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Carbon fractions in the world’s dead wood
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A key uncertainty in quantifying dead wood carbon (C) stocks—which comprise ~8% of total

forest C pools globally—is a lack of accurate dead wood C fractions (CFs) that are employed

to convert dead woody biomass into C. Most C estimation protocols utilize a default dead

wood CF of 50%, but live tree studies suggest this value is an over-estimate. Here, we

compile and analyze a global database of dead wood CFs in trees, showing that dead wood

CFs average 48.5% across forests, deviating significantly from 50%, and varying system-

atically among biomes, taxonomic divisions, tissue types, and decay classes. Utilizing data-

driven dead wood CFs in tropical forests alone may correct systematic overestimates in dead

wood C stocks of ~3.0 Pg C: an estimate approaching nearly the entire dead wood C pool in

the temperate forest biome. We provide for the first time, robust empirical dead wood CFs to

inform global forest C estimation.
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Forests are a large and dynamic part of the global carbon (C)
cycle with estimates indicating an annual average net global
forest C sink of 1.1–1.4 Pg C year−1 in recent decades1,2.

Global forest C sinks owe to high net uptake in regenerating
forests of ~1.3 Pg C year−1; intact forests contribute an additional
sink of 0.85–2.4 Pg C year−1 1,2, although recent evidence indi-
cates that the strength of this sink is declining in the tropics3 and
across North America4. These sinks are offset by losses of C due
to deforestation and forest degradation, particularly in tropical
regions where forest loss accounts for ~0.43–1.3 Pg C year−1 on
average2,5.

C stocks and fluxes in dead wood—that is, fallen and standing
dead trees, branches, and other woody tissues—are a critical
component of forest C dynamics. Dead wood accounts for ~8%
(or 73 Pg) of total C pool in forests globally2. There is wide
biogeographic variability in dead wood C stocks and fluxes. For
instance, based on 2007 data from Pan et al.2 (their Table S3),
total dead wood C stocks represent ~2.8–11.7% of the total forest
C storage across temperate, boreal, and tropical forest biomes.
This variability is attributable to differences in primary produc-
tion, tree mortality, and decomposition rates that are linked with
climate and species’ wood traits6–8. Dead wood C dynamics are
also sensitive to fine-scale disturbances such as harvesting,
windstorm impacts, wildfires, and pest or pathogen outbreaks
(e.g., refs. 9,10).

Given its importance in the global C cycle, robust methods for
quantifying C in dead woody material are critical for estimating
forest C stocks and fluxes at multiple scales. However, there
remain several critical large sources of uncertainty surrounding
estimates of dead wood C stocks and fluxes11. One important
consideration in estimating dead wood C fluxes that has received
limited attention is the proportion of C in dead wood, as it is used
to convert dead wood biomass into C stocks12. Assessments of
dead wood C have most often utilized a single generalized C
fraction (CF)—that wood comprises 50% C on a mass/mass basis
—when converting woody material mass to C13–17. Recent studies
have made clear that 50% is a poor approximation of CFs in live
trees: the best available global estimate of average live wood CF is
~47.6%, with this estimate ranging from 28 to 65% across biomes,
species, and tissue types18,19. In live trees, accounting for varia-
bility in wood CF corrects major systematic errors in forest C
stocks18–20. For example, accounting for live wood CF refines
existing overestimates of up to 20.1 Pg C in tropical forests18.
Nevertheless, generalized dead wood CFs have not been obtained
for the purposes of global forest C estimation.

Identifying the factors explaining differences in dead woody
material CFs has also remained elusive in the absence of data
consolidation. Arguably the most important factor driving dead
wood CF variability is the decay process, commonly discretized as
decay class (DC). There is disagreement in the literature as to the
magnitude and direction of changes in CF through decomposi-
tion. For instance, studies from temperate and tropical forests
have detected little to no change in CFs through decomposi-
tion21–23, others have found increases in CFs24,25, while others
report both decreasing and increasing trends depending on
taxonomic divisions (i.e., gymnosperms vs. angiosperms) and
tissue type26–31. In the absence of a global data compilation and
analysis, these contrasting patterns pose a challenge for estimat-
ing changes in CFs through wood decay.

Data on CF from live trees also suggest that tissue-specific
variability in dead wood CF will be pronounced. Specifically,
there is likely to be especially high CFs in bark vs. other tissues,
due to their high concentrations of C-rich and recalcitrant
compounds such as lignin, suberin, and tannins32–35. Finally, the
position of dead wood—that is, standing vs. downed—may also
influence CFs12, but hypotheses and findings related to this are

mixed with some research suggesting that standing dead wood
has higher CFs vs. downed wood26, while other lines of evidence
suggest the opposite36. Whether or not these differences are
systematic and/or independent of other factors such as biome,
species identity, and DC is unclear, as is the relative importance
of these factors.

Here, we develop, for the first time, a novel global dataset of
973 dead wood CF observations from 121 species and all forested
biomes, to inform forest C estimation and to identify the primary
factors determining dead wood CFs in trees. We specifically
evaluate: (1) if dead wood CFs differ from (a) the generalized 50%
CF estimate commonly employed in forest C estimation, and (b)
live wood CFs? As a corollary, we also assess: (2) if live wood CFs
predict dead wood CFs within species, (3) if there is systematic
and generalizable variability in dead wood CFs across biomes,
species, position, and DC, and (4) how do dead wood CFs change
through decomposition?

Results
Dead wood carbon fractions compared to IPCC protocols and
live wood. Dead wood CFs ranged widely from 29.4 to 60.2%
across the compiled dataset, with an average CF estimate of 48.5 ±
0.8% (s.e.). Dead wood CFs are significantly lower than the widely
used 50% CF estimate by 1.5% on average (two-sided z= −6.2,
p < 0.001). The average estimated dead wood CFs are also sig-
nificantly larger than live wood CF that averages 47.2 ± 0.8%
(F1, 3392.7= 67.7, p < 0.001; Fig. 1). Across 63 species with both
dead and live wood CFs, the average live wood CFs were sig-
nificantly related to average dead wood CFs (r2= 0.462, p < 0.001).
This relationship differed significantly from a 1:1 relationship
across the entire species pool (model slope= 0.7 ± 0.1 (s.e.), linear
hypothesis test p= 0.011). The intercept of the live–dead wood CF
relationship, but not the slope, differed significantly across groups
(p < 0.001; Supplementary Fig. 1 and Supplementary Tables 5–7).
Including taxonomic division-specific intercepts in the linear
model (i.e., for angiosperms and gymnosperms individually)
explained an additional ~15% of the variation in dead wood CFs
(the model r2 when including plant taxonomic division-specific
intercept terms= 0.601).

Fig. 1 Carbon fractions (CF) in dead vs. live wood in a global wood CF
database. Histograms correspond to kernel density estimates fit for CF
estimates from dead (n= 973) and live wood (n= 2233) separately, with
the corresponding boxplots in the inset showing medians (solid center
lines), 25–75th percentiles (boxes), outliers (points), and 5th and 95th
percentiles (whiskers).
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Factors explaining variation in dead wood carbon fractions.
Dead wood CFs varied significantly across biomes, taxonomic
divisions (i.e., gymnosperms and angiosperms), tissue types, and
DC (analysis of variance (ANOVA) p < 0.001; Supplementary
Table 1). ANOVA revealed significant interactions between
biome and taxonomic division, tissue type, and DC, as well as
between position and tissue type (Supplementary Table 1). Var-
iance partitioning indicated that the largest proportion of varia-
bility in dead wood CFs was associated with biome (23.1% of
variance explained), with systematic and significant differences
across all of the biomes represented (Fig. 2, Table 1, and Sup-
plementary Tables 2 and 3). While accounting for all other fac-
tors, dead wood CFs in temperate and boreal biomes (49.3 ± 0.8%
and 48.8 ± 0.8%, respectively) were ~1.7–2.1% greater in absolute
terms than those observed in subtropical/Mediterranean and
tropical biomes (46.2 ± 0.8 and 47.2 ± 0.8, respectively; Fig. 2 and
Table 1). Tissue type was also a significant factor explaining
18.9% of variability in dead wood CFs (Fig. 2, Table 1, and
Supplementary Table 2). Bark, fine tissue, and stem wood showed
the largest average dead wood CFs (48.1–48.8%), roots being
intermediate (47.8%), and branches showing the lowest average
dead wood CF estimates (45.7%; Fig. 2, Table 1, and Supple-
mentary Table 2).

Taxonomic division also explained a significant proportion
(7.6%) of the variability in dead wood CFs (p < 0.001; Supple-
mentary Tables 2 and 3), with gymnosperm dead wood CFs being
2.0% higher on average compared to angiosperms (Fig. 2 and
Table 1). DC explained 8.8% of the variation (p < 0.001;
Supplementary Tables 2 and 3), with systematic increases in
dead wood CFs occurring across DCs 1–3 (average dead wood CF
47.5–48.0%), to DCs 4 and 5 (average dead wood CFs 48.7% and
48.6%, respectively; Fig. 2 and Table 1). There were only slight
differences in the CFs of standing vs. downed wood (p= 0.05;
Fig. 2 and Table 1). Unlike all other factors considered in our
analysis, inferences regarding how dead wood position influences
CFs did change according to the structure of our variance
partitioning analyses (Supplementary Table 2). However, position
consistently explained the lowest proportion (≤2.2%) of variation
in dead wood CFs. In total, the factors considered here accounted
for 58.6% of the variance in dead wood CFs (Supplementary
Table 2).

Dead wood carbon fractions across DCs. Based on a subset of
data that included only species with dead wood CFs from at least
four DCs (where n= 728 observations across 56 species; Sup-
plementary Table 4), the patterns of change in dead wood
CFs with increases in DC varied widely. The majority of species
(41 of 56) showed increases in dead wood CF with increasing
DC, with species-specific slopes ranging from 0.03 to 1.64; these
changes were statistically significant in only five species
(i.e., where slope p ≤ 0.05, Fig. 3 and Supplementary Table 5). In
these 41 species, across DCs 1–5, dead wood CF was predicted
to increase on average from 0.15 to 8.2% (Fig. 3). The remaining
15 species showed trends of declining dead wood CF with
increasing DC (slope p ≤ 0.05 in six instances), with slopes ran-
ging from −0.04 to −4.14% (Fig. 3). The five species with the s-
trongest negative trends (slope p ≤ 0.002 in all cases) were
all subtropical/ Mediterranean angiosperm species (Fig. 3 and
Supplementary Table 5). There were significant differences in
slope values between gymnosperms and angiosperms across the
entire subset of data (t34.8=−2.55, p= 0.015, n= 56 species;
Fig. 3), but these differences were driven by five subtropical
angiosperm species with the very largest negative slopes in their
wood CF–DC relationship (i.e., slopes <−2.0). When these five
species were removed, angiosperms and gymnosperms do not

differ in terms of their wood CF–DC relationships
(t48.6=−0.912, p= 0.366, n= 51 species; Fig. 3).

Discussion
Dead wood carbon fractions and forest C estimation. Promi-
nent forest C protocols, namely those of the Intergovernmental
Panel on Climate Change (IPCC)37, are a critical tool in com-
piling forest C budget data globally, particularly where region- or
country-specific data are not available, and support the imple-
mentation and monitoring of critical climate change policies and
programs. Reducing uncertainty in forest C estimates is therefore
a key priority, with the most recent updates to the IPCC protocols
updating key default C variables such as tree biomass stocks and
growth rates (e.g., Tables 4.4 and 4.7 in ref. 37). However, the
2019 Refinement to the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories37 included no updates to default
dead wood CFs—or default wood CFs in general, despite con-
siderable research on this topic18—and instead continued to
report a 50% CF as the default estimate for dead wood in tem-
perate forests; there is no IPCC-recommended default CF esti-
mate suggested for dead wood in tropical or subtropical forests.

While deviations in dead wood CFs from the widely used 50%
assumption appear small (i.e., 1.5% on average; Fig. 2 and
Table 1), this difference ultimately corresponds to a 3%
overestimate in dead wood CFs. These findings suggest that
existing estimates of dead wood (and hence forest) C stocks are
likely overestimated at multiple scales. For instance, at an
individual tree scale, in assuming a 50% CF, Domke et al.15

estimated that a standing dead Populus tremuloides stem—a
widespread species in North American boreal and temperate
forests—of 26.7 cm diameter at breast height and DC 3 would
store 22.95 kg of C. Yet when employing our overall average CF
(48.5%), temperate biome-specific CF (49.3%), or species-and-
DC-specific estimates (mean CF for P. tremuloides in DC 3=
45.8% across n= 6 observations), this same tree is calculated to
store 22.26, 22.63, or 21.02 kg of C, respectively. Thus, data-
driven dead wood CFs correct overestimates of 1.4–8.4%,
equating to 0.32–1.93 kg C for a single dead stem.

Scaling this overestimation to forests globally requires the
formal integration of our results with models of forest composi-
tion. However, to illustrate the potential consequences of our
findings at larger scales, inventories that assumed a 50% dead
wood CF, reported a total dead wood C stock in tropical forests of
53.6 Pg C in 2007 (corresponding to the total biomass stocks of
107.2 Pg)2. However, based on existing data that support an
average dead wood CF of 47.16% (±0.79% s.e.) for tropical trees
(Table 1), we would estimate tropical forest dead wood C stocks
at 49.7–51.4 Pg C (with an average estimate of 50.6 Pg C). This
average difference of ~3.0 Pg C is similar to the dead wood C
stock in the entire temperate forest biome, which was estimated
for the year 2007 as 3.3 Pg C by Pan et al.2.

There remain several known sources of uncertainty in dead
wood C assessments, such as variability in dead wood tissue-
density measurements, or limited dead wood inventory data11.
When compared to these other sources of variability, dead wood
CFs can be a minor consideration11. Yet, because both inter- and
intraspecific variation in wood CFs can be accurately accounted
for through accurate measurements20,38 and representative
sampling designs, these overestimates are systematic and easily
corrected. Our findings of systematic variation in dead wood CFs
across biomes, tissue types, and DCs (and to a lesser extent
taxonomic divisions and size classes; Supplementary Table 2)
support the calculation and promulgation of generalized dead
wood CFs for the purposes of forest C estimation (Table 1). The
dead wood CF data compiled here, along with CFs from live
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Fig. 2 Sample sizes, distributions, and mean dead wood carbon fraction (CF) estimates across biomes, taxonomic divisions, tissue type, dead wood
position, and decay class. Panel A presents sample sizes. Panel B presents kernel density estimates fit to subsets of the dataset (based on the sample
sizes presented in A). Panel C represents least-squares mean estimates (±s.e.) from a linear mixed-effects model fit to the entire dead wood dataset
(n= 973). Within a given data subset, different letters above mean estimates denote statistically significant differences (at p < 0.05) in mean dead wood
C estimates.
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wood18, provide a basis for better supported approximations of
CFs in trees and wood globally as compared to current IPCC
protocols37.

Our analysis also reveals outstanding sources of uncertainty in
dead wood CF data. First, angiosperms remain underrepresented
in the literature on dead wood CFs, making up 45.5% of our total
data points despite likely constituting over ~95% of tree species
globally39; this underrepresentative sampling is particularly acute
for tropical angiosperms. Second, we uncovered no studies that
explicitly quantified the volatile CF in dead wood: low molecular
weight C-based compounds that may be lost upon heating of
samples, prior to elemental analysis38,40,41. Lab methods that fail
to capture the volatile fraction can underestimate CFs of live
wood by up to 4.7%, with wood volatile fractions averaging
~1.5–2.5% across angiosperms and gymnosperms from different
biomes20,38,40,41. Third, prior studies show that C-based com-
pounds are leached from downed wood42, and overall rates and
chemistry likely vary among species. To our knowledge, inter- or
intraspecific variation in C leaching has not been explored as
possible drivers of dead wood CFs. Finally, sapwood and
heartwood represent functionally and chemically distinct stem
wood tissue types43,44, although studies have reported both
negligible32 and large differences in their wood CFs45,46. Our
meta-analysis indicates that heart- and sapwood are not well
differentiated in studies on dead wood chemistry, leading to
outstanding questions surrounding whether or not stem wood
tissue differentiation plays a role in governing dead wood CFs.

These four lines of research therefore represent opportunities
for future enquiry, which may help elucidate the reasons for
intraspecific differences in live vs. dead wood CFs (Fig. 1 and
Supplementary Fig. 1). Specifically, these novel possible avenues
of research include observational and experimental studies that:
(1) systematically sample and quantify dead wood CFs in tropical
angiosperms, (2) quantify and characterize the volatile CF in dead
wood across and within species, (3) quantify the rate and extent
of C-based compound leaching in dead wood, and its role in
influencing inter- and intraspecific variation in dead wood CFs,
and (4) isolate and quantify differences in dead wood CFs across
sapwood and heartwood across species.

Factors explaining systematic variation in dead wood carbon
fractions. Our study uncovers the following general patterns in
CFs across dead wood globally: (A) lower dead wood CFs in
tropical vs. other forest biomes, (B) lower dead wood CFs in
angiosperms vs. gymnosperms, and (C) higher dead wood CFs in
bark vs. other tissues (Table 1). These results are consistent with
studies on live wood CF variability18,32,33,35,47, and perhaps are
not surprising given the statistically significant relationship
between dead and live wood CFs observed in a subset of tree
species evaluated here (Supplementary Fig. 1). Based on simila-
rities in how dead and live wood CFs vary across and within
species, our study indicates that live wood chemical traits (along
with their environmental and evolutionary drivers) also play a
deterministic, so-called afterlife role (sensu48) in driving dead
wood C dynamics.

There is considerable variability in patterns of dead wood CF
change through decay (Fig. 3), suggesting that multiple mechan-
isms operate across different species and forest regions. Cellulose
and hemicellulose generally decompose more rapidly than
lignin26,49, and lignin has a considerably higher C concentration
(~60–70% Cmass mass−1) than cellulose/ hemicellulose
(~40–44% Cmass mass−1)50; thus, CFs would be expected to
increase through decomposition as a function of increasing lignin
concentrations. Our data on generalized CFs across DCs
qualitatively correspond to this expectation (Fig. 2). Quantita-
tively, assuming an average C concentration of 62.5% for lignin
and 41.2% for cellulose, our observed changes in dead wood CFs
from DC 1 (47.5%) to DC 5 (48.6%) correspond to an increase in
lignin concentrations through decomposition from ~27 to 33%
(mass mass−1). These approximate changes in lignin concentra-
tions match patterns observed in wood decomposition
experiments49,51,52, consistent with increases in CFs with
decomposition in the majority of tree species (Fig. 3).

However, certain species deviate from this pattern and
instead show nonsignificant changes or significant declines in
CFs through decomposition (Fig. 3). This suggests that there
may be mechanisms other than the degradation of cellulose and
lignin that drive chemical changes in decomposition globally.
One possible mechanism is the import of soil particles and
soluble nutrients into dead wood by soil macrofauna—in
particular termites53—which would reduce dead wood CFs
through the decomposition process primarily in tropical and
subtropical forests where such patterns were most notable
(Fig. 3).

Similarly, there is an expectation that the import of soluble
nutrients and particles from soils into woody material should
decrease dead wood CFs in downed wood, as compared to
standing necromass26. Support for this expectation has been
observed in temperate and boreal forests, where standing dead
trees express significantly greater CFs vs. downed wood (i.e., on
the order of ~1.6–2.0%)26. This is consistent with our findings of
dead wood CFs being higher in standing vs. downed wood,
although the magnitude of the average differences in our pooled
analysis is lower (~0.4%; Fig. 2).

Finally, our meta-analysis also highlights that the effect of
fungal communities on wood decomposition and CFs is still
poorly understood and quantified. White-rot fungi, which mainly
degrade lignin, are thought to be more prevalent in angiosperms,
while brown-rot fungi, which specialize in cellulose degradation,
are more prevalent in gymnosperms. This may account for some
of the variability in data. However, while removing five
subtropical angiosperm species with the largest negative slopes
in their wood CF–DC relationship (i.e., slopes <−2.0), angios-
perms and gymnosperms did not differ in terms of their wood
CF–DC relationships (Fig. 3). Recent studies have suggested that
the dichotomy between white-rot and brown-rot fungi is itself not

Table 1 Generalized mean dead wood carbon fractions (CF)
across five different factors.

Factors Variable Mean CF S.E. Lower CI Upper CI

Biomes Boreal 48.84 0.76 40.69 56.98
Subtropical/
Medit.

46.24 0.83 37.38 55.09

Temperate 49.29 0.74 41.29 57.28
Tropical 47.16 0.79 38.66 55.66

Division Angiosperm 47.18 0.79 44.59 49.77
Gymnosperm 49.19 0.79 46.58 51.79

Tissues Branch 45.67 1.14 42.13 49.21
Root 47.79 1.14 44.25 51.33
Stem 48.07 1.07 44.75 51.4
Bark 48.73 1.08 45.38 52.09
Fine tissue 48.8 1.23 44.97 52.63

Position Downed 47.81 1.05 44.32 51.31
Standing 48.22 1.06 44.7 51.74

Decay class 1 47.53 1.03 44.16 50.9
2 47.55 1.03 44.18 50.93
3 47.98 1.03 44.61 51.36
4 48.68 1.04 45.28 52.08
5 48.61 1.05 45.17 52.04

Mean estimates here were calculated as least-squares means, obtained from five different linear
mixed-effects models. Estimates here correspond to data presented in Fig. 2, while linear mixed-
effects model diagnostics are presented in Supplementary Table 3.
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strongly supported54, highlighting the complexity of potential
fungal community effects on CF patterns in dead wood.
Disentangling how these mechanisms drive variability in CFs
through decomposition will likely require detailed experimental
studies that evaluate long-term decay patterns55, account for
species differences in wood functional traits34, incorporate
emerging environmental analytical techniques, for example,
ref. 56, and test for biochemical changes in wood such as the
accumulation of anaerobic metabolic products57.

At global scales, accurate estimates of CF in dead wood are
critical for refining global C budgets, quantifying potential
changes in dead wood fluxes under global change scenarios,
mechanistically understanding the drivers of decomposition, and
predicting how they change in the future. Recent observations of
increased tree mortality in multiple forest biomes58,59 suggest that
a synthetic understanding of dead wood chemistry dynamics is
especially critical for all of these avenues of forest ecological and
global change science.

Methods
Literature review. We built on our existing wood C database18, which consists of
n= 2,228 observations of CFs in live wood only, as the basis for dead wood CF
consolidation. We first reviewed all peer-reviewed papers that were cited by our
previous work, that is, refs. 18–20, for records of dead wood CFs. Then, we searched
three peer-reviewed literature databases (Web of Science, Scopus, and Google
Scholar) for papers with dead wood CF records, using a suite of primary search
terms: coarse woody debris, dead wood, carbon, and wood nutrient. Articles
identified by these terms or combinations thereof, as well as papers that cited these

publications, were searched for dead wood CF data. Data compilation was halted at
the end of 2019.

The criteria for inclusion broadly followed that of Martin et al.18, such that only
dead wood CF data associated with species identities, tissue-type identities, and
decay class (DC) were included in our database. This was done to maximize our
sample size, while allowing analysis that was specific enough to inform forest C
estimation. For each paper with species- and tissue-specific data, dead wood CF
observations were then extracted from text, tables, and figures, with figure-based
data extracted using the WebPlotDigitizer software v. 4.2, 2019 (San Francisco, CA,
USA). It should be noted that available estimates for dead wood CF were all based
on conventionally dried wood samples, and thus exclude volatile C compounds38;
lab methodologies for the accurate quantification of wood C including volatile
constituents continue to be refined38.

For each observation, we recorded species-specific taxonomy as presented in
original publications, which was then adjusted according to the Taxonomic Name
Resolution Service v.4.060. Each dead wood CF observation was then classified as
belonging to one of four major forested biomes based on its geographical location,
including (A) boreal, (B) temperate, (C) subtropical/Mediterranean, and (D)
tropical. While these biomes are less specific than more detailed biome delineations
(e.g., Whittaker Biomes), we employed them in our analysis in order to be broadly
consistent with the biomes used in the IPCC’s forest C estimation protocols37.
Tissue type was recorded as one of the following: (A) bark, (B) stem (inclusive of
heartwood and sapwood, which were largely undifferentiated in dead wood CF
studies), (C) branch (inclusive of three observations reported as small twigs), (D)
roots (large and small, which were by-in-large undifferentiated in dead wood CF
publications), and (E) unspecified fine tissue. Two papers reported sampled
material as belonging to a category defined as stems and branches, which were
classified as stems for analysis here assuming that stems contributed the larger
proportion of biomass to these analyses.

Each dead wood CF observation was then categorized according to three
primary factors associated with wood decomposition and the related chemical
change: (A) DC, (B) position, and (C) size (diameter and length). For the majority
of data points (958 of 973), dead wood DC was reported along a conventional
1–5 scale, and was therefore included in our database as published while noting the

Fig. 3 Changes in dead wood carbon fractions (CF) as a function of wood decomposition stage. Panel A presents modeled rates of change in dead wood
CFs as a function of decay class, which are the slope estimates obtained from a mixed-effects model (±s.e.). Panel B presents the species-specific models
predicting dead wood CFs as a function of decay class.
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DC scale employed. For nine data points where DC was reported as a two-category
range (e.g., DC 1–2), the higher DC was used for analysis. In four data points, a
multicategory DC was presented (e.g., DC 1–5); therefore, the middle DC estimate
was used. In one paper, DC was reported along a 0–5 point scale (where DC 0 is
clearly defined in the publication as dead and not live wood); here two data points
where dead wood C was reported with a DC of 0 were classified as DC 1. Last, in a
subset of papers the number of years since tree death (instead of DC) was reported.
In these cases, years since death were converted to DC based on published decay-
class transition matrices, for example, ref. 61.

Position was recorded as one of (A) standing, which refers to snags, or (B)
downed, which refers to anything sampled from the forest floor. Estimates for the
category of suspended woody material were combined with those for snags. A few
publications did not differentiate dead wood as being standing vs. downed in the
original publication, and instead classified dead wood as standing/ downed. These
few cases were classified as downed for analysis here, since there were very few
observations in this group (particularly across multiple DCs).

We also sought to integrate dead wood size into our analysis here, but diameter
measurements were available for less than 50% of dead wood CF observations, and
papers presented a combination of quantitative and categorical measurements.
Therefore, diameter measurements were recorded following the original
publication, and then categorized into one of seven groups that were chosen to
maintain maximum resolution while balancing sample sizes. These diameter
groups employed here were: (1) 0.1–1.0, (2) 1.1–2.5, (3) 2.51–5.0, (4) 5.1–10.0,
(5) 10.1–20, (6) 20.1–30 cm, and (7) ≥30.1 cm. There are two caveats to these
classifications. First, in instances where publications reported size ranges that
overlapped two or more of our groups (e.g., one paper reported dead wood as
7–12 cm in diameter), the mid-point of the size range was used to allocate
observations into final diameter classes. Second, in cases where dead wood was
reported as belonging to undefined categories (e.g. one paper reporting diameter
measurements of ≥2.5 cm), all observations from that publication were placed in
the next highest diameter group. Length measurements were available only for a
small subset of observations, and were recorded as in the original publication and
categorized as either (1) 1–100 cm or (2) ≥100 cm.

Our literature-based search was augmented with a structured trait query from
the TRY Functional Trait Database62. Specifically, we requested records for coarse
woody material C concentration (TRY Database trait numbers 841, 868, 1058, and
1153). However, across all of the n= 202 data points returned for these traits, 189
data points were associated with live wood estimates from decomposition
experiments. Of the remaining 13 dead wood C data points, only 12 were
associated with a species identity. However, none of these 12 data points included
DC information and were therefore not included in our analysis here. Moreover,
we also noted that all of the species represented by these 12 data points were
already represented in our dataset (with both dead and live wood C records),
indicating that our primary literature review was the most viable avenue for dead
wood C data consolidation.

Data analysis: dead wood CFs vs. live wood CFs and a generalized 50% CF.
All statistical analyses were performed using R v.3.2.1 (R Foundations for
Statistical Computing). First, we utilized a two-tailed z test to evaluate if dead
wood CFs across our entire dataset (n= 973 observations in total) differed
significantly from a 50% CF assumption. Then, two approaches were taken to
compare live vs. dead wood CFs. First, we fit a linear mixed-effects model using
the “lmer” function in the “lme4” R package63 to our entire wood CF dataset
(n= 3206 observations in total from both dead and live wood). In this model,
wood CF estimates were predicted as a function of an observation being dead
or live (as a fixed effect), while accounting for biome and taxonomic division
as random effects. These random effects were incorporated in this model in
efforts to better isolate dead vs. live differences since (1) the dead and live CF
datasets differ in the number and proportion of observations per biome and
taxonomic divisions, and (2) wood CFs vary systematically as a function of
biome and taxonomic division; therefore, failing to account for these factors
statistically may have biased dead vs. live comparisons. (Note: we also sought
to include tissue type as a random effect in this model, although since tissue
types are reported differently in live wood than in dead wood, it was not pos-
sible to parameterize the model with this random effect.) Based on this
model, we then calculated and statistically compared least-squares mean CF
estimates for both groups using the “lsmeans” and “difflsmeans” functions
in the “lsmeans” R package64. Distributions for dead and live wood CF
data were presented visually using kernel density estimates calculated in
“ggplot2”65.

Next, we tested if live wood CFs can be used to predict dead wood CFs. Using
the subset that included only species with estimates of both, we calculated species-
specific mean live wood and dead wood CF estimates, and fit a linear regression to
predict dead wood CF from live wood CFs. This linear model was then statistically
compared to a 1:1 relationship using the “linearHypothesis” function in the “car” R
package66. We then included both taxonomic division and division-by-live wood
CF interaction terms in this model to evaluate if intercepts and slopes of live–dead
wood CF relationship differed among species groups (i.e., gymnosperms vs.
angiosperms).

Data analysis: factors explaining dead wood CFs. We first used an ANOVA to
evaluate if dead wood CFs vary as a function of biome, taxonomic division, tissue
type, position, and DC, as well as all two-way interaction terms. We then com-
plemented this ANOVA with a variance partitioning analysis to quantify the
proportion of variability in dead wood CFs explained by biome, taxonomic divi-
sion, tissue type, position, and DC (where n= 973 dead wood observations). This
analysis followed the methods developed and employed by multiple studies eval-
uating functional trait variability in plants, for example, refs. 67,68, including our
own earlier work on live wood CF variability in trees18.

Specifically, the variance partitioning analysis entailed fitting a linear mixed-
effects model with the “lme” function in the “nlme” R package69 where all nested
levels—namely DC, within position (i.e., standing, down), within tissue, within
taxonomic division (i.e., gymnosperms, angiosperm), and within biome)—are
entered as sequential random effects, and the overall intercept (or overall mean
dead wood CF estimate) is the only estimated fixed effect67. We then used the
“varcomp” function in the “ape” R package70 to quantify and partition variation in
dead wood CFs across these nested levels. Since certain decisions regarding this
nesting structure are subjective, we also performed this analysis with an alternative
nesting structure (i.e., position within DC, within tissue, within taxonomic division,
and within biome). The variance partitioning analysis was also performed while
including size as a factor, but since this necessarily reduced our sample size by over
half (to n= 413 observations), these results are not presented here.

We then estimated and compared generalized dead wood CF across DCs,
positions, tissues, taxonomic divisions, and biomes. Specifically, we fit five linear
mixed-effects models wherein one of the five variables (i.e., DC, position, tissue,
taxonomic division, and biome) was included as a fixed effect, and the other four
variables were included as nested random effects. Based on these five models, we
then used the “lsmeans” function to calculate least-squares mean dead wood CFs
individually for each DC, position, tissue type, taxonomic division, and biome, and
compared them using the “difflsmeans” function.

Data analysis: changes in dead wood CFs through decomposition. We eval-
uated how dead wood CFs change with DC in more specific detail, using a subset of
data that included only species with wood C estimates from at least four DCs. For
this subset of n= 56 species, we then used a linear mixed-effects model to evaluate
how wood C changes across DC, and if/how the rate of change differs across
species (subset species highlighted in Supplementary Table 4). This analysis
entailed using the “lme” function to fit species-specific models predicting dead
wood CFs as a function of DC. Specifically, dead wood CFs were predicted as a
function of species identity (representing a species-specific intercept) and a species-
by-DC interaction term (representing a species-specific slope parameter) as fixed
effects, while accounting for biome, taxonomic division, tissue type, and position as
random effects. This analysis, which we present and interpret here, treated DC as a
continuous variable in order to better facilitate data visualization (i.e., Fig. 3).
However, we also performed this analysis while treating DC as an ordinal variable.
This analysis yielded the same result interpretations, but was considerably more
difficult to present, so is not included here.

Data availability
The compiled dataset used in our analyses is available through the TRY Functional Trait
Database (Dataset ID 755, https://www.try-db.org/TryWeb/Data.php#75), and is
available from the corresponding author upon request.

Code availability
The code used to perform all analyses and generate figures is available upon request to
the corresponding author.
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