Table 5.
Algorithms | Candidate parameters |
---|---|
Logistic regression |
C: [0.01, 0.1, 1, 10] class_weight: [‘balanced’] |
Artificial neural network | hidden_layer_sizes: [(50, 50), (100, 100), (150, 150)] |
Random forest |
n_estimators: [30, 60 ,90] max_depth: [30, 60, 90] max_leaf_nodes: [30, 60 ,90] class_weight: [‘balanced’] |
XGBoost |
n_estimators: [3,30,60] max_depth: [3, 30] reg_lambda: [0.1, 10] gamma: [0.1, 10] min_child_weight: [0.2, 8, 20] scale_pos_weight: [3,30,300,3000,3300,3600,3900,4000,5000,6000,7000,8000] subsample:[0.3, 0.6, 1] max_delta_step:[0, 3] |
These parameters came from Python machine learning package called Sklearn.