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Abstract

Objective—With longitudinal executive function (EF) data from the Victoria Longitudinal Study, 

we investigated three research goals pertaining to key characteristics of EF in non-demented 

aging: (a) examining variability in EF longitudinal trajectories, (b) establishing trajectory classes, 

and (c) identifying biomarker predictors discriminating these classes.

Method—We used a trajectory analyses sample (n = 781; M age = 71.42) for the first and second 

goals and a prediction analyses sample (n = 570; M age = 70.10) for the third goal. Eight 

neuropsychological EF measures were used as indicators of three EF dimensions: inhibition, 

updating, and shifting. Data-driven classification analyses were applied to the full trajectory 

distribution. Machine learning prediction analyses tested fifteen predictors from genetic, 

functional, lifestyle, mobility, and demographic risk domains.

Results—First, we observed: (a) significant variability in EF trajectories over a 40-year band of 

aging and (b) significantly variable patterns of EF decline. Second, a four-class EF trajectory 

model was observed, characterized with classes differentiated by an algorithm of level and slope 

information. Third, the highest group class was discriminated from lowest by several prediction 

factors: more education, more novel cognitive activity, lower pulse pressure, younger age, faster 

gait, lower body mass index, and better balance.

Conclusion—First, with longitudinal variability in EF aging, the data-driven approach showed 

that long-term trajectories can be differentiated into separable classes. Second, prediction analyses 

discriminated class membership by a combination of multiple biomarkers from demographic, 

lifestyle, functional, and mobility domains of risk for brain and cognitive aging decline.
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Executive function (EF) refers to mental control processes, associated with neuroanatomical 

integrity of the brain, that monitor aspects of action and cognition in humans (Luszcz, 2011; 

Miyake & Friedman, 2012). Much empirical and theoretical work has examined EF 

performance and structure based on three dimensions: shifting (switching flexibly between 

tasks or mental sets), updating (monitoring and adding/deleting working memory 

representations), and inhibition (inhibit dominant or prepotent responses; Miyake et al., 

2000; Miyake & Friedman, 2012). According to the de/differentiation theory, consolidation 

of EFs into a single dimension is likely to occur in aging. In general, EFs undergo changes 

across the lifespan from EF differentiation (multidimensional structure) in older children and 

young adults (Miyake et al., 2000; Wiebe & Karbach, 2017) to EF dedifferentiation 

(unidimensional structure) in non-demented and impaired aging (Adrover-Roig, Sesé, 

Barceló, & Palmer, 2012; de Frias, Dixon, & Strauss, 2006, 2009; Li, Vadaga, Bruce, & Lai, 

2017). However, other studies have reported retention of EF differentiation in older adults 

(Hedden & Yoon, 2006; Hull et al., 2008; Kievit et al., 2014). For the current study, we 

conducted the analyses to test whether we would observe a unidimensional or 

multidimensional model of EF in non-demented aging.

In adulthood, these dimensions show a pattern described as “unity and diversity”—the 

dimensions are moderately correlated with one another, but are clearly separable and 

contribute differentially to overall EF performance (Friedman & Miyake, 2017). Evidence of 

the unity and diversity of EFs in older adults has been replicated in multiple studies (Fisk & 

Sharp, 2004; Hedden & Yoon, 2006; Hull, Martin, Beier, Lane, & Hamilton, 2008; Vaughan 

& Giovanello, 2010). The unity/diversity model (Friedman & Miyake, 2017) assumes that 

each EF process is controlled by multiple brain regions. The major clusters of EF abilities 

(i.e., switching, interference control, monitoring) can be performed at varying levels by 

cognitively normal individuals. However, across life, individualized accumulation of various 

risk and protective factors can lead to substantial individual differences in level and 

trajectories of performance. For instance, in the field of EF, research has demonstrated 

considerable variability of normative EF aging (e.g., de Frias et al., 2009; Goh et al., 2012; 

McFall et al., 2016; Sapkota et al., 2017). Organizing this variability according to both level 

and slope will enhance our understanding of the range of normal of EF aging, but also lead 

to the early detection of individuals or classes who may be at elevated risk for exacerbated or 

impaired cognitive decline.

In the course of recent EF research, multiple predictors have been linked to decline and, 

occasionally, stable patterns of aging (Anstey, Cherbuin, Budge, & Young, 2011; Bento-

Torres et al., 2017; Erickson, Leckie, & Weinstein, 2014; Roberts & Mapel, 2012; Sapkota, 

Vergote, Westaway, Jhamandas, & Dixon, 2015; Sternäng et al., 2015; Thibeau, McFall, 

Camicioli, & Dixon, 2017; Watson et al., 2010; Wisdom, Callahan, & Hawkins, 2011; 

Zaninotto, Batty, Allerhand, & Deary, 2018). Examining multiple factors simultaneously 

that may differ depending on the characteristics of individualized trajectory patterns can lead 

to novel insights about the risk-elevating and protective-enhancing factors that most 

contribute to differential EF change. In addition, some novel clinical implications may be 

noted. For instance, the identification of operative factors can lead to precision strategies for 

promoting healthier EF by targeting factors that reduce risk and enhance protection (McFall 

et al., 2019).
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A methodological limitation of previous studies is the use of single measures or average 

composite scores. Latent variables provide an alternative and enhanced estimation of a 

construct. The use of structural equation modeling of latent variables, comprised of multiple 

indicators, account for unreliability within the construct and provide an accurate estimation 

of the relationships in conditional growth models (Little, 2013). Furthermore, this approach 

provides a way to conduct factor analysis and test the dimensionality of EFs, reducing error 

and the risk that single measures influence the estimate of EF. Our methods also improve on 

previous research by incorporating latent class growth analyses (LCGA) and random forest 

analysis (RFA). The advantage of LCGA is that it identifies subgroups of individuals with 

similar patterns of change over time on a latent variable (see Andruff, Carraro, Thompson, 

Gaudreau, & Louvet, 2009). Each individual has a unique developmental course; however, 

the distribution of individual differences is specified by a finite set of polynomial functions 

corresponding to a discrete trajectory. This is a data-driven technique that uses level and 

slope algorithms in order to estimate trajectory classes and account for the magnitude and 

direction of change. The advantage of RFA is that predictors from multiple domains 

(previously studied independently or in small combinations) can be examined 

simultaneously in a competitive computational context in order to identify those that best 

discriminate EF class membership.

The purpose of the present study was to examine trajectories and predictors of EF 

performance (level) and longitudinal change (slope) in a cognitively normal aging group. 

Accordingly, three research goals guided this study. The first goal was to examine the 

distribution of individualized trajectories of EF performance over a 40-year band of aging. 

We expected to find significant variability in EF performance (level) and rate (slope) of 

decline (McFall et al., 2014). The second goal was to apply data-driven LCGA to the 

trajectory distribution in order to establish objectively separable classes of EF change 

trajectories. With the LCGA approach, we expected to objectively separate neighboring (but 

statistically distinguishable) classes of EF trajectories based on an algorithm including 

individualized level and slope values. The third goal was to identify the biomarker risk 

predictors from genetic, functional, lifestyle, mobility, and demographic domains that best 

discriminated these classes. By using the random forest approach, we expected factors from 

multiple domains to predict trajectory class membership (as has been observed with 

memory; McFall, McDermott, & Dixon, 2019; Sapkota et al., 2018).

Method

Participants

Characteristics—Participants were volunteer community-dwelling adults from the 

Victoria Longitudinal Study (VLS). The VLS is an ongoing large-scale, multi-cohort, 

longitudinal sequential study of cognitive, neuropsychological, genetic, metabolic, 

biomedical, and lifestyle aspects of human aging (Dixon & de Frias, 2004). Participants 

were originally recruited by using advertisements through the public media and requests 

from community groups. All participants provided written informed consent and were 

offered nominal fees for their participation. Data collection procedures were in full and 

certified compliance with the University of Alberta Human Research Ethics Board. Using 
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standard procedures (i.e., Dixon, Small, MacDonald, & McArdle, 2012; McFall et al., 

2014), we assembled and merged corresponding three-wave VLS samples collected in the 

same era (2000 – 2016). All participants started at wave 1 (W1); no new participants were 

recruited at wave 2 (W2) or wave 3 (W3). As part of the VLS design, each cohort sample is 

comprised of adults (initially aged 55–85 years, 98% Caucasian), and re-tested at 

approximately 4-year intervals. Accordingly, the initial source sample included 914 persons 

(baseline M age = 71.91, SD = 9.18, range = 53.24 – 100.16, 66.2% female, M years of 

education = 15.09). Multiple exclusionary criteria were applied at baseline. Participants were 

excluded if they had (a) EF data missing from all three waves (n = 20), (b) a diagnosis of 

mild to very serious Alzheimer’s disease or other forms of impairment and dementia (n = 6), 

(c) history of very serious head injury, epilepsy, and depression (n = 30), (d) moderately-to-

very serious stroke (n = 29), (e) moderately-to-severe Parkinson’s disease (n = 7), (f) Mini-

Mental Status Examination (MMSE) score less than 24 (n = 35), and (g) anti-psychotic 

medication use (n = 6). All participants remained non-demented for the duration of the 

study. We established a trajectory sample comprised of 781 participants (baseline M age = 

71.42, SD = 9.07, range = 53.24 – 95.25, 66.6% female; see Table 1). The mean longitudinal 

intervals (in years) were as follows: W1-W2 M = 4.4 (SD = .58), W2-W3 M = 4.6 (SD 

= .76), and W1-W3 M = 9.1 (SD = .84). The wave-to-wave retention rates were as follows: 

(a) W1-W2 = 69% and (b) W2-W3 = 75%. For the subset of participants who contributed 

genetic data during collection occurring from 2009 – 2011, we established a prediction 

sample comprised of 570 participants (baseline M age = 70.10, SD = 8.50, range = 53.24 – 

95.25, 66.5% female; see Table 2). We used the trajectory sample for the first and second 

research goals and the prediction sample for the third goal. For a consort diagram, see Figure 

1.

Executive function measures

For the first and second research goals, eight standard neuropsychological measures were 

used as indicators of three common dimensions of EF: two each for inhibition (Hayling, 

Stroop) and updating (Computational Span, Reading Span) and four for shifting (Brixton, 

Color Trails, Letter Series, Letter Sets). These measures have been tested in multiple studies 

and their psychometric properties have been reported in both clinical and healthy 

populations (i.e., Bielak, Mansueti, Strauss, & Dixon, 2006; de Frias & Dixon, 2014; McFall 

et al., 2013, 2014; Sapkota et al., 2015; Quereshi & Seitz, 1993). See Supplementary 

Material for descriptions of all EF measures.

Fifteen biomarker risk factor predictors

For the third research goal, a total of 15 biomarker risk factor predictors were used to 

discriminate classes of EF trajectories. Baseline (W1) predictors were selected from multiple 

domains: genetic [apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), 

insulin degrading enzyme (IDE), catechol-O-methyltransferase (COMT)], functional [pulse 

pressure (PP), body mass index (BMI), peak expiratory flow, grip strength], lifestyle 

(everyday physical activity, everyday novel cognitive activity), mobility (balance, gait), and 

demographic (age, education, sex). We note that some of the predictors were from 

demographic and lifestyle domains and are not typically considered biomarkers. However, 

our assumption is that their observed influence on brain and cognitive aging changes operate 
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indirectly through biological mechanisms. Therefore, as we use it, the term biomarker 

reflects this assumption. See Supplementary Material for more information about each 

predictor, including DNA extraction and genotyping.

Statistical Analyses

We used Mplus 7 (Muthén & Muthén, 2010) and data from the trajectory sample for 

preliminary analyses and the first and second research goals. We used R 3.3.2 (R 

Development Core Team, 2015) and data from the prediction sample for the third goal. The 

statistical analyses are summarized below; details are provided in the Supplementary 

Material.

Two sets of preliminary statistical analyses were performed. Using confirmatory factor 

analysis (CFA) and eight EF indicators, we established the best fitting EF latent variable by 

testing one-, two-, and three-factor models. The second analysis involved testing the 

measurement invariance of the EF latent variable model across three waves. In subsequent 

growth models, we used continuous age (centered at age 75 years) as the metric of 

longitudinal change. This was done in order to give the initial time point a meaningful 

occasion of measurement. By doing so, we were able to interpret baseline differences as 

performance level at age 75 (midpoint of the age range).

Research Goal 1: Examining Variability in EF Longitudinal Trajectories

Latent growth modeling was used to establish an EF latent growth. Following previous 

protocols and guidelines (Little, 2013; McFall et al., 2014; Thibeau et al., 2017), we 

established the best fitting model by testing (a) fixed intercept model (no interindividual or 

intraindividual variability in EF level), (b) random intercept model (interindividual but no 

intraindividual variability in EF level), (c) random intercept fixed slope model 

(interindividual variability in EF level but no interindividual variability in change), and (d) 

random intercept random slope model (interindividual variability in both EF level and 

change).

Research Goal 2: Establishing Latent Classes of EF Trajectories

LCGA was used to analyze individualized EF latent variable trajectory data. For each class 

model tested, we used a random intercept, random slope growth model fully constrained 

(intercept and slope constrained to be equal) within each class to determine group 

differences (Jung & Wickrama, 2008). Specifically, the variance of the intercept and the 

slope were fixed to zero within classes. In contrast, the variances were allowed to vary 

across classes. Since there is no within class variability, there are fewer parameters to 

estimate and there is no covariance between the intercept and slope (Berlin, Parra, Williams, 

2013).

In order to compare class models based on their relative fit, we used recommended fit 

indices: AIC, BIC, − 2LL, and entropy. Following earlier methodological developments 

(Andruff et al., 2009; Jung & Wickrama, 2008; Ram and Grimm, 2009) and previous 

longitudinal aging analyses comparing classes (McDermott et al., 2017; McFall et al., 2019; 

Han et al., 2013), we identified the best model with a combination of five considerations: (a) 
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lowest AIC, BIC, and −2LL (absolute value), (b) high entropy value (>.80), and (c) classes 

with substantial (>10%) membership numbers. Regarding the latter characteristic, the 10% 

criterion was expected to yield about 100 participants to accommodate further statistical 

analyses. We used class membership in subsequent prediction analyses.

Research Goal 3: Biomarker Risk Predictors Discriminating Classes of EF Trajectories

RFA (Kuhn & Johnson, 2013) was used to determine the most important predictors 

discriminating classes of EF trajectories. RFA determines a ranking of predictors in terms of 

importance, as identified by the algorithm in a competitive computational context. Notably, 

RFA produces a conservative estimate of its predictive ability (out-of-bag error rate) and 

copes with large number of predictor variables, restricting the number of variables used in 

each ntree, which can show important predictors that could have been overshadowed by a 

stronger competitor (Strobl, Malley, & Tutz, 2009). We used the “Party” package for 

variable importance and missForest for missing data imputation. For the party package, we 

specifically used the permutation accuracy importance or mean decrease in accuracy to 

assess relative level of importance with the cforest function (Hothorn, Bühlmann, Dudoit, 

Molinaro, & van der Laan, 2006). For the missforest package, the algorithm works as a 

nonparametric imputation method, fitting a random forest on the observed data and then 

predicting the missing data for each variable (Stekhoven, 2011). The prediction sample had 

the following missing data characteristics: M percentage = 1.2% (range = 0.4% – 4%). 

Model strength was assessed as the area under the receiver operation characteristic curve (C- 

statistic), with values closer to 1 indicating better model strength (see Hajian-Tilaki, 2013). 

The number of ntrees used was 5000, sufficient for good model stability, and mtry was set at 

4 ( # of predictors), for an optimal number of predictors at each potential split (Genuer, 

Poggi, & Tuleau-Malot, 2010).

Results

The one-factor EF model fit the longitudinal data well, χ2 (219, N = 781) = 360.644, p 
<.001, RMSEA = .029, CFI = .978, SRMR = .039 (Table 3). This model was selected over 

the two-factor [χ2 (225, N = 781) = 874.380, p <.001, RMSEA = .061, CFI = .897, SRMR 

= .159] and three-factor [χ2 (210, N = 781) = 770.907, p <.001, RMSEA = .058, CFI = .911, 

SRMR = .160] models because it represented the best fitting model for this aging sample. 

Therefore, we used the one-factor model in subsequent analyses. Table 4 shows the 

standardized coefficients for each factor loading on the one-factor model. In SEM, these 

parameter estimates are equivalent to standardized measures of effect size based on the 

covariance matrix (Kelley & Preacher, 2012). We then conducted measurement invariance 

testing (Table 3). Based on criteria to evaluate model fit and selection (Chen, 2007; 

Rutkowski and Svetina, 2014), the results supported metric invariance. Model fit criteria 

were not met for scalar invariance and thus we proceeded to test a model with partial scalar 

invariance. A partial scalar model with intercepts constrained to be equal across time for 

Hayling and Stroop resulted in the optimal model and showed good fit indices, χ2 (237, N = 

781) = 464.543, p <.001, RMSEA = .035, CFI = .964, SRMR = .066. Overall, these results 

indicated two important points about the EF model: (a) it measured the same construct at 
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each wave and (b) the same indicator variables marked EF at each wave. Partial scalar 

results allowed comparison of latent variable means.

Research Goal 1: Examining Variability in EF Longitudinal Trajectories

The best-fitting unconditional growth model was established as a random intercept, random 

slope (unstructured covariance; see Table 5 for model goodness of fit indexes). The model 

indicated significant (a) variability in EF performance at age 75 (b = 1.084, p < .001), (b) EF 

decline with greater age (M = −.003, p = .02); and (c) variable patterns of decline across 

individuals (b = .001, p < .001). Figure 2 shows the individualized trajectories and the 

group-level mean growth curve for overall EF change.

Research Goal 2: Establishing Latent Classes of EF Trajectories

With a combined consideration of intercept and slope, the LCGA results identified a four-

class model as the best-fitting solution (Table 6). The model had a very good entropy value 

(0.83) and each class had more than 10% of the sample. The specific characteristics of each 

class were as follows: (a) very high level (intercept) and shallow declining slope (n = 119 

[15.2%; M age = 66.25 (7.40)], intercept = 1.286 [SE =.025; 95% CI: 1.237 – 1.336], slope 

= −.014 [SE =.003; 95% CI: −.019 – −.009]); (b) moderate level and notably declining slope 

(n = 278 [35.5%; M age = 69.84 (8.27)], intercept = .420 [SE =.015; 95% CI: .391 – .449], 

slope = −.020 [SE =.002; 95% CI: −.024 – −.016]); (c) low level (i.e., factor scores below 0) 

and substantially declining slope (n = 290 [37.1%; M age = 73.69 (8.99)], intercept = −.464 

[SE =.015; 95% CI: −.493 – −.435], slope = −.042 [SE =.002; 95% CI: −.046 – −.038]; and 

(d) very low level and steepest declining slope (n = 94 [12.0%; M age = 75.65 (9.48)], 

intercept = −1.543 [SE =.021; 95% CI: −1.583 – −1.503], slope = −.059 [SE =.003; 95% CI: 
−.064 – −.054]). Figure 3 shows the trajectory distribution of each class. Five- and six-class 

models resulted in a class with proportion <10% and therefore were not considered further. 

The highest performing class (class a) was represented as highest-level-and-stable and the 

lowest (class d) as lowest-level-and-declining. Arguably, these two trajectory classes would 

represent the most separation of dynamic EF performance patterns and produce the strongest 

and most interpretable results. In addition, this approach would permit us to discover the risk 

biomarkers most predictive of each of these extreme secondary phenotypes.

Research Goal 3: Biomarker Risk Predictors Discriminating Classes of EF Trajectories

The relative predictive importance of 15 risk and protective markers was first computed for 

these trajectory classes: highest-level-and-stable and lowest-level-and-declining. Seven 

predictors represented demographic (education, age), lifestyle (everyday novel cognitive 

activity), functional (PP, BMI), and mobility (gait, balance) domains (C = 0.84; 95% CI [.77 

– .91]). Figure 4 shows the predictors in order of importance, those to the right of the 

vertical line having the best permutation accuracy importance. We found membership in the 

highest-level-and-stable class was predicted by more education, more novel cognitive 

activity, lower PP, younger age, faster gait, lower BMI, and better balance.

To further examine predictive patterns, we computed parallel analyses for the two 

neighboring classes: moderate level and notably declining (class b) and low level and 

substantially declining (class c). RFA results showed five important predictors representing 
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lifestyle (novel cognitive activity, physical activity), demographic (education, age), and 

mobility (gait) domains (C = 0.63; 95% CI [.58 – .68]). Membership in class b was 

predicted, in order of importance, by more novel cognitive activity, more education, younger 

age, more physical activity, and faster gait.

To include the whole sample for prediction analysis, we merged neighboring and 

phenotypically similar classes from the four-class model based on level and slope 

information: top two classes (class a and class b) and bottom two classes (class c and class 

d). RFA results did not differ substantially. Specifically, four predictors discriminated these 

classes and represented demographic (education, age), genetic (BDNF), and lifestyle (novel 

cognitive activity) domains (C = 0.70; 95% CI [.66 – .74]).]). Membership in the top two 

classes was predicted, in order of importance, by more education, BDNF Met- (non-risk), 

more novel cognitive activity, and younger age. See Table 1 of the Supplementary Material 

for more follow-up analyses.

Discussion

We investigated three research goals relating to key characteristics of EF in non-demented 

aging: (a) examining variability in EF longitudinal trajectories, (b) establishing trajectory 

classes, and (c) biomarker risk predictors discriminating classes of EF trajectories. We 

included a trajectory sample for the first and second goals and a prediction sample for the 

third goal. Our results showed that the best fit was provided by the one-factor model. This 

provides support for the theory (Adrover-Roig et al., 2012;Miyake et al., 2000; Wiebe & 

Karbach, 2017; de Frias et al., 2009) that, with normal lifespan development and aging, EF 

abilities that emerge in earlier life (older children and younger adults) as multidimensional 

(typically two or three factors) become less differentiated in older adulthood, as indicated by 

a unidimensional (one-factor) structure. We note, however, that although our data provide 

strong support for this theory in the last 40 years of the lifespan, they do not speak directly 

to the early adulthood and midlife periods.

For our first research goal (examining variability in EF longitudinal trajectories), we 

demonstrated significant individual variability in level and slope of EF performance (Figure 

2). This means that although there was significant longitudinal decline with increasing age, 

older adults showed variable patterns in EF level and change. In other words, the change-

related variability and the general trajectory of decline demonstrate substantial variability in 

the aging of EF over a 40-year period. Because we have represented a broader construct of 

EF (in our latent variable), we can characterize the variability in level and slope of non-

demented EF aging with more confidence (than we could have with a single measure). As 

can be seen in Figure 2, EF aging included notable individualized and distribution-wide 

variability in both level and change. This carries both theoretical and clinical interest, as it 

underscores the importance of examining not just mean level between-subject differences (or 

within-group changes) but also within-person level and variability within a distribution of 

trajectories and across subgroups (or classes) of trajectories. In accordance with the unity/

diversity model and other studies (Friedman & Miyake, 2017; Goh, An, & Resnick, 2012; 

Lin, Wang, Wu, Rebok, & Chapman, 2017), these results demonstrate that the longitudinal 

cognitive aging of EFs is not characterized by a uniform but rather heterogeneous process. 
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The observed individual variability in level and slope of EF allowed us to explore our next 

research goal: establishing classes of EF trajectories.

For the second research goal (establishing latent classes of EF trajectories), the full-sample 

distribution of individualized EF trajectories empirically discriminated four classes of aging. 

These classes were distinguished by both level and slope information for each individual and 

characterized by (a) very high level and shallow declining slope, (b) moderate level and 

notably declining slope, (c) low level and substantially declining slope, and (d) very low 

level and steepest declining slope. We characterized the highest class as highest-level-and-

stable and the lowest class as lowest-level-and-declining. From a data-driven perspective, the 

results of this analysis established that the broad distribution of EF trajectories could be 

objectively classified into four discriminable classes. Conceptually, these patterns may 

represent different types of aging individuals. For instance, the upper (higher) classes may 

be more suggestive of “typical” non-demented aging. In contrast, the profiles of the lower 

two classes, where there is more EF decline, may represent a signal emerging from 

neurodegenerative pathology that is likely to transition into a form of mild cognitive 

impairment. Each of the trajectory classes is quantitatively differentiated from the others. 

Accordingly, they vary (as classes) in both level and slope. Because we used these two 

components in the classification algorithm, it is possible to see (from Figure 3) that some 

individual trajectories associated with one class may appear to overlap with some of the 

trajectories in a neighboring class. This phenomenon is a product of the simultaneous 

consideration of more than one criterion component and emphasizes the dynamic and 

variable nature of actual EF trajectories over a 40-year band of aging. Of both theoretical 

and clinical interest is the determination of the specific factors that are associated with this 

variability and change. Specifically, it is useful to know that aging individuals’ EF change 

patterns may be affected in particular by other attributes (e.g., lifestyle, functional, mobility) 

that interact to produce specific trajectories that may lead toward or away from impairment. 

This approach and these results could advance our ability to identify and use early and more 

personalized clinical interventions for a non-demented aging population. Some of these risk 

predictors may be modifiable and could therefore serve as immediate targets for risk 

reduction or protection enhancement (see also McFall et al., 2019).

For the third research goal (biomarker risk predictors discriminating classes of EF 

trajectories), we first conducted RFA on the highest-level-and-stable versus lowest-level-

and-declining classes. We observed that a substantial number of factors predicted the former 

from the latter class. Specifically, the predictors were, in order of importance: more 

education, more novel cognitive activity, lower PP, younger age, faster gait, lower BMI, and 

better balance. Second, for the two neighboring classes (moderate level and notably 

declining slope and low level and substantially declining slope) membership in the former 

class was predicted by more novel cognitive activity, more education, younger age, more 

physical activity, and gait. Third, for the top two classes (class a and class b) and bottom two 

classes (class c and class d) membership in the top two classes was predicted by more 

education, BDNF Met- (non-risk), more novel cognitive activity, and younger age. Why 

might these cognitive aging and dementia risk factors discriminate these patterns of EF 

aging?
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Research has suggested that there may be some delay in cognitive impairment when there is 

greater cognitive brain reserve capacity (Stern, 2003). Therefore, education may be a factor 

that helps maintain cognitive reserve capacity and protect against age-related detrimental 

changes in the brain. Recent research has also found that early childhood education may 

promote developmental changes that are essential to protect against cognitive decline in late-

life (Zahodne et al., 2015). Common affected age-related functions in EF include inhibition, 

shifting, updating, abstraction, mental flexibility, and concept formation (Bielak et al., 2006; 

Bopp & Verhaeghen, 2005; Harada et al., 2013; Wasylyshyn, Verhaeghen, & Sliwinski, 

2011). The mechanism behind this impairment may be related to age-related cortical 

thinning and volumetric loss, in regions such as the prefrontal cortex, which disrupt the 

response of cognitive activity in the brain (Li et al., 2017; Yuan & Raz, 2014).

Engagement in cognitive activity has been shown to protect against cognitive impairment 

leading to dementia by enhancing cognitive reserve or plasticity (i.e., Blasko et al., 2014; 

Lachman, Agrigoroaei, Murphy, & Tun, 2010; Mitchell et al., 2012; Runge, Small, McFall, 

& Dixon, 2014; Valenzuela & Sachdev, 2009; Wang, Karp, Winblad, & Fratiglioni, 2002; 

Wilson, Scherr, Schneider, Tang, & Bennett, 2007). Cognitive reserve may work to improve 

cerebral blood flow, stimulate neurogenesis, and potentiate synaptic strength (Barulli & 

Stern, 2013; Blasko et al., 2014; Esiri & Chance, 2012; Whalley, Deary, Appleton, & Starr, 

2004). Increases in brain volume in response to cognitive training may be due to increased 

neural activity and the ability of the brain to develop neural scaffolding (Park & Bischof, 

2013).

PP is commonly used as a proxy for arterial stiffness (systolic minus diastolic blood 

pressure). Lower values of PP, which indicate better vascular health, may be beneficial for 

EF by preventing mini-infarcts or cerebrovascular vascular damage and reducing 

pathophysiology related to neurodegenerative processes (Nation et al., 2013; Warsch & 

Wright, 2010). Elevated BMI poses a risk for impaired insulin regulation, systemic 

inflammation, and pathophysiological changes in vascular health (i.e., Anstey et al., 2011; 

Taki et al., 2008). Therefore, it may be beneficial for EF to maintain lower BMI levels as 

opposed to higher in this age group. Research has shown that worse PP (i.e., 72 mmHG; 

McFall et al., 2014) and BMI > 25 (Gunstad et al., 2007) produces poorer EF performance 

and greater EF decline in non-demented aging adults.

Studies have hypothesized that cognitive decline affects mobility, especially when there is 

impairment in EF (i.e., Ble et al., 2005). Evidence suggests that this occurs because 

numerous EF components are needed when particular mobility tasks are performed in 

everyday environments. For instance, response inhibition is needed to allow an individual to 

focus on gait when walking in an environment with numerous distractors (Mirelman et al., 

2012). EF deficits also contribute to poor locomotion and difficulties performing a turn (i.e., 

Kearney et al., 2013). Therefore, mobility markers may be important for overall EF 

performance and change in non-demented aging.

The BDNF polymorphism was the only genetic marker that contributed substantial 

importance to the RFA models. BNDF is a molecule present in the prefrontal cortex and 

helps modulate brain plasticity (Komulainen et al., 2008). Furthermore, it supports the health 
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and functioning of glutamatergic neurons, which are major projection neurons that connect 

cognitive brain regions. Research indicates that BDNF concentration declines in adulthood 

(Cotman & Engesser-Cesar, 2002; Erickson et al., 2010). However, secretion of BDNF is 

higher in Val homozygotes than in Met carriers, which places the Met homozygotes at 

greater risk of selective cognitive deficits (Nagel et al., 2008; Sapkota et al., 2015). 

Substitution of Val to Met may result in disruption of neuronal trafficking and processing 

(Egan et al., 2003; Liu et al., 2014). As such, BDNF has been shown to interact with other 

brain aging genetic risk factors in affecting EF performance (Sapkota & Dixon, 2018).

Overall, RFA showed that multiple predictors discriminated data-driven classes of EF 

trajectories. That these predictors emerged in the competitive context of other previously 

observed EF predictors in aging is novel information. Conceptually, this means that in non-

demented aging sustained levels of EF performance into late life are supported by relative 

unique risk-reducing or protective factors. Among previously identified predictors of EF 

performance and change, our results suggest that some are more influential than others. That 

these operative factors for secondary phenotypes are representative of multiple domains of 

influence emphasize the important theoretical point that EF change in normal aging is 

broadly and multiply-determined. Moreover, the RFA produced a rank ordering of the 

significant predictors, a result that will be useful for further clinical research. We infer that 

the substantial number and variety of predictors discriminating the distinct upper and lower 

classes is reasonable because the distinct patterns of level and slope represented in these 

classes are at the extremes of non-demented EF aging. We note that age is among the 

important factors discriminating these classes. However, it is not the only predictive factor 

nor is it the most important one according to the permutation importance. The implication of 

the RFA results involve identification of a set of factors influencing EF aging as well as 

promising targets for promoting healthy EF aging. Such interventions may be more powerful 

in that they target an empirically determined subset of the roster of previously identified 

predictors. In addition, they imply the potential benefit of precision multi-modal 

interventions that include representatives of several domains (i.e., demographic, lifestyle, 

mobility, functional). Notably, our results indicated that sex was not an important predictor, 

thus implying that these targets may not vary for males and females.

There are several limitations associated with this study. First, by design the participants were 

relatively healthy, predominantly Caucasian (98% white, non-Hispanic), and non-demented. 

As a group, they may not represent the broader population of aging adults. Conceivably, 

prediction patterns could vary across a broader range of aging adults, including impaired and 

diverse groups. Nonetheless, our sample reflects a portion of older adults in western or 

developed countries where there is rapid older population growth. Second, although the 

comparison classes are similar in age range, some age imbalance was observed in that the 

lower-class members were more likely to be in the oldest decade and had a higher mean age. 

This could have influenced the significant results of some aging-related predictors. However, 

age was not the leading, or sole, predictor in the RFA models, indicating age was not driving 

the effect. Third, our trajectory analyses were based on a distribution spread across a 40-year 

band of aging, but each individualized trajectory included a maximum of three time points. 

Several factors may limit generalizability of the four-class model, including (a) longer (or 

shorter) time frames, (b) alternative algorithms, and (c) more (or fewer) time points per 
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participant. Fourth, although the classes were identified based on trajectory differences, the 

predictors were taken from baseline performance. The predictive importance of a predictor 

may vary if tested at different time points. Therefore, testing time-varying predictors may 

yield interesting results. However, this reflects a different research question and a different 

approach to the analyses. Specifically, the goal of the alternative approach would be 

interesting but would be aimed at predicting actual performance changes and whether they 

are coupled with predictor changes. In this study, our aim was to examine prediction of EF 

change classes as rendered across multiple waves of data. Fifth, some risk factors were 

available in the VLS data set (i.e., smoking, alcohol) but were not used here due to low 

frequency or non-normality issues. In addition, other factors that could be related to overall 

cognitive function (including EF) such as fish consumption or cholesterol level were not 

available in the VLS battery. Future research should implement RFA models with additional 

predictors in order to assess their impact on EF level, structure, and change in aging.

Among strengths, we first note the use of a relatively large, well-characterized sample. This 

was important in order to (a) capture the substantial variability we found in the EF level and 

change data and (b) provide multiple domains of predictors relevant to EF aging. Second, 

using age as the metric of change in the growth models allowed us to examine EF 

trajectories over a 40-year band of aging. This accelerated longitudinal approach was 

essential because it enabled us to cover a wide age range of interest in a shorter period of 

time, which would not be possible with a single cohort longitudinal design (Galbraith, 

Bowden, & Mander, 2017). Third, we established classes based on individualized level and 

slope information with a large distribution of EF trajectories. Precise trajectory information 

is a contributing factor to objective group classification that offers advantages to single-wave 

or single-measure classification systems. Fourth, we used machine learning (RFA) for our 

prediction analyses. This relatively novel approach has great performance and prediction 

accuracy (i.e., Couronné, Probst, & Boulesteix, 2018; McFall et al., 2019; Sapkota & Dixon, 

2018), which enabled us to obtain a precise order of predictors according to their importance 

on EF trajectory data.

In sum, in our first two sets of analyses we found (a) significant variability in EF level and 

slope and (b) dynamic variability differences leading to four data-driven trajectory classes. 

Using RFA, we identified multiple predictors that discriminated between the trajectories. 

These results emphasize that distributions of individualized trajectories can be analyzed with 

data-driven technologies to reveal underlying latent classes of EF aging change. In addition, 

such classes, when properly validated, may serve as secondary phenotypes representing 

detectably different patterns of asymptomatic cognitive aging. That there were multiple 

predictors of both higher and lower EF change classes shows that among previously 

associated predictors, only selected predictors emerge in this analytic context. A clinical 

implication of these results is that the promotion of healthier EF can be potentially 

influenced by targeting factors that selectively reduce risk and factors that enhance 

protection. These factors differ depending on the precise characteristics of the individual’s 

trajectory patterns. Finally, from a research methods perspective, this research illustrates the 

potential contributions of a dynamic and data-driven approach to EF performance and 

change. Although mean level between-subject differences are useful for identifying single 
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candidate predictors, research designs and analytic strategies that incorporate within-subject 

level and change variability, as well as multiple predictors, can lead to novel outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Consort diagram. Participants from the VLS were first assessed for three initial criteria [age 

= 53–95; members of longitudinal sample (2002-forward); neuropsychological battery]. The 

trajectory sample served Research Goals 1 and 2. The prediction sample served Research 

Goal 3.
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Figure 2. 
Executive function trajectory distribution. The black lines show the individualized 

trajectories and the red line show the group-level mean of individualized trajectories based 

on factor scores from latent growth model. Significant variability was found in (a) level of 

EF at the centering age (b = 1.084, p < .001) and (b) rate of decline for EF (b= .001, p 
< .001). Individuals declined in EF with greater age (M = −.003, p = .02).
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Figure 3. 
Classification of executive function based on the four-class model. The data-driven approach 

characterized four classes based on level and slope information. Color coded lines represent 

individualized performance. Thick lines represent mean class change.

Caballero et al. Page 21

J Int Neuropsychol Soc. Author manuscript; available in PMC 2021 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Relative importance of predictors discriminating highest-level-and-stable versus lowest-

level-and-declining classes of executive function trajectories. Variable importance was 

calculated based on the mean decrease in accuracy, which quantifies the importance of a 

variable by measuring prediction changes in accuracy.
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