Skip to main content
. 2021 Feb 9;11:3384. doi: 10.1038/s41598-021-83020-7

Table 5.

Candidate parameters for grid search and fine-tune of parameters.

Algorithms Candidate parameters
Logistic regression

C: [0.01, 0.1, 1, 10]

class_weight: [‘balanced’]

Artificial neural network hidden_layer_sizes: [(50, 50), (100, 100), (150, 150)]
Random forest

n_estimators: [30, 60 ,90]

max_depth: [30, 60, 90]

max_leaf_nodes: [30, 60 ,90]

class_weight: [‘balanced’]

XGBoost

n_estimators: [3,30,60]

max_depth: [3, 30]

reg_lambda: [0.1, 10]

gamma: [0.1, 10]

min_child_weight: [0.2, 8, 20]

scale_pos_weight: [3,30,300,3000,3300,3600,3900,4000,5000,6000,7000,8000]

subsample:[0.3, 0.6, 1]

max_delta_step:[0, 3]

These parameters came from Python machine learning package called Sklearn.