen species by MPO at sites of inflammation 
can drastically affect the function of both pathogen and host 
cells.

In the following, we will summarize current knowledge 
about the oxidative properties, target specificities and gener-
ated amounts of the MPO-derived hypohalous acids HOCl, 
HOBr and HOSCN, with a particular focus on their reaction 
with proteins, as those are the major targets of hypohalous 
acids under inflammatory conditions.

Generation of hypohalous acids by myeloperoxidase

Activated neutrophils secrete MPO both into the phago-
some and the extracellular environment (with the majority 
attached to NETs [129]).

Native MPO is a homodimer, consisting of two identical 
glycosylated protomers, each containing a light and a heavy 
chain, and a covalently bound modified heme [192–194]. 
The heavy chains of the two protomers are connected by a 
single disulfide bond [195]. The heme is a derivative of pro-
toporphyrin IX, in which the methyl groups on pyrrole rings 
A and C are modified to allow the formation of ester link-
ages with the protein [192, 196]. The heme prosthetic group 
is covalently linked to the protein via autocatalytic forma-
tion of two ester bonds between modified methyl groups on 
pyrrole rings A and C and conserved aspartate (on the light 
chain) and glutamate residues (on the heavy chain) in MPO, 
and a sulfonium ion linkage between the vinyl group of pyr-
role ring A and a heavy chain methionine [197–199]. These 
covalent linkages were found to be important in maintaining 
the catalytic activity of MPO, as replacement of MPO gluta-
mate and methionine residues, that are involved in binding 
heme, strongly reduced the ability of MPO to catalyze the 
peroxidation of halide ions to hypohalous acids [200–202].

MPO catalyzes the reaction of halide and pseudohal-
ide ions with hydrogen peroxide (H2O2) to form oxidizing 
hypohalous acids via the halogenation cycle [87, 170, 203] 
(Fig. 1). First, the native Fe(III) form of MPO reacts rap-
idly with H2O2 (with a rate of ~ 1.4 × 107 M−1 s−1 [204]) to 
give the two-electron oxidized intermediate Compound I, a 
reactive Fe(IV) oxo porphyrin radical-cation species. Com-
pound I can then undergo two-electron reduction with hal-
ide and pseudohalide ions (Cl−, Br−, SCN−) to generate the 
corresponding hypohalous acids HOCl, HOBr and HOSCN, 
thereby regenerating the Fe(III) (resting) state of MPO [7, 8, 
205]. Among these halide and pseudohalide ions, SCN− is 
the preferred substrate for MPO, as it has a much greater 
specificity constant (730:60:1 for SCN−, Br− and Cl− [8]) 
and reacts faster than either Cl− or Br− (rate constants k of 
9.6 × 106 M−1 s−1 for SCN−, 1.1 × 106 M−1 s−1 for Br− and 
2.5 × 104 M−1 s−1 for Cl−) [7]. However, Cl− is a far more 
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abundant MPO substrate, typically present in the plasma of 
healthy humans at a concentration of 100–140 mM [206, 
207]. This is about two to three orders of magnitude higher 
than the concentration of Br− and SCN− (Br−, 20–100 μM; 
SCN−, 20–120 μM) [208, 209]. As a consequence, HOCl 
is typically the major reactive species formed by MPO 
under physiological conditions, while HOSCN and HOBr 
are produced in considerably lower amounts [8, 210, 211]. 
But there are numerous situations under which changes in 
plasma halide/pseudohalide concentrations occur, result-
ing in an altered extent of HOCl formation by MPO. While 
the concentration of Cl− ions remains virtually unchanged 
in vivo due to the important role of this anion in maintaining 
ion gradients, the endogenous levels of Br− and SCN− have 
been reported to vary over a range of ~ fivefold and > tenfold, 
respectively [212]. Pathologically elevated concentrations 
of SCN− can be typically found in individuals with a high 
intake of cyanide from tobacco smoking [212]. Elevated 
SCN− has a much more marked effect on the HOCl: HOBr: 
HOSCN ratio than Br−, since thiocyanate is a better electron 
donor for MPO Compound I. Increasing levels of plasma 
SCN− were found to decrease HOCl generation resulting 
in a changeover from HOCl as the major oxidizing agent 
(> 90% HOCl) to a mixture of HOCl and HOSCN. Up to 
50% of the H2O2 consumed by MPO has been predicted to 
be converted to HOSCN under these conditions, with most 
of the remaining H2O2 (~ 45%) used to oxidize Cl− anions to 
HOCl [210]. Furthermore, additional HOSCN can be gener-
ated in vivo by the direct reaction of SCN− with HOCl and 
HOBr resulting in further decreased HOCl/HOBr plasma 
levels. Since this reaction is fast, particularly for HOBr (with 
a second-order rate constant k ≈ 2 × 107 M−1 s−1 for HOCl 
[213] and k ≈ 2 × 109 M−1 s−1 for HOBr [214]), SCN− has 
been suggested to be the most effective endogenous scaven-
ger of HOBr under biological conditions [214]. An altered 
ratio of hypohalous acid formation by MPO can markedly 
affect both the innate immune defense and the extent and 
nature of damage to host tissues. This is most likely due to 
the significant differences in reactivity and targets of the 
various hypohalous acids [212].

Role of hypohalous acids in oxidative pathogen 
killing: proteins as major targets

MPO-mediated generation of halogenating oxidants within 
phagosomes is widely assumed to play a key role in bacte-
rial cell killing and thus defending the body against dis-
ease [90, 215, 216]. HOCl is most commonly implicated 
as the reactive species responsible for neutrophil-mediated 
intracellular microbial killing (reviewed in [87, 150, 151]). 
HOCl is a strong oxidant (E0 [HOCl/Cl−] = + 1.28 V) and 
also the active ingredient of household bleach [217]. Other 
oxidants, such as O2·− and H2O2, which are also generated 

within the phagosomal space, are orders of magnitude 
less microbicidal than HOCl and they are only effective 
in bacterial killing at much higher concentrations and/or 
upon long-term exposure. Thus, they appear to be of minor 
importance for the destruction of internalized pathogens 
[170, 218, 219]. While H2O2 has a substantially longer 
lifetime than HOCl under physiological conditions (10 μs 
[220] vs. 0.1 μs [221]) and can diffuse over considerable 
distances, readily passing membranes [222], HOCl appears 
to act locally and damage biomolecules within a radius of 
less than 0.1 μm [90, 221].

Conversion of long-lived and highly diffusible H2O2 into 
short-lived and locally confined HOCl by MPO thus provides 
a clever mechanism to specifically target pathogens within 
the phagosome and effectively protect neutrophil cytoplasm 
and surrounding host tissue against HOCl-induced oxidative 
damage. Restriction of HOCl to the phagosome within the 
neutrophil cell has been recently demonstrated by us using 
the genetically encoded redox sensor roGFP2 to monitor the 
redox state of neutrophil cytoplasm upon respiratory burst. 
Oxidation of the neutrophil cytosol was found to depend on 
active NADPH oxidase, but occurred independently of MPO 
activity, suggesting that in contrast to H2O2, HOCl is in fact 
unable to significantly permeate the phagosomal membrane 
during phagocytosis and thus remains in the immediate 
vicinity of the engulfed pathogen [132]. Using the same 
roGFP2-based probes in bacteria, we found that HOCl is 
indeed the major oxidant responsible for the oxidation of the 
cytoplasm of phagocytized bacteria [179].

The antimicrobial properties of HOCl and HOBr are well 
documented and numerous reports have provided strong 
evidence for severe damage to bacterial components, and 
bacterial proteins in particular, upon exposure to these oxi-
dants within the neutrophil phagosome [215, 216]. Reaction 
of HOCl with neutrophil proteins as well as endogenous 
organic and inorganic amines in the phagosome lumen 
further leads to the formation of the longer-lived but less 
reactive chloramines monochloramine, N-chlorotaurine 
and protein derived chloramines with the latter being the 
predominant species due to the high abundance of proteins 
in the neutrophil phagosome [90, 215]. The formed chlora-
mines have also been implicated in mediating cytotoxicity 
to a broad array of microorganisms [223].

HOCl and HOBr, once formed, readily react with a vari-
ety of functional groups on diverse biological molecules 
including proteins, DNA [11], cholesterol [224], and lipids 
[13]. HOCl and HOBr can target all cellular components. 
Nevertheless, proteins are likely to be the primary target for 
these oxidants, given their abundance in the cell and their 
high reactivity.

Exposure of proteins to HOCl results in a broad range 
of modifications that have been very recently summarized 
in an excellent review by Hawkins [225] and only a short 
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overview, based mostly on experimental data from the 
Davies and Hawkins groups, will be given here and in Fig. 2.

Reactivity of HOCl varies among the different amino acid 
side-chains, however, primary amines and sulfur-containing 
side-chains were found to be particularly prone to modifica-
tion [226–228]. HOCl reacts rapidly with the sulfur-contain-
ing amino acids cysteine and methionine (with a second-
order rate constant k = 3.6 × 108 and k = 3.4 × 107 M−1 s−1, 
respectively [229]). In comparison, HOBr oxidizes cysteine 
and methionine residues with a tenfold lower second-order 
rate constant k = 1 × 107 M−1 s−1 and k = 3.6 × 106 M−1 s−1, 
respectively [230].

Consistent with these overall rapid reaction rates of HOCl 
and HOBr with thiols, we found that exposure of phagocyt-
ized bacteria to oxidants produced during neutrophil respira-
tory burst leads to a rapid and massive breakdown of the 
thiol redox homeostasis of their proteome [179]. Cysteine 
thiols are presumably first chlorinated to form the unstable 
intermediate sulfenyl chloride, which rapidly reacts with 
water to yield a sulfenic acid (Fig. 2). This sulfenic acid is 
also highly unstable and can either react with a cysteine thiol 
group in close proximity to form a disulfide bond or become 
further oxidized to a sulfinic and sulfonic acid. Whereas 
sulfenic acid and disulfides can be reversed by antioxidant 
systems such as the thioredoxin (Trx) or glutaredoxin (Grx) 
systems [231, 232], sulfinic and sulfonic acid are generally 
considered irreversible modifications in prokaryotes which 

typically lead to inactivation and aggregation of proteins. 
Of note, sulfinic acids can, however, be reduced to thiols by 
sulfiredoxins in eukaryotic organisms as well as in cyano-
bacteria [233, 234].

Although less reactive (with second-order rate constants 
of k ≈ 1 × 104–7 × 104 M−1 s−1 [235]), HOSCN appears to be 
an even more thiol-specific oxidant than HOCl and HOBr 
[236]. HOSCN was found to selectively target cysteine 
residues in proteins in bacteria and host cells resulting in 
the formation of sulfenyl thiocyanate derivatives which 
can hydrolyze to sulfenic acid intermediates. Such sulfenyl 
species have indeed been reported in bacterial cells upon 
exposure to HOSCN [237]. Moreover, selenocysteine resi-
dues, that are typically present in the active site of protective 
antioxidant enzymes, such as glutathione peroxidase (GPx) 
and thioredoxin reductase (Trx), are also rapidly oxidized 
by HOSCN [238].

Unlike HOCl/HOBr, there are only limited experimen-
tal data available supporting the reactivity of HOSCN with 
biological targets other than protein thiols and selenols, 
and low-molecular-weight thiol compounds such as glu-
tathione [235, 236, 238, 239]. Along this line, HOSCN has 
been reported to be much less effective in killing invad-
ing microorganism than HOCl/HOBr and is considered 
to be more cytostatic than cytotoxic in nature [240]. As 
HOSCN can rapidly penetrate bacterial membranes, poten-
tial targets of HOSCN include cytosolic thiol-dependent 

Fig. 2   Reaction of HOCl with amino acid side chains in proteins. The 
initial reaction products of relevant amino acid side chains with HOCl 
are depicted. The width of the reaction arrows is proportional to the 
logarithm of the apparent second-order rate constant, a wider arrow 

thus indicates a faster reaction of the respective amino acid side chain 
by orders of magnitude. Rate constants obtained in experiments with 
model compounds as reported by the Davies group in refs [228, 229, 
243]
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glycolytic enzymes, such as glyceralaldehyde-3-phosphate 
dehydrogenase (GAPDH), hexokinase, glucose-6-phos-
phate dehydrogenase, or aldolase. Oxidation of these 
metabolic enzymes results in interruption of the bacterial 
glycolytic flux and thus strongly decreases energy produc-
tion reflected by severe growth inhibition [241]. Moreo-
ver, depletion of reduced glutathione by HOSCN could 
also lead to an increase in oxidative stress and bacterial 
susceptibility to neutrophil-generated oxidants [235, 236].

Reaction of HOCl with methionine results in the for-
mation of stable methionine sulfoxides (Met(O)) [242]. 
Indeed, nearly 50% of all methionine residues in bacterial 
cytosolic and inner membrane proteins were found to be 
converted to Met(O) soon after phagocytosis. Methionine 
sulfoxidation can normally be reversed by the enzyme 
methionine sulfoxide reductase. E. coli strains lacking 
this enzyme consequently showed substantially increased 
sensitivity to HOCl providing evidence that methionine 
oxidation contributes to bacterial killing within neutrophil 
phagosomes [242].

Side-chain amines of lysine and arginine residues are the 
also targets in proteins for modification by HOCl (with a 
second-order rate constant k = 7.9 × 103 M−1 s−1 for lysine 
and k = 26 M−1 s−1 for arginine) [228, 243]. Reaction of 
amines with HOCl leads to their chlorination (N-chlorina-
tion) to mono- and potentially dichloramines. N-chlorination 
is a reversible modification that can be fully removed by 
antioxidants such as ascorbate or, as we showed, the glu-
tathione and Trx system, once the HOCl-stress has passed 
[15]. During the last decade, evidence has emerged that 
N-chlorination serves as a reversible switch to temporarily 
alter the function of bacterial and host proteins in response 
to HOCl [15, 37]. In the next chapters, we will discuss how 
N-chlorinated proteins can confer protection and contrib-
ute to bacterial survival within the neutrophil phagosome, 
and on the other hand, how they modulate host immune 
responses to accelerate pathogen clearance.

Reaction of the imidazole ring of histidine with HOCl 
(with a second-order rate constant k = 8.0 × 104 M−1 s−1 
[228]) leads to the formation of a short-lived chloramine. 
Aside from thiols and amines, HOCl also reacts with the 
indole moiety of tryptophan residues (with a second-order 
rate constant k = 7.8 × 103 M−1 s−1 [228]) to form a 2-oxoin-
dole derivative, although reactivity of tryptophan is two 
orders of magnitude higher with HOBr [230]. Finally, tyros-
ine residues were also found to be halogenated by HOCl 
and HOBr, yielding 3-chlorotyrosine (with a second-order 
rate constant k = 47 M−1 s−1 [178]) and 3-bromotyrosine, 
respectively. Although these halogenated molecules are 
minor products of the reaction of HOCl and HOBr with 
proteins, they are widely used as biomarkers to detect hypo-
halous acid-induced protein damage due to their specificity 
and high stability [215, 244].

In conclusion, exposure of proteins to HOCl and other 
hypohalous acids results in a wide range of oxidative modi-
fications and formation of halogenated products. While most 
of those are considered detrimental to protein stability and 
result in fragmentation [245, 246], misfolding or cross-link-
ing/aggregation [247], some others turned out to be benefi-
cial under particular stress conditions (see next chapters).

Microbial strategies to survive HOCl‑stress

Mechanisms of HOCl‑mediated pathogen killing

There is little doubt that HOCl is of crucial importance 
for microbial killing in the neutrophil phagosome, but its 
mechanisms of action are still not fully understood [217]. 
Early studies noted already that HOCl promotes microbial 
death via several independent mechanisms by simultane-
ously acting on membranes [248, 249], proteins [250] and 
nucleotides [251].

HOCl was found to cause a rapid loss of glucose respira-
tion and metabolic energy (1) by inhibiting proteins respon-
sible for the transport of potential respiratory substrates such 
as glucose, succinate and amino acids across the inner mem-
brane [252, 253] and (2) by inactivating membrane-local-
ized F1-ATPase to disrupt bacterial ATP production [254]. 
Defective energy metabolism and loss of ATP inactivates 
essential ATP-dependent chaperone systems that normally 
assist in protein folding and prevent protein aggregation 
[255, 256]. As described in the previous chapter, one effec-
tive killing mechanism of HOCl may thus be the oxidative 
unfolding and irreversible aggregation of essential bacterial 
proteins [10]. This idea is supported by the observation that 
bacteria, which lack the HOCl-activated molecular chaper-
one Hsp33, accumulate a significant number of aggregated 
proteins and are much more sensitive to HOCl treatment 
than wild-type cells harboring functional Hsp33 [10]. Addi-
tionally, it was demonstrated that HOCl inhibits DNA repli-
cation in bacteria, which normally occurs in association with 
the inner membrane. Damage of inner membrane proteins 
involved in binding oriC, however, can result in a loss of 
this association and consequently, loss of DNA synthesis 
[257]. This combined data point toward cytosolic and inner 
membrane proteins as the primary target for HOCl attack.

Bacterial strategies to maintain proteostasis 
during HOCl‑stress

During evolution, bacteria evolved a diverse set of strate-
gies to escape HOCl-inflicted damage and survive within 
the host environment. Bacterial responses to ROS-derived 
oxidative stress are well-characterized (reviewed in [258]) 
and growing evidence suggests that many of those are also 
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involved in resisting HOCl-stress [259]. A comprehensive 
review of all bacterial defense mechanisms is beyond the 
scope of this article. Instead, as proteins are a major target of 
HOCl-mediated damage, we will briefly describe the general 
bacterial strategies to maintain a healthy proteome during 
redox imbalance and then highlight the role of redox-regu-
lated chaperones which have been the subject of intensive 
research during the past years.

Increased production of antioxidants

One major principle by which bacteria protect themselves 
against HOCl is the expression of transcription factors and 
the upregulation of genes encoding antioxidant enzymes 
which confer resistance by detoxifying reactive oxygen and 
chlorine species and reducing amino acid side-chain modi-
fications in proteins [260].

A broad range of different enzymes and non-enzymatic 
antioxidants act in concert to maintain a reducing environ-
ment in the cytoplasm. Given the high reactivity of HOCl 
with sulfur-containing cellular components, it is not sur-
prising that bacteria possess several repair systems capable 
of repairing oxidatively damaged cysteine and methionine 
residues in the cytoplasm or membrane (reviewed in [259]). 
Reduction of oxidized cysteine residues to the thiol state in 
proteins is catalyzed by various oxidoreductases, including 
Trx and Grx, both of which were found to be upregulated 
under oxidative stress conditions. During reaction with 
disulfides in oxidized proteins, Trx and Grx become oxi-
dized and subsequently reduced again by NADPH-depend-
ent thioredoxin reductase or the low-molecular-weight thiol 
glutathione (GSH), respectively, to regenerate the active 
form of these enzymes. Glutathione is highly reactive with 
a variety of reactive oxygen and chlorine species, includ-
ing HOCl, and thus is considered a crucial non-enzymatic 
antioxidant and scavenger of reactive oxygen and chlorine 
species in vivo [261]. In addition, GSH reacts with sulfenic 
acids in oxidized proteins forming glutathione–protein 
mixed disulfides and, as such, prevents their further oxi-
dation to irreversible sulfonic and sulfinic acids [262]. 
Consistent with the important role of GSH in HOCl-stress 
resistance, E. coli mutants lacking GSH were found to be 
much more sensitive to HOCl and other chlorine species 
and generally more susceptible to neutrophil-mediated kill-
ing [263, 264].

During HOCl stress, methionine residues of bacte-
rial proteins are oxidized into methionine sulfoxide (Met-
S=O), leading to significant structural alterations, which 
might culminate in the loss of protein activity and function. 
Production of methionine sulfoxide reductase (Msr), which 
repairs such oxidized methionine residues in proteins, is 
thus upregulated in many bacteria such as Bacillus species, 
Pseudomonas aeruginosa and E. coli during HOCl-stress 

[265–268]. E. coli mutants deficient in Msr were found to be 
far more sensitive to HOCl, whereas overexpression of Msr 
led to higher HOCl resistance [242]. However, the ability of 
Msr to reverse the toxic effects of HOCl is only limited and 
depends on the HOCl amounts present [242]. Exposure of 
E. coli to 200 μM HOCl led to the oxidation of 40% of the 
cellular methionine residues and an almost complete loss of 
bacterial viability [242]. In the face of persistent oxidative 
stress and high HOCl levels, methionine sulfoxide can be 
further oxidized to methionine sulfone (Met-S-O2) [269], 
a modification that is no longer recoverable by Msr and, 
therefore, considered irreversible. Such irreversible methio-
nine oxidation will permanently affect protein structure and 
function, thereby explaining the limited potential of Msr to 
counteract the toxic effects of HOCl.

Activation of ROS‑sensing transcription factors

Aside from enzymatic and non-enzymatic antioxidants, 
growing evidence points toward the role of redox-sensi-
tive transcription factors in protecting bacteria from the 
detrimental effects of HOCl. The first transcription fac-
tor in E. coli found to contribute to HOCl resistance was 
HypT (hypochlorite-responsive transcription factor, for-
merly known as YjiE) [270, 271]. HypT is activated by 
HOCl through oxidation of three methionine residues to 
methionine sulfoxide [271]. Once active, HypT was found 
to increase cell viability by upregulating genes involved in 
cysteine and methionine biosynthesis and sulfur metabo-
lism to replenish oxidized metabolites, while repressing 
iron acquisition genes to limit the formation of highly toxic 
hydroxyl radicals through Fenton reaction [270, 271].

Another transcription factor that specifically responds to 
HOCl is NemR, which is activated via oxidation of HOCl-
sensitive cysteine residues. NemR regulates expression of 
the enzymes glyoxalase and N-ethylmaleimide reductase, 
both of which are involved in detoxification of methylglyoxal 
and other reactive electrophiles [272].

Moreover, multiple studies in Gram-negative bacteria 
have shown that the ArcAB two-component signal trans-
duction system, which normally acts as a global regulator of 
anaerobic growth of bacteria, also plays a role in the resist-
ance to ROS and supports bacterial survival under oxidative 
stress conditions [273–275]. Although normally only active 
in the presence of low oxygen levels, exposure to the oxygen 
species H2O2 and HOCl also leads to its activation in several 
Salmonella enterica species, Haemophilus influenzae and 
other pathogens [276]. Upon activation, ArcA was found 
e.g. to modulate cellular metabolism and promote adapta-
tion to changing oxygen levels or to downregulate abundant 
outer membrane porins that are responsible for the influx of 
these ROS by the phagocytized bacteria within the neutro-
phil phagosome [273, 274, 276].
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Activation of novel chaperones

ATP-dependent molecular chaperones such as the well-
studied GroEL (Hsp60) and GroES (Hsp10) system or the 
DnaK/DnaJ/GrpE (Hsp70/Hsp40) system assist in pro-
tein folding and play crucial roles in protecting proteins 
against oxidative stress-induced unfolding and aggregation 
[277–282]. Exposure to HOCl, however, causes a sudden 
and substantial drop in cellular ATP levels [252–254], ren-
dering those chaperone systems devoid of their cofactor 
[256]. In addition, GroEL and DnaK, just like all other 
proteins, are critical targets for modification by HOCl, 
which can potentially lead to their inactivation [255, 
256]. Hence, when protein unfolding occurs, cells can no 
longer rely on ATP-dependent foldases but require ATP-
independent alternatives with a similar function instead to 
counteract the protein-damaging conditions during oxida-
tive stress.

Recent studies in E. coli revealed that at least some 
loss of ATP upon HOCl stress is due to conversion of 
cellular ATP to inorganic polyphosphates (polyP), which 
by themselves can act like ATP-independent chaperone 
holdases, effective in stabilizing unfolding proteins and 

preventing protein aggregation both in vivo and in vitro 
[282, 283] (Fig. 3).

Over the last decade, several accessory chaperones have 
been identified which are specifically activated in response 
to oxidative stress (recently reviewed in [284]). Activa-
tion of their chaperone function occurs post-translationally 
through oxidation of redox-sensitive cysteine residues (e.g. 
Hsp33 or 2-Cys-peroxiredoxins in prokaryotes and Get3 in 
eukaryotes) or chlorination of side-chain amines (e.g. RidA 
and CnoX in E. coli) by ROS, HOCl or other chlorine spe-
cies (Fig. 3). These novel chaperones are ATP-independ-
ent holdases, which bind to and protect unfolding proteins 
from aggregation but do not promote their refolding [284]. 
When oxidative stress has passed and cellular ATP levels are 
restored, the stress-induced holdases could transfer their sub-
strates to ATP-dependent chaperone systems, such as DnaK/
DnaJ/GrpE or GroEL/GroES, for proper folding.

Hsp33 was the first redox-regulated chaperone identified 
[10, 284, 285]. While normally inactive, Hsp33 becomes 
transiently transformed into an efficient holdase-type chap-
erone when oxidative and unfolding conditions coincide. 
Activation of Hsp33’s chaperone functions relies on two 
stress sensors, a redox sensitive zinc center and a thermo-
labile region, both located in the C terminus of the protein 

Fig. 3   Stress-activated chaperone-like holdases protect bacterial pro-
teins against aggregation. During oxidative stress, proteins become 
modified and oxidized by reactive oxygen and chlorine species (ROS/
RCS), resulting in their unfolding and ultimately, aggregation. To 
prevent irreversible protein aggregation, the stress-induced ATP-inde-
pendent holdases Hsp33 (Hsp33red), RidA and CnoX (violet) are acti-
vated during ROS/RCS-stress via oxidation (Hsp33ox) or chlorination 
(RidACl, CnoXCl), allowing them to bind and protect other unfold-

ing proteins. Moreover, cellular ATP (blue) is converted to inorganic 
polyphosphates (polyP), which by themselves can act as ATP-inde-
pendent chaperones, effective in stabilizing unfolding proteins and 
preventing protein aggregation. Once the stress subsides and cellular 
ATP levels are restored, the stress-induced holdases are reduced or, 
in the case of polyP, disassembled and could pass their substrates to 
ATP-dependent foldases such as GroEL/GroES and DnaK/DnaJ/
GrpE for proper refolding
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[286]. Under reducing, non-stress conditions, four highly 
conserved cysteine residues, which constitute one of the 
stress sensor domains, are kept in their reduced thiol state 
and together coordinate one zinc(II) ion [287]. Upon expo-
sure to HOCl, these cysteine thiols are oxidized to form two 
disulfide bonds, releasing the zinc ion. This redox event is 
accompanied by major structural rearrangements and unfold-
ing of the protein’s second stress sensor region, leading to 
the dimerization of Hsp33, a crucial step to fully activate 
Hsp33’s chaperone function [10, 285, 286]. Active Hsp33 is 
capable of recognizing and binding unfolding cellular pro-
teins and thus prevents irreversible protein aggregation as 
long as stress conditions persist. Since Hsp33’s chaperone 
function is not driven by ATP, Hsp33 can adequately com-
pensate for the loss of ATP-dependent chaperone systems. 
Importantly, Hsp33 returns to its original, chaperone-inac-
tive state once the HOCl-stress subsides, making its sensor 
domains reversible and transient functional switches. Inter-
estingly, the structurally unrelated eukaryotic protein Get3 
has been recently found to also function as ATP-independent 
chaperone-like holdase during oxidative stress. Get3 senses 
oxidants with a zinc center, similar to prokaryotic Hsp33 
[288, 289].

While redox-mediated activation of Hsp33’s and Get3’s 
chaperone function is initiated by oxidation of specific 
“stress-sensing” cysteine residues, other proteins, such as 
E. coli RidA and CnoX, were found to be converted into 
efficient chaperone holdases via a distinct activation mech-
anism that specifically involves chlorination of their side-
chain amines [15, 16].

The E. coli protein RidA, a member of the highly con-
served, but functionally highly diverse YjgF/YER057c/
UK114 protein family, acts as an enamine/imine deaminase 
that detoxifies reactive intermediates generated during the 
course of amino acid metabolism [290]. We discovered that 
RidA functions as a highly efficient and ATP-independent 
chaperone holdase under HOCl-stress conditions [15]. 
Activation of RidA’s chaperone function occurred only in 
the presence of reactive chlorine species, such as HOCl, 
while exposure to H2O2 and other oxidants had no effect. 
This functional conversion of RidA in response to HOCl 
did not depend on cysteine oxidation since a cysteine-free 
RidA variant showed similar chaperone activity upon HOCl 
exposure. Moreover, treatment with HOCl substantially 
decreased RidA’s levels of free amino groups and led to an 
overall increase in surface hydrophobicity and formation of 
higher oligomers, which can also be observed with other 
stress-activated chaperones. Finally, exposure of HOCl-
treated RidA to antioxidants fully abolished its chaperone 
activity. These combined observations prompted us to con-
clude that reversible N-chlorination of lysine and/or argi-
nine side-chains is likely responsible for the activation of 
RidA’s chaperone function. N-chlorination thus serves as 

an alternative, cysteine-independent mechanism to employ 
novel chaperones in response to HOCl. Since RidA’s chap-
erone function is not dependent on ATP, RidA, similar to 
Hsp33, is perfectly suited to function under HOCl-stress 
conditions, which transiently incapacitate ATP-dependent 
chaperone systems.

While activation of chaperone function by thiol oxida-
tion typically requires the oxidation of particular cysteine 
residues, activation by N-chlorination appears to be rather 
unspecific and likely due to a general increase in surface 
hydrophobicity. Hence, many more proteins might undergo 
similar HOCl-triggered conversion into effective chaper-
one holdases than assumed, building up a protective shield 
against HOCl-induced protein aggregation. Support for this 
notion has been very recently provided by Goemans and 
colleagues who found that E. coli CnoX also turns into a 
powerful chaperone holdase by N-chlorination in a mecha-
nism similar to that of RidA activation [16]. Under HOCl-
stress conditions, CnoX does not only act as a holdase but 
forms mixed-disulfide complexes with its substrates and 
thus prevents redox-sensitive cysteine residues from being 
irreversibly oxidized. Due to this dual function, Goemans 
et al. described CnoX as the first member of a new class 
of proteins, the so-called “chaperedoxins” [16]. Of note, 
CnoX transfers its client proteins to both GroEL/GroES and 
DnaK/DnaJ/GrpE chaperone system for refolding once the 
HOCl-stress has passed. Whether RidA is also capable of 
interacting with these chaperone foldase systems needs to 
be elucidated.

Since the absence of any of these chaperones renders the 
bacteria sensitive to HOCl [15, 16], protein unfolding and 
aggregation is apparently one major mechanism by which 
HOCl contributes to microbial cell death.

We recently discovered that many human plasma proteins 
are also specifically converted into chaperone-like holdases 
by N-chlorination and as such, gain the ability to protect 
other proteins from HOCl-induced aggregation [37]. In the 
following chapters, we will briefly discuss the effects of 
HOCl and other hypohalous acids on the host in general 
and then focus on the current understanding of how HOCl 
modulates the function of host proteins during infection and 
inflammation.

Effects of HOCl on the host environment

Role of extracellular MPO in host tissue damage

There is little doubt that MPO-generated hypohalous acids, 
particularly HOCl, are of crucial importance for microbial 
killing. Excessive or inappropriate formation of these oxi-
dizing agents, however, can potentially lead to undesirable 
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damage of host cells through the same processes used in the 
destruction of invading pathogens [291–294].

Numerous studies have provided strong evidence for the 
extracellular presence of enzymatically active MPO at sites 
of infection and inflammation. This localization may arise 
either from MPO secretion into phagolysosomes followed 
by disruption of this compartment (e.g. due to cell lysis), 
attachment of MPO to extracellular NETs or via the erro-
neous release of MPO at the plasma membrane as a result 
of inappropriate intracellular trafficking [295]. Irrespective 
of the exact mechanism responsible for extracellular MPO 
release, there is little doubt that this enzyme can induce 
extensive damage to host tissue due to persistent generation 
of hypohalous acids [205].

However, as the levels of MPO itself as well as the avail-
ability of appropriate substrates can vary widely within 
the organism and the particular sites of inflammation, the 
extent of damage generated by this enzyme often cannot be 
accurately predicted. Compared to the intracellular phagoso-
mal space where the substrate availability is controlled, the 
MPO-dependent oxidative biochemistry in the extracellular 
environment is usually far more diverse, leading to substan-
tial modifications of a wide variety of biomolecules, includ-
ing DNA, lipids, carbohydrates and proteins. Accordingly, 
increased levels of MPO and excessive generation of its 
associated oxidants, particularly HOCl, have been causally 
linked to the development of several types of major inflam-
matory pathologies such as atherosclerosis, neurodegenera-
tive disorders, rheumatoid arthritis, lung diseases, kidney 
diseases, diabetes and cancer [21]. While the specific effects 
of HOCl on host tissues have already been studied intensely, 
there is only limited experimental data available on the role 
of other hypohalous acids, e.g. HOSCN, in the pathogenesis 
of those diseases. Unlike HOCl and HOBr, which, in part, 
appear to function as membrane-lytic oxidants, HOSCN 
has only restricted reactivity and thus can easily penetrate 
bacterial and mammalian cells, leaving their membranes 
intact [296–298]. Despite its beneficial role in host defense 
against invading pathogens, the high selectivity of HOSCN 
for intracellular thiols and thiol-dependent enzymes may be 
detrimental to host tissue as well, particularly under chronic 
inflammatory conditions. Hence, there is emerging evidence 
that depletion of the major antioxidant GSH and reversible 
inactivation of key thiol-dependent enzymes, including pro-
tein tyrosine phosphatases (PTPs), creatine kinase (CK), 
GAPDH, glutathione S-transferases (GSTs), and various 
membrane ATPases, can potentially elicit a response similar 
to that observed in bacterial cells, resulting in cellular dys-
function and cell death [239, 299–302]. However, the ability 
of HOSCN to effectively induce mammalian cell damage 
and contribute to disease pathogenesis is still controversial. 
Certain mammalian cell types, including erythrocytes, mac-
rophages and endothelial cells, are highly susceptible to the 

actions of this oxidant, while other cell types, particularly 
those associated with the respiratory tract [303, 304] or the 
oral cavity [305, 306], seem to be rather HOSCN resistant. 
Similarly, elevated plasma levels of HOSCN, for example in 
smokers, together with the ability of SCN− to scavenge other 
oxidants, including HOCl and HOBr, have been proposed 
to provide protection against tissue injury and inflammation 
due to the shifted ratio of MPO-derived halogenating species 
and thus decreased amounts of the more damaging inflam-
matory agents HOCl and HOBr [212, 307, 308].

Normal MPO concentration in human plasma ranges 
from 18 to 39 ng/ml [309, 310] and was found to be signifi-
cantly elevated to averages of 55 ng/ml [310] and 287 ng/ml 
[311] after myocardial infarction and acute coronary syn-
drome, respectively. Thus, enhanced levels of MPO activity 
are widely considered a useful oxidative stress biomarker 
and diagnostic tool for many of those commonly-occurring 
inflammatory diseases.

Apart from the strong oxidizing properties of its associ-
ated oxidants, MPO, as a strongly basic protein, can also 
bind to the negatively charged glycocalyx on the surface of 
several cell types, such as epithelial and endothelial cells 
[312, 313], macrophages, or neutrophils [313]. By reduc-
ing the anionic surface charge of the endothelial glycocalyx, 
MPO facilitates neutrophil recruitment to sites of infection/
inflammation, independent of its classic catalytic function 
[313]. Aside from this electrostatic effect, MPO also acts as 
extracellular signaling molecule and modulator of immune 
cell activation. For instance, the interaction of MPO with 
neutrophil CD11b/CD18 integrins enhances tyrosine phos-
phorylation, leading to the activation of protein tyrosine 
kinases that are involved in the regulation of degranulation 
and neutrophil respiratory burst [314]. Both, the enhanced 
influx of neutrophils from blood to the inflammatory site and 
their increased stimulation can drastically intensify inflam-
mation, thus supporting the role of extracellular MPO in the 
propagation of inflammatory pathologies.

Neutrophils that accumulate in the interstitial fluid of 
inflamed tissues have been reported to produce HOCl at con-
centrations of up to 25–50 mM/h [315]. However, the extra-
cellular concentration of this oxidant is difficult to predict, as 
it does not only depend on the amount of neutrophils in the 
inflammatory region, but also on the levels of MPO released 
during neutrophil activation and availability of H2O2. HOCl, 
once generated, typically does not accumulate to high lev-
els, as it reacts rapidly with various biological molecules 
present in its immediate vicinity [11, 13, 29, 224, 243]. Due 
to high abundance in blood and interstitial fluids, HSA and 
other plasma proteins are thought to be the major target of 
HOCl-mediated damage [24–28]. Treatment of plasma with 
HOCl led to the rapid depletion of thiol groups and methio-
nine residues in the proteins, demonstrating the potential of 
plasma proteins, particularly HSA, to effectively scavenge 
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HOCl [316]. Although oxidants, such as ascorbate, also react 
rapidly with HOCl, their plasma concentrations are too low 
when compared to protein thiols and methionines for them 
to act as major HOCl scavengers [317].

Reaction of HOCl with normal tissue and plasma pro-
teins causes the formation of so-called “advanced oxidation 
protein products (AOPPs)” [23, 32]. Accumulation of such 
AOPPs has been first reported in patients with chronic kid-
ney disease [23] and was later also found in several other 
inflammatory diseases, such as rheumatoid arthritis, cardio-
vascular disease, and neurodegenerative disorders (reviewed 
in [21]).

In the last two decades, a number of studies have been 
carried out to elucidate the role of HOCl-modified plasma 
proteins in inflammatory processes [22, 33, 36, 318]. Intrigu-
ingly, while in some cases exposure to HOCl had disastrous 
effects on the structure or function of a protein leading to its 
aggregation and inactivation, other proteins were found to 
undergo a functional switch upon modification by HOCl that 
may be beneficial for the host defense against pathogens but 
may also contribute to chronic inflammation.

Effect of HOCl‑induced modifications 
on the function of plasma proteins

Pathogenesis of a number of inflammatory diseases and tis-
sue injuries is associated with modification and/or inactiva-
tion of host proteins by extracellular HOCl.

One prominent effect of HOCl at inflammatory sites is the 
inactivation of protease inhibitors. In vitro studies revealed 
that HOCl modifies and inactivates α1-antiproteinase and 
α2-macroglobulin, both of which are known to inhibit several 
proteolytic enzymes released from microbes and neutrophil 
granules in extracellular fluids [153, 319, 320]. Uncontrolled 
extracellular activity of proteases, such as elastase, may 
inadvertently damage host tissues for example by breaking 
down connective tissue fibers, such as elastin in the lung 
[321]. However, whether these antiproteases are significantly 
targeted by HOCl in vivo is not clear, since HOCl is readily 
scavenged by antioxidants, HSA and other plasma proteins 
[29].

Ceruloplasmin, an abundant acute phase protein in 
plasma, acts as an important antioxidant, which has been 
shown to directly bind and inhibit MPO [322], interfere 
with HOCl production [323] and thus, for instance, prevent 
HOCl-mediated degradation of the α1-antiproteinase and 
other proteins [30]. Recently, it has been reported that ceru-
loplasmin is also modified by HOCl during inflammation 
[324]. Reaction of ceruloplasmin with HOCl leads to its 
denaturation and the formation of large aggregates [325]. 
Importantly, ceruloplasmin appears to lose its ability to 
inhibit MPO upon modification by HOCl [324]. Aside from 

ceruloplasmin, complement C3 was also found to associate 
with MPO in plasma [322, 323].

Modification of low-density lipoprotein (LDL) by HOCl 
has been implicated in human atherosclerosis. Exposure of 
LDL to HOCl leads to its aggregation, followed by rapid 
uptake and degradation by macrophages [247, 326, 327]. 
The unregulated uptake of oxidized LDL is considered a 
crucial step in the conversion of macrophages into foam cells 
[328]. Furthermore, N-chloramines from HOCl-modified 
LDL have been reported to inactivate lecithin-cholesterol 
acyltransferase (LCAT), an enzyme involved in the matura-
tion of the antiatherogenic high-density lipoprotein (HDL), 
thus providing another mechanism by which HOCl promotes 
atherogenesis [329].

Interestingly, HOCl-oxidized LDL, as much as HOCl-
modified HSA, have been shown to trigger various neutro-
phil responses such as activation of the NADPH oxidase, 
degranulation or shape change [32, 37, 38, 330] but until 
recently, the mechanism underlying this HOCl-mediated 
functional conversion has been unclear. In general, patho-
logically elevated concentrations of HOCl, as those present 
in chronically inflamed tissues, can induce a wide variety 
of modifications on plasma proteins such as carbonylation, 
cysteine and methionine oxidation, N-chlorination or di-
tyrosine crosslinking [156, 330–332], most of which are 
considered irreversible.

We discovered that HSA, IgG and the majority of other 
human plasma proteins are transformed into potent inducers 
of the neutrophil respiratory burst specifically by N-chlo-
rination [37], the same mechanism by which bacteria were 
found to employ novel chaperones to protect their proteins 
against HOCl-stress-induced aggregation [15, 16] (Fig. 4). 
Furthermore, HOCl-modified HSA was shown to enhance 
the survival of neutrophils in the presence of highly immu-
nogenic foreign antigens by binding to and preventing their 
uptake by the immune cells [37]. The potential of HOCl-
modified HSA to bind proteins secreted by pathogens has 
also been reported before by others [333, 334]. HOCl-mod-
ified HSA can thus be considered a pro-inflammatory media-
tor, that together with other inflammatory stimuli, such as 
cytokines, PAMPs or DAMPs, extends neutrophil lifespan at 
sites of tissue injury and inflammation through the inhibition 
of cell apoptosis [45–47] (Fig. 4).

Aside from their role in modulation of the innate immune 
response, we also found that HOCl-modified plasma pro-
teins act as highly effective holdase-like chaperones, pro-
tecting other proteins from HOCl-induced aggregation [37] 
(Fig. 4). Wyatt et al. demonstrated that exposure of the 
extracellular chaperone α2-macroglobulin to HOCl improves 
its chaperone function [39]. We showed that not only α2-
macroglobulin’s efficiency is enhanced, but a wide range of 
plasma proteins can be converted into chaperone-like hol-
dases upon modification by HOCl [37]. As mentioned in 
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the previous chapters, N-chlorination is one mechanism by 
which bacterial proteins are transformed into ATP-independ-
ent chaperone holdases in response to HOCl stress [15, 16]. 
It was thus little surprise that the functional switch of human 
plasma proteins turned out to be mediated by N-chlorination 
as well [37].

These combined findings demonstrate that HOCl-medi-
ated N-chlorination may constitute a key mechanism to con-
fer protection against HOCl-mediated protein aggregation 
found in both bacteria and humans. Furthermore, there is 
more and more evidence for a crucial role of N-chlorination 
in the modulation of host protein function to amplify and 
sustain host immune responses to infection and inflamma-
tion. Although the increased generation of NADPH oxidase-
derived oxidants by neutrophils mediated by HOCl-modified 
plasma proteins can accelerate pathogen clearance at the 
site of an acute infection, prolonged lifespan of neutrophils 
due to inhibited apoptosis can also delay the resolution of 

inflammation, thus providing a positive feedback loop that 
may ultimately lead to chronic inflammation. It, therefore, 
appears likely that HOCl contributes to the pathogenesis of 
a number of inflammatory diseases through the modifica-
tion of plasma proteins. Since plasma protein-derived chlo-
ramines are much more stable and longer lasting than HOCl, 
they can diffuse greater distances and potentially exert their 
effects also at remote sites within the human body [29, 153]. 
However, due to the reversible nature of N-chlorination, 
N-chloramines can be readily reduced and detoxified by 
antioxidants in the blood, providing an off-switch for this 
potentially detrimental feedback loop.

The role of MPO and HOCl as a potential internal 
signaling molecule

After we have looked at the effects of neutrophil-generated 
hypohalous acids on phagocytized bacteria and the host 

Fig. 4   Immunomodulatory role of HOCl-modified human serum 
albumin (HSA) during infection and inflammation. At the site of 
infection or inflammation, activated neutrophils release myeloperoxi-
dase (MPO; blue circle) into the extracellular surroundings via leak-
age during phagocytosis, degranulation or association with neutrophil 
extracellular traps (NETs). Extracellular MPO generates hypohalous 
acids, particularly hypochlorous acid (HOCl), in the immediate vicin-
ity to host cells and host proteins, causing oxidative damage. Due to 
its high abundance in blood and interstitial fluid, HSA (yellow) is 
considered a major scavenger of HOCl and as such, becomes modi-
fied upon HOCl-stress. Reversible chlorination of its basic amino 
acid side-chains (N-chlorination) by HOCl results in the activation 

of HSA’s chaperone function, allowing HSA to effectively bind and 
protect other proteins from HOCl-induced aggregation. Moreover, 
N-chlorination also turns HSA into a potent activator of immune cells 
and thereby increases the generation of reactive oxygen, nitrogen or 
chlorine species (ROS/RNS/RCS) by these cells. Finally, HOCl-
modified HSA can extend neutrophil lifespan at sites of infection and 
inflammation by inhibiting cell apoptosis and thus delays the removal 
of neutrophils by macrophages and the resolution of inflammation. 
Both, the persistent activation of neutrophils and neutrophil lifespan 
extension provide a potentially detrimental positive feedback loop 
that may ultimately lead to chronic inflammation
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tissue, we now want to briefly turn our attention to potential 
internal effects on the producing cells themselves. Using 
genetically encoded redox probes based on roGFP2, we 
could recently show that the cytosolic thiol redox homeo-
stasis in neutrophil-like cells shifts to a more oxidized state 
upon activation [132]. This activation could be triggered by 
bacterial phagocytosis as well as the addition of PMA to 
the cells. Activation did not lead to full, but a more gradual 
oxidation of the probe. Additionally, inhibition of MPO did 
not change the oxidation of the probe. In light of the fact that 
HOCl is a highly effective thiol oxidant (it is, after all, the 
main factor in the oxidation of thiols in phagocytized bac-
teria [179] and leads to a full collapse of the bacterial thiol 
redox homeostasis [335]), we concluded that neutrophils 
must have a highly effective defense that prevents HOCl or 
other reactive chlorine species from leaving the confines of 
the phagolysosome, at least in amounts that could affect the 
overall thiol redox state of the neutrophil’s cytosol.

Nevertheless, it could be argued that HOCl, given its 
overall abundance in neutrophils could also play a role as a 
signaling molecule, especially in activated neutrophils such 
as those actively engaged in phagocytosis. Redox signal-
ing, in which the ROS H2O2 acts as the signaling molecule, 
is a well-established concept (see [336, 337] for in-depth 
reviews). Similarly, there are first examples for HOCl-based 
signaling: the extracellular action of HOCl in the induc-
tion of apoptosis in transformed cells has been termed the 
HOCl-signaling pathway (see [338] for a recent review). 
This pathway relies on the extracellular reaction of HOCl 
with superoxide to generate the apoptosis-inducing hydroxyl 
radical [339], however, this reaction might be limited by the 
low abundance of both superoxide and HOCl in vivo. The 
presence of HOCl can also affect the phosphorylation state 
of protein kinase Cθ leading to insulin resistance, however, 
this signaling is mediated via peroxynitrite [340]. The indi-
rect nature of these examples indicates that, due to its high 
reactivity with biomolecules, a direct HOCl-mediated sign-
aling, if it happens at all, would need to occur in close spa-
tiotemporal vicinity to the site of its generation. This would 
be especially true within the cytosol and its abundance of 
thiols, as HOCl is able to react with those at exceptionally 
high rates of more than 108 M−1 s−1 [229].

Still, a number of examples for regulatory effects have 
been found: HOCl influences iron metabolism [341], stimu-
lates the mitogen-activated protein (MAP) kinase pathway 
[342], induces translocation of transcription factors into the 
nucleus of T-lymphocytes [334], regulates cell growth by 
activating tumor suppressor proteins [343], or controls the 
enzyme activity of metalloproteinases [344]. Also, MPO was 
observed to modulate the vascular signaling and vasodilatory 
functions of nitric oxide (NO·) during acute inflammation 
by regulating NO· bioavailability [345]. There is also clear 
experimental evidence that HOCl-production is necessary 

to effectively induce NETosis in neutrophils, hinting at a 
role as messenger. Metzler et al. found that neutrophils of 
patients lacking MPO are defective in NET formation as well 
[181]. Low levels of MPO-derived hypochlorous acid have 
been reported to regulate NET release by neutrophils [346]. 
Further studies showed that it is the endogenous HOCl that 
facilitates NET formation, as extracellular addition of MPO 
did not rescue MPO-deficient neutrophils stimulated with 
PMA [347]. Additionally, we showed, that while the increase 
in overall thiol oxidation in neutrophil-like cells engaged in 
phagocytosis is not dependent on MPO, HOCl-production 
was still crucial for subsequent NET formation [132]. How-
ever, there are still major gaps in our understanding of the 
involvement of HOCl in the neutrophil’s internal signaling. 
Two major pathways are involved in both NET formation 
and ROS production in activated neutrophils. One is depend-
ent on phosphoinositide 3-kinase (PI3K), the other on pro-
tein kinase C (PKC). Using inhibitors of these pathways, it 
was shown that the PKC-dependent pathway is necessary 
for neutrophils activated with PMA, whereas in neutrophils 
phagocytosing E. coli, the inhibition of PI3K had a larger 
effect. Nevertheless, in both cases inhibition of MPO lead to 
lower NET production [132]. This suggests that HOCl could 
either interact with both of these pathways or affect other 
pathways as well. In the particular case of NET production, 
it has been suggested that a rather unspecific peroxidation 
of membrane lipids could simply enable the translocation 
of granular proteins into the nucleus, thereby facilitating 
NETosis [347]. Others have suggested that the presence of 
the MPO protein, but not necessarily its activity, is required 
to promote NETosis [140, 348], however, the aforemen-
tioned studies showing effects of MPO inhibitors seem to 
suggest that the mere presence of the enzyme itself is not 
sufficient. Overall, HOCl might as well be a non-specific 
activator of several kinase pathways and, taking into account 
the fact that protein tyrosine phosphatases and dual specific-
ity phosphatases have a conserved thiol in their active site, it 
is very likely that HOCl has a profound impact on the phos-
phoproteome and thus on regulatory pathways in the host.

Conclusions

Neutrophils employ different strategies to kill off patho-
gens. Among the most effective weapons in their arsenal 
are hypohalous acids, such as HOCl. These strong oxidants 
can damage virtually any biomolecule, making them highly 
effective antimicrobials. However, recent research high-
lighted that particularly HOCl-induced protein modifications 
do not exclusively have damaging effects but can activate 
chaperone-like holdase functions in some proteins through 
thiol oxidation and N-chlorination. In the model bacterium 
Escherichia coli at least three proteins have been found that, 
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once modified by HOCl, can prevent HOCl-induced pro-
tein aggregation: Hsp33, RidA and CnoX. Genetic experi-
ments showed that the presence of these proteins protects 
E. coli from HOCl stress. But not only bacteria experience 
HOCl-stress in their encounter with immune cells. Hypo-
halous acids generated by immune cells either directly or 
through the release of MPO can also damage host molecules. 
We found that serum proteins are modified by reversible 
N-chlorination at concentrations of HOCl as they occur in 
the direct vicinity of inflammation. The majority of thiol 
groups in serum proteins are engaged in structural disulfides, 
and, using model proteins, it has been shown that these can 
react with hypohalous acids, at apparent second-order rate 
constants of up to 2.5 × 107 M−1 s−1 [349]. Nevertheless, 
N-chlorination of basic amino acid side-chains is probably 
one of the predominant protein modifications induced by 
HOCl in serum proteins. These N-chlorinated serum pro-
teins can then bind aggregating proteins and prevent their 
precipitation, activate immune cells, and protect them from 
cytotoxic antigens. Furthermore, hypohalous acids seem to 
be critically involved in the modulation of diverse signaling 
pathways in the cells that produce them, the neutrophils. 
Unfortunately, much of our knowledge about the effects of 
HOCl is derived from biochemical in vitro experiments. 
Future experiments will have to elucidate the physiologi-
cal relevance of these findings and need to establish in vivo 
evidence of HOCl-mediated signaling events.
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