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Whole-exome mutational landscape of neuroendocrine
carcinomas of the gallbladder
Fatao Liu1,2,3,4, Yongsheng Li2,3,4,5, Dongjian Ying6, Shimei Qiu1,2,3,4, Yong He7, Maolan Li1,2,4, Yun Liu2,3,4,5, Yijian Zhang1,2,3,4,
Qin Zhu1,2,3,4, Yunping Hu1,2,3,4, Liguo Liu1,2,3,4,5, Guoqiang Li1,2,3,4,5, Weihua Pan8,9, Wei Jin9, Jiasheng Mu1,9, Yang Cao10,11 and
Yingbin Liu2,3,4,5

Neuroendocrine carcinoma (NEC) of the gallbladder (GB-NEC) is a rare but extremely malignant subtype of gallbladder cancer
(GBC). The genetic and molecular signatures of GB-NEC are poorly understood; thus, molecular targeting is currently unavailable. In
the present study, we applied whole-exome sequencing (WES) technology to detect gene mutations and predicted somatic single-
nucleotide variants (SNVs) in 15 cases of GB-NEC and 22 cases of general GBC. In 15 GB-NECs, the C > T mutation was predominant
among the 6 types of SNVs. TP53 showed the highest mutation frequency (73%, 11/15). Compared with neuroendocrine carcinomas
of other organs, significantly mutated genes (SMGs) in GB-NECs were more similar to those in pulmonary large-cell neuroendocrine
carcinomas (LCNECs), with driver roles for TP53 and RB1. In the COSMIC database of cancer-related genes, 211 genes were mutated.
Strikingly, RB1 (4/15, 27%) and NAB2 (3/15, 20%) mutations were found specifically in GB-NECs; in contrast, mutations in 29 genes,
including ERBB2 and ERBB3, were identified exclusively in GBC. Mutations in RB1 and NAB2 were significantly related to
downregulation of the RB1 and NAB2 proteins, respectively, according to immunohistochemical (IHC) data (p values= 0.0453 and
0.0303). Clinically actionable genes indicated 23 mutated genes, including ALK, BRCA1, and BRCA2. In addition, potential somatic
SNVs predicted by ISOWN and SomVarIUS constituted 6 primary COSMIC mutation signatures (1, 3, 30, 6, 7, and 13) in GB-NEC.
Genes carrying somatic SNVs were enriched mainly in oncogenic signaling pathways involving the Notch, WNT, Hippo, and RTK-RAS
pathways. In summary, we have systematically identified the mutation landscape of GB-NEC, and these findings may provide
mechanistic insights into the specific pathogenesis of this deadly disease.
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INTRODUCTION
Gallbladder cancer (GBC), a type of biliary tract cancer (BTC),
accounts for 1.7% of all global cancer-related deaths.1 Neuroendo-
crine carcinoma (NEC) of the gallbladder (GB-NEC) is rare but more
malignant than GBC, accounting for less than 1% of GBCs and is
identified mostly in women.2–4 Given that the symptoms of GB-
NEC are similar to those of other types of GBC, specific methods to
distinguish it from other subtypes are currently lacking.5 As a
result, pathologic studies using immunohistochemical (IHC) of
biopsy tissue currently serve as the first-line tool to diagnose the
disease in combination with routine imaging examinations,
including ultrasound, CT and MRI, and general serum markers.6

To date, the common protein markers detected in tissue speci-
mens involve chromogranin A (CgA), synaptophysin, and neuron-
specific enolase,7 though their pathologic roles in the develop-
ment of GB-NEC remain to be established. Since we lack sufficient
knowledge on the pathologic mechanisms that govern the

malignant transformation of GB-NEC, the only acceptable
therapeutic modality for GB-NEC is the removal of the entire GB.
In addition, in many cases, lymphadenectomy and liver partial
lobectomy are used as complementary approaches to prevent
reoccurrence.8 In the absence of the pathologic signature specific
to GB-NEC, GB-NEC does not respond well to traditional radio-
therapy and chemotherapy.9,10 Therefore, it is urgent to reveal the
molecular signature that contributes to the pathologic progres-
sion of GB-NEC and help improve molecular targeting strategies
and adjuvant therapy following surgery.
We previously unveiled the mutation landscape of GBC by using

whole-exome sequencing (WES) technology, and we specifically
found that the ErbB signaling pathway is the most extensively
mutated pathway in GBC.11 In addition, ErbB pathway mutations
are correlated with poor patient outcomes.11 Strikingly, activated
ERBB2/ERBB3 mutations upregulate the expression of the immune
checkpoint marker PD-L1 to induce the immune evasion of GBC.12
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PD-L1 blockade enhances the efficacy of anti-ERBB therapy in GBC
cells carrying an ERBB2/ERBB3 mutation. Our studies have
provided a theoretical basis for ERBB2/ERBB3 targeted treatment
and immunotherapy for GBC in the future. In addition, we
previously reported a case of small-cell GB NEC (GB-SCNEC) and
investigated genome-wide somatic mutations in primary and

metastatic tumors.13 It is evident that the substantial character-
istics of GB-NEC mutations in a large population will yield great
promise for the diagnosis and therapy of GB-NEC.
In the present study, we performed WES to detect mutations in

formalin-fixed paraffin-embedded (FFPE) samples from 15 cases of
GB-NEC and compared these mutations with those found in 22

Fig. 1 Characteristics of mutations in GB-NEC. a Name, mutation frequency, distribution in GB-NEC samples, and p value of significance of the
SMGs with a MutSigCV p value < 0.05. Histograms of the total mutation number and fraction of the six types of SNVs in each GB-NEC sample
are also shown. SMGs with p values < 0.01 are further highlighted and marked with two asterisks. b Overlap of SMGs detected in the five kinds
of neuroendocrine cancers. c Different mutation sites of TP53 in GB-NECs and GBCs. Known hotspot mutation sites in other tumors are labeled
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cases of GBC. We studied the characteristics of all the mutations,
including distribution and frequency, and mutations in tumor-
associated genes and somatic single-nucleotide variants (SNVs) in
GB-NEC and GBC. We also investigated the SMGs and copy
number variations (CNVs) in GB-NECs. We have revealed the
mutation characteristics of GB-NEC distinct from GBC that may
offer novel therapeutic target potential for the diagnosis,
prognosis, and treatment of this deadly disease.

RESULTS
Characteristics of mutations and SMGs
To investigate mutations, we obtained average sequencing depths
of 119.35× and 209.29× for GB-NEC and GBCs, respectively
(Supplementary Fig. S1). Using the filter criteria described in the
“Methods” section for functional mutations, we achieved a total of
6971 and 15,836 rare in the general population and nonsilent
mutations in GB-NECs and GBCs, respectively. Detailed information
on the mutations in GB-NECs is summarized in Supplementary Table
S2. The average depth and alternative allele frequency of the
mutations in GB-NECs were 117.36× and 31%, respectively.
Supplementary Figure S2a shows the genome-wide distributions
and basic information on the mutations, in which the mutations
included 6338 SNVs and 633 insertions and deletions (INDELs)
(Supplementary Fig. S2b). Missense mutations dominated in all
of the mutation types (Supplementary Fig. S2c). The number of
mutations in each sample ranged from 189 to 1539, with an average
of 473.2 (Fig. 1a). In SNVs, the C > T mutation constituted the highest
proportion (~50%) among the six types of base conversions, and
transitions were significantly more common than transversions
(Supplementary Fig. S2d, e). The fraction of the SNV in each sample
was similar (Fig. 1a). Of note, TP53 showed the highest mutation
frequency of 73% (11/15) and presented in all male patients (4/4)
and in 63.6% (7/11) of female patients (Fig. 1a, Supplementary Fig.
S2f). Consistent with our previous finding that HMCN1 was mutated
in the primary and metastatic tumors in a case of GB-NEC,13 a
mutation in HMCN1 occurred in 33% (5/15) of the samples,
suggestive of the reliability of current data analyses. We also
investigated the known common variants in tumors, also known as
hotspot mutations, according to the COSMIC database and by
referring to the study of Chen et al.14 In GB-NEC samples, we found
nine mutations that were known hotspot mutations in tumors,
including two mutations in TP53 (p.Arg248Trp and p.His179Leu) and
two mutations in CTNNB1 (p.Ser33Cys and p.Ser37Phe) (Supplemen-
tary Table S3).
By using a cutoff p value < 0.05, MutSigCV predicted a total of

67 potential SMGs in GB-NEC samples. The name, p value of
significance and mutation frequency of the SMGs are summarized in
Fig. 1a and Supplementary Table S4. These SMGs included TP53,
SNX27, RB1, COQ6, EIF5AL1, RPL14, SNRPC, and TGFB3. The 14 SMGs
with p values < 0.01 are further highlighted and marked with two
asterisks in Fig. 1a. Next, we compared these SMGs with those of the
other four kinds of neuroendocrine cancers, including pancreatic
neuroendocrine tumors (PanNETs),15 LCNECs,16 colorectal neuroen-
docrine tumors (colorectal NETs),17 and small intestine NETs (SI-
NETs).18 As shown in Fig. 1b and Supplementary Table S5, we found
that the SMGs varied in these five kinds of NECs lacking a significant
level of common genes. Only were TP53 identified in GB-NECs,
PanNETs, LCNECs, and SI-NETs and RB1 in GB-NECs and LCNECs. The
result revealed that the driver genes of NECs in different organs are
quite different, and SMGs in GB-NECs are more similar to those in
LCNECs, with potentially crucial roles for TP53 and RB1. We also
validated the mutations of SMGs by reviewing with Integrative
Genomics Viewer software manually. The validation results of several
SMGs with high mutation frequency are shown in Supplementary
Fig. S3. It should be noted that SNX27 mutations were located in a
continuous T base sequence of the splice site, and its mutation
frequency and role in GB-NEC need to be verified in a larger cohort.

Similar to GB-NEC, the mutation characteristics of 22 cases of GBC
was also identified and analogous with our previous reports
(Supplementary Fig. S4). The average number of mutations in the
GBC samples (731.5) was higher than that in the GB-NEC samples
(473.2). In the SNVs, C > A was secondary to C > T mutations in GBCs,
while the second most frequent mutation in GB-NEC was T > C. In
addition, in GBCs, the mutation frequency of TP53 was ranked
second, at 59% (Supplementary Fig. S5, Supplementary Table S6).
Ten mutations were known hotspot mutations, including PIK3CA
p.Arg88Gln and p.Glu545Lys, KRAS p.Gly12Asp and p.Gly13Asp and
TP53 p.Arg213Gln and p.Tyr220_Pro223del (Supplementary Table
S3). The individually divergent mutation locus of TP53 in GB-NECs
and GBCs is displayed on the different functional domains in Fig. 1c.
We were further concerned about the enriched signaling

pathways of the mutated genes. The total number of mutated
genes detected in at least one GB-NEC sample was 5071, of which
3047 genes were also mutated in GBCs, but 2024 were mutated
specifically in GB-NECs (Supplementary Tables S2 and 6, Supple-
mentary Fig. S6a). The genes mutated specifically in GB-NECs were
mostly enriched in pathways in cancer and the JAK-STAT pathway
(Supplementary Fig. S6b, Supplementary Table S7). The mutated
genes detected in both GB-NECs and GBCs were found to be
mostly enriched in the PI3K-Akt signaling pathway (Supplemen-
tary Fig. S6c, Supplementary Table S8). The data revealed that
gene mutations in GB-NECs involved in signaling pathways had
similarities and differences with those in GBCs, implicating the
unique features of mutated pathways present in GB-NECs.

Distinct mutational statuses of known cancer-related genes
To better understand mutations that may be relevant to
carcinogenesis, we used the COSMIC Cancer Gene Census
(CGC)19 database to analyze the mutation potential for promoting
tumor development. In Tier 1 (n= 576) of the CGC database, a
total of 58 cancer-related genes were mutated more than once in
all 15 GB-NECs (Fig. 2a). Again, TP53 showed the highest mutation
frequency (73%), followed by 16 genes with a mutation frequency
≥20%: ZFHX3 (40%), CTNNB1 (27%), FAT4 (27%), KMT2C (27%),
LRP1B (27%), PTPRT (27%), RB1 (27%), ALK (20%), CNTRL (20%),
COL1A1 (20%), EP300 (20%), FANCA (20%), FAT1 (20%), NAB2 (20%),
PTPRC (20%), and TRIM33 (20%). Notably, the second most
frequently mutated gene was ZFHX3 (zinc finger homeobox 3),
also known as ATBF1 (AT motif binding factor 1), a transcription
factor that induces neuronal differentiation and functions as a
tumor suppressor in several types of tumors.
In parallel, we also analyzed the mutation status of Tier 1

cancer-related genes in 22 GBCs (Supplementary Fig. S7). Except
for the fact that TP53 was the frequently mutated gene (59%),
identical to the earlier result in GBCs, we were particularly
interested in the mutation frequencies of ERBB2 and ERBB3 (18
and 14%, respectively, analogous with our previous reports).11,12 In
the comparison of mutated genes between GB-NECs and GBCs,
RB1 and NAB2 were mutated frequently in GB-NECs (27%, 4/15,
and 20%, 3/15, respectively) but not in GBCs (Fig. 2b). In contrast,
29 genes had a >10% mutation frequency in GBCs but were not
mutated in GB-NECs. Such mutations included those in NCOR2,
ARID1B, and others (Fig. 2b). Six of 15 (40%) GB-NEC samples had
either an RB1 or an NAB2 mutation. Mutations in RB1 included
three stop-gain mutations (p.Gln689*, p.Ser634*, and p.Gln217*)
and two splice-site mutations. Mutations in NAB2 were all
missense mutations, including p.Leu466Phe, p.Arg405His, and
p.Ala4Thr (Supplementary Table S2). IHC analysis indicated that
the expression of the RB1 protein was significantly lower in the 4
RB1mutated samples (p value= 0.0453) (Fig. 2c, d, Supplementary
Fig. S8). Lower NAB2 expression was also observed in the three
NAB2 mutated samples (p value= 0.0303) (Fig. 2c, d, Supplemen-
tary Fig. S9). Figure 2d, Supplementary Fig. S8, and Supplementary
Fig. S9 show the IHC results of RB1 and NAB2 in all of the GB-NEC
samples. In concert with the distinct mutation patterns in GB-NEC
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and GBC, the mutation frequency of the ERBB family, including
EGFR and ERBB2/3/4, was lower in GB-NECs (2/15, 13.3%) than in
GBCs (6/22, 27.3%), although the p value (0.156) of the one-tailed
chi-square test was not significant (Supplementary Fig. S10).

Copy number variations (CNVs)
In GB-NECs, we identified a total of 186 genes with a copy number
gain and 181 genes with a copy number loss. Among these genes
with CNVs, 18 genes with a copy number gain and 17 genes with a
copy number loss were identified as driver CNVs in other tumors
recorded in the DriverDB (http://driverdb.tms.cmu.edu.tw/
download) (Supplementary Table S9). The genome-wide distribu-
tion of these CNVs is shown in Fig. 3a, which indicated the variety
of numbers and distributions of CNVs among the samples. We
analyzed the distribution of the potential driver CNVs among the
15 GB-NEC samples and found that POP4 (20%), NEIL2 (20%),
ZNF713 (20%), PROCA1 (13%), C8orf86 (13%), and AAMDC (13%)
had high-frequency CNVs (Fig. 3a). Moreover, in the known driver
CNVs found in GB-NECs, the copy number of MYC was the highest
(copy number 69.21) (Supplementary Table S9). In GBCs, a total of
68 genes with a copy number gain and 100 genes with a copy
number loss were identified, among which 14 genes with a copy
number gain and 9 genes with a copy number loss were identified
as driver CNVs in the DriverDB (Fig. 3a, Supplementary Table S10).
The CNVs of CCL28 were observed to affect two GBC patients
(Fig. 3a).
Next, we studied all the genes with CNVs in GB-NECs and

compared them with those in GBCs. We found that in the 186
genes with a copy number gain detected in GB-NECs, 19 genes
were shared with those in GBCs. In the 181 genes with a copy
number loss detected in GB-NECs, 32 genes were shared with
those in GBCs (Fig. 3b, e). The name of genes with high-frequency
CNVs was labeled in the figures and genes with potential driver

CNVs were highlighted by bold font. Functional enrichment
analysis of genes with a copy number gain showed that several
pathways including arachidonic acid metabolism etc. were shared
by GB-NEC and GBC. There were also signaling pathways that
were specifically enriched in GB-NEC, including Ras signaling
pathway, base excision repair, TGF-beta signaling pathway, etc.
(Fig. 3c, d, Supplementary Tables S11, and S12). Correspondingly,
Fig. 3f, g shows the enriched signaling pathways of the genes with
a copy number loss. Two signaling pathways, cytokine–cytokine
receptor interaction and fat digestion and absorption were shared
by GB-NEC and GBC, while base excision repair pathway occurred
specifically in GB-NEC (Supplementary Tables S13 and S14). In
addition, combined enrichment analysis of genes with copy
number gain and loss in GB-NECs and GBCs are shown in
Supplementary Fig. S11. The data revealed that CNVs in GB-NECs
had similarities and differences with those in GBCs.

Clinical relevance of genes and pathways with genomic alterations
To evaluate the mutation potential for clinical relevance, we first
focused on potentially functional and known disease-related
variants in the ClinVar database (recorded as pathogenic or likely
pathogenic). In 15 GB-NECs, we detected a total of 36 disease-
related variants in 28 genes, in which TP53 harbored 7 mutations,
COL1A1 and CTNNB1 had 2 mutations, and the remaining genes
possessed 1 mutation (Fig. 4a, Supplementary Table S15). In 22
GBCs, we found 71 genes with disease-related variants (Supple-
mentary Fig. S12a and Supplementary Table S16), in which 10
genes overlapped with those in GB-NECs (Supplementary
Fig. S12b).
In 55 actionable genes recorded in the OncoKB dataset20, 23

genes with potential drug responses were mutated in 86.67% (13/15)
of patients with GB-NEC (Fig. 4b). The top seven genes, namely, ALK,
BRCA1, BRCA2, ATM, CDK12, FLI1, and KDM6A, were mutated in more

Fig. 2 Distinct mutational statuses of known cancer-related genes. a Mutations in known cancer-related genes in the CGC database that were
detected in more than one GB-NEC sample. bMutations in genes mutated specifically in GB-NECs or GBCs. c Comparison of RB1/NAB2 protein
expression between RB1/NAB2 mutant and wild-type samples (t test). d IHC results at different magnifications from RB1 wild-type and mutant
samples; IHC results at different magnifications from NAB2 wild-type and mutant samples. Scale bars in the figures with 50×, 100×, and 200×
magnification indicate 500, 200, and 100 μm, respectively
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than one patient. The mutations ALK p.Gly113Asp, p.Ala348Thr and
p.Thr1607Ile are displayed in Fig. 4c. We also further annotated these
mutations with the OncoKB levels (levels 1–4 indicate a response to
drugs, and levels R1/R2 indicate resistance to drugs) and reported
cancer types and drugs recorded in the OncoKB dataset (Supple-
mentary Table S17). Correspondingly, in GBC patients, 40 genes with
potential drug responses were mutated in 95.45% (21/22) of tumors.
The mutation frequencies of BRAF, MTOR, ERBB2, PIK3CA, and ATM
were the highest (Supplementary Fig. S13, Supplementary Table S18).
We also analyzed the differences in mutated genes in GB-NEC

tumors with different N stages. TGFB3 was mutated only in the N0
group (n= 6); in contrast, FAT4, PTPRT, ZNF728, ZNF845, and ZNF90
were mutated specifically in the N1/N2 group (n= 9) (Fig. 4d). We
further studied the relationship between these N-stage-related
genes and T/M stages in GB-NEC. We found that TGFB3 mutations
occurred only in stage T1/T2 GB-NECs (Supplementary Fig. S14). In
22 GBCs, genes mutated specifically in the N0 group (n= 16)
included RP1L1, LOXHD1, STAG2, and TCHH, and those in the N1
group (n= 6) included ANKRD28, CACNA2D3, EPB41L2, GNA14, and
others (Supplementary Fig. S15).
Survival analysis was performed on the genes with a mutation

frequency ≥ 26.67% (4/15) in GB-NEC (Supplementary Table S2). For
each gene, overall survival (OS) was compared between patients in

whose tumors harbored the wild-type (WT) gene and those in whose
tumors harbored the mutant gene. A mutation in CTNNB1 (n= 4)
was found to be related to prolonged OS (median OS: 38.25 vs.
6.33 months; p value= 0.0285) (Fig. 4e). Detailed mutation sites in
CTNNB1 are shown in Fig. 4f. By using IHC, we detected the
subcellular distribution of β-catenin in all of the GB-NEC samples. We
found that two of the CTNNB1 mutated samples (with CTNNB1
p.Ser33Cys and p.Ser37Phe) showed nuclear expression of β-catenin
(Fig. 4g). The other two CTNNB1 mutated samples (with CTNNB1
p.Ile315Thr and p.Ile140Met) showed no nuclear expression of
β-catenin (Fig. 4g). In addition, all other 11 GB-NEC samples without
CTNNB1 mutations showed no nuclear expression of β-catenin (data
not shown). We also re-examined the potential clinical relevance of
all 58 genes presented in Fig. 2a. In addition to the positive
relationship between CTNNB1 mutation and the OS of patients
mentioned earlier, we found that mutations in MYH11, KDM6A, and
XPC occurred in the tumors of patients who experienced extremely
poor OS (Supplementary Fig. S16). In addition, among the genes with
a high frequency of CNVs, CNVs in AAMDC (n= 2) were related to the
poor overall survival (median OS: 3.48 vs. 20.07 months; p value=
0.0258) of GB-NEC patients (Supplementary Fig. S17).
Next, we analyzed the clinical relevance of the enriched signaling

pathways of genes mutated specifically in GB-NECs, as shown in

Fig. 3 Genes with CNVs detected in GB-NECs. a Genome-wide distribution of all the CNVs in each sample of the 15 GB-NECs and 22 GBCs
accompanied by the clinical information of the samples. The potential driver CNVs known in the DriverDB database were highlighted by color
blocks with black borders in the heatmap. The CNVs that are absent in DriverDB were represented by color blocks without black borders. In
addition, the genes with high-frequency potential driver CNVs in GB-NECs and GBCs were labeled. b Overlap of genes with a copy number
gain detected in GB-NECs and GBCs. The name of genes with high-frequency CNVs was labeled in the Venn figures. Genes with potential
driver CNVs were also labeled and highlighted in bold font. c, d Results of pathway enrichment analysis on the genes with a copy number gain
in GB-NECs (c) and GBCs (d), respectively. e Overlap of genes with a copy number loss detected in GB-NECs and GBCs. f, g Results of pathway
enrichment analysis on the genes with a copy number loss in GB-NECs (f) and GBCs (g), respectively
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Supplementary Fig. S6b. A total of seven pathways, including the
prolactin signaling pathway, osteoclast differentiation, the JAK-STAT
signaling pathway, the Hippo signaling pathway, signaling pathways
regulating the pluripotency of stem cells, glycosaminoglycan
degradation and influenza A, were investigated, and the combined
mutation frequencies of mutated genes in these pathways were
73.3% (11/15), 73.3% (11/15), 86.7% (13/15), 80% (12/15), 73.3% (11/
15), 33.3% (5/15), and 80% (12/15), respectively, in GB-NEC patients.
However, the survival analysis indicated no significant associations
between mutations in these pathways and the prognosis of GB-NEC
patients (Supplementary Fig. S18).

Potential somatic SNVs
To determine somatic point mutations, we employed ISOWN and
SomVarIUS software. A total of 2088 potential somatic SNVs from
the rare mutations were predicted (Supplementary Table S19).
Similar to earlier studies, in six types of SNVs, the C > T mutation
dominated, accounting for 60.3% (Fig. 5a). We then analyzed the
genome-wide distribution of all 2088 SNVs to define hypermu-
tated regions (Fig. 5b). One “Kataegis”, the hypermutation region,

was found in chromosome 19, and ZNF43 was found to be in this
“Kataegis” (Supplementary Table S19).
We then investigated the mutation signatures of the potential

somatic SNVs. Decomposition analysis was performed using the
30 COSMIC signatures combined with ranking analysis using
Bayesian information criterion (BIC). The mutation signatures
varied in 15 GB-NEC samples (Supplementary Fig. S19). The
decomposed signatures of all 2088 potential somatic SNVs from
all samples revealed signatures 1, 3, 30, 6, 7, and 13 (Fig. 5c).
Signature 1, the most common signature in multiple types of
tumors that is related to the spontaneous deamination of 5-
methylcytosine, contributed to the largest component (34.9%). A
comparison of the distribution between the observed and
decomposed signatures of 2088 SNVs across the 96 possible
mutation types showed a cosine similarity of 0.949 and a BIC of
16887.720 (Fig. 5d), confirming the predominant somatic
SNV of C > T.
Finally, to explore the signature of SNVs related to oncogenic

signaling pathways in TCGA cohorts, important members of ten
key oncogenic pathways were analyzed according to the study of

Fig. 4 Clinical relevance of mutated genes in GB-NECs. a Genes with disease-related mutations detected in GB-NECs. b Detailed mutation
information on genes with potential clinically actionable mutations recorded in the OncoKB database. c Detailed mutation sites of ALK.
d Genes mutated specifically in stage N0 and N1/N2 GB-NECs. e Survival analysis of patients with CTNNB1 mutations compared with those
without CTNNB1 mutations. f Detailed mutation sites of CTNNB1. g IHC results of β-catenin in the four GB-NEC samples with CTNNB1 mutations.
Scale bars in the figures indicate 100 μm
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Francisco Sanchez-Vega et al.21 Genes carrying somatic SNVs were
labeled on the signaling pathways based on the regulatory
relationship between the encoded proteins as described by
Francisco Sanchez-Vega et al.21 (Fig. 6). Most genes with potential
somatic SNVs (12 genes) were enriched in the Notch pathway
(Supplementary Fig. S20, Fig. 6). The other three pathways, the
WNT, Hippo, and RTK–RAS pathways, carried 10, 9, and 7 genes
with somatic SNVs, respectively (Fig. 6). To comprehensively
understand the distribution of potential somatic SNVs or CNVs in
the important genes of these pathways, we also included genes
with CNVs in Fig. 6. Collectively, these data suggest that the
primary form of somatic SNVs with C > T occurs in a number of
oncogenic pathways, such as the Notch, WNT, Hippo, and
RTK–RAS pathways.

DISCUSSION
GB-NEC is a rare but highly malignant subtype of GBC. Its
pathologic progression may be associated with neuroendocrine
dysfunction but remains to be fully characterized. To date,
molecular targeted therapy is still unavailable. Eric Raymond
et al.22 studied PanNETs and found that sunitinib, a multitargeted
receptor tyrosine kinase (RTK) inhibitor, can improve patient
progression-free survival, overall survival, and drug responses.
Therefore, it is undoubtedly of therapeutic value to fully reveal the
molecular signatures of GB-NEC. In the present study, we
systematically studied mutations in GB-NECs for the first time. In

comparison with GBC, we described the basic characteristics of
mutations and the most frequently mutated genes and pathways
that likely mediate the progression of GB-NEC. We investigated
the SMGs and CNVs in GB-NECs. We also predicted potential
somatic SNVs and analyzed somatic mutation signatures and
oncogenic signaling pathways in GB-NECs. These findings have
advanced our current knowledge and provided global insights
into the genetic signature of GB-NEC, assisting in clinical
diagnosis, prognosis, and potential therapy.
We successfully recruited 15 cases of GB-NEC from multiple

clinical practice sites and performed an overall analysis of the
functional mutations with population frequency and detailed impact
annotations of the mutations. The analyses of genome-wide
mutations made it possible to globally investigate the characteristics
of the mutations and the mutation frequency of genes. In addition,
although a lack of normal GB tissues made it difficult to distinguish
somatic mutations from germline mutations, ISOWN and SomVarIUS
were used to predict somatic SNVs, rendering it possible to analyze
somatic mutation signatures and reveal mutated oncogenic path-
ways. We also screened the mutated genes that correlated with the
clinical outcomes of patients, as case reports of GB-NECs associated
with the clinicopathologic status were documented previously.23,24

It was not surprising to see TP53 as the most frequently mutated
gene in GB-NEC (11/15, 73%), indicating the reliability of our
current methodology engaged in the mutagenesis study. HMCN1
was frequently mutated (5/15, 33%), consistent with our previous
study that identified HMCN1 mutations in primary and metastatic

Fig. 5 Characteristics of potential somatic SNVs. a Proportions of six SNV types in potential somatic SNVs. b Interdistance of the six types of
SNVs. c Known COSMIC mutation signatures discovered in the potential somatic SNVs. d Comparison between the observed distribution of
the somatic SNVs across the 96 possible mutation types and the summation of the distributions of the decomposed signatures
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GB-NECs, implying a tumor suppressive function for this gene.13

HMCN1 was originally determined to be associated with age-
related mechanical generation.25 In line with our findings, Zhao
et al. demonstrated that HMCN1 was frequently mutated in
Chinese patients with prostate adenocarcinoma (PRAD).26 HMCN1
is believed to be one of the key mutated genes connected to the
recurrence of PRAD.26 Therefore, HMCN1 may serve as a tumor
suppressor in GB-NEC.
In COSMIC, we found a high mutation frequency of ZFHX3

(40%). ZFHX3 is a tumor suppressor transcription factor,27 and its
mutations are associated with the outcome of endometrial cancer
patients. Walker et al.28 found that patients with high-grade
endometrial tumors expressed ZFHX3 mutations and tended to

have frequent lymphovascular space invasion. Consistent with
these data, Hu et al.29 found that ZFHX3 inhibited prostate cancer
cell proliferation by downregulating MYC. Although the mutations
in ZFHX3 need to be functionally characterized with cancer
development, targeting ZFHX3 mutations may hold therapeutic
promise in GB-NEC treatment.
It is of great attention that RB1 and NAB2 had high mutation

frequencies (27% and 20%, respectively) in GB-NEC but were not
mutated in GBCs. These interesting data support our previous
study that defined low somatic mutation frequencies of RB1 and
NAB2 (3.8% and 1.3%, respectively) in 157 GBC samples.12 Our
results also indicate that mutations in RB1/NAB2 are associated
with the downregulation of the RB1/NAB2 protein in cancer tissue.

Fig. 6 Potential somatically altered oncogenic signaling pathways in GB-NECs. According to the study of Francisco Sanchez-Vega et al.21, the
frequencies of somatic SNVs and CNVs of important genes involved in the oncogenic signaling pathways are labeled to the regulatory
network of proteins they encode
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Therefore, low expression levels of mutated RB1 and NAB2 are
specific biomarkers for GB-NEC. Moreover, RB1 was predicted to
be an SMG in our study. Consistent with our findings, the loss of
RB1 has been found in a number of other NECs. For example,
prostate small-cell NEC and LCNEC harbor frequent RB1 mutations
(47%), comparable with those in TP53 (85%).30,31 These studies
revealed the predictive value of RB1 mutations in the chemother-
apy resistance of these cancers. Hence, it is worthwhile to further
investigate the mechanistic roles of RB1 and NAB2 in the
malignant transformation of GB-NEC.
Several genes with high-frequency and important CNVs,

including POP4, CCNE1, and MYC, have been observed in GB-
NECs. POP4 (POP4 homolog, ribonuclease P/MRP subunit), with
the highest amplification frequency in GB-NECs (20%), is a
protein-coding gene involved in the processing of precursor
RNAs. Frequent amplification of POP4 on 19q12 has also been
observed in grade III breast cancers32 and periampullary
adenocarcinomas.33 Silencing POP4 reduces cell viability in grade
III breast cancer cells harboring its amplification.32 CCNE1
amplification was observed in both GB-NECs and GBCs in our
study. Interestingly, CCNE1 is also located at 19q12 and is
frequently coamplified with POP4.32,33 Indeed, in one GB-NEC
sample (GBNEC_4), CCNE1 and POP4 both showed copy number
gains (Fig. 3a). CCNE1 is involved in the cell cycle pathway (Fig. 6),
and its amplification has been identified in multiple cancers.
Among the known driver CNVs found in GB-NECs, the copy
number of MYC increased the most (copy number 69.21). MYC is
also frequently amplified in a variety of tumors. As described by
Stine et al.,34 MYC is an enigmatic oncogene, in that it seems to
affect all cellular processes. These genes with CNVs in GB-NECs
may be potential therapeutic targets.
We discovered 23 genes with potential drug responses in GB-

NECs. However, according to the annotation results, we found that
most of these reported drug effects were related to mutations in
the corresponding genes in a wide range of mutation sites, such as
“oncogenic mutations”, rather than specific mutation sites. More-
over, these drug effects were reported in other tumors, not in GB-
NEC. Therefore, our results have potential guiding roles in the
clinical treatment of GB-NEC; however, more direct evidence is
needed to confirm the effect of specific drugs. For example,
according to previous studies, ALK mutations exert various effects
on tumor development and the response to ALK TKI targeted
therapy. Many oncogenic mutations in ALK have been identified.35

For example, Wang et al.36 found that the overexpression of H694R-
or E1384K-mutant ALK leads to the hyperphosphorylation of ALK
and the activation of downstream oncogenic signaling. Treatment
with ALK inhibitors resulted in significantly improved survival in
ALK-mutant-bearing mice.36 In contrast, various mutations, such as
L1196M, G1269A, I1151T‐ins, G1202R, S1206Y, and I1171T, have
been reported to be associated with resistance to specific ALK TKIs,
which can be mediated by the activation of bypass pathways,
including the ERBB pathway.37,38 It is still difficult to predict the
oncogenic functions and response to different ALK inhibitors of
different ALK mutations precisely by bioinformatic tools, although
this is of great significance for therapeutic implications. However, as
almost all the TKI resistance-related ALKmutations are located in the
ALK kinase domain, we believe that the three ALK mutations
identified in GB-NECs in our study are not resistant to TKIs. However,
because the sensitivity to TKIs of the three ALK mutations identified
in GB-NECs has not been reported previously, further experimental
studies need to be conducted to validate their potential oncogenic
roles and association with the response to ALK TKIs.
In GB-NECs, we found that TGFB3 was mutated only in the N0

group; in contrast, FAT4, PTPRT, ZNF728, ZNF845, and ZNF90 were
mutated specifically in the N1/N2 group. As reviewed by Laverty
et al.39 TGFB3 may play a protective role against tumorigenesis in
a range of tissues, including the skin, breast, oral, and gastric
mucosa. TGFB3 has a suppressor effect in the early stages of

tumorigenesis according to preclinical data.39 Our results indicate
an association between TGFB3 mutations and early stage GB-
NECs. FAT4 is frequently mutated and known as a tumor
suppressor in multiple tumors. FAT4 suppresses tumor growth
by activating Hippo signaling.40 PTPRT, originally discovered as a
primarily neurological protein, is frequently mutated in human
cancers, including colon, lung, and gastric cancers. PTPRT plays an
integral role in cell adhesion and intracellular signaling and was
proven to be a tumor suppressor.41,42 Our data suggest that FAT4
and PTPRT may have tumor-suppressive roles in GB-NECs. The
roles of ZNF728, ZNF845, and ZNF90 in tumors have not yet been
reported and need to be further investigated in GB-NECs in future
studies.
Mutations in CTNNB1 were related to prolonged OS in GB-NEC

patients. Two of the CTNNB1 mutated GB-NEC samples (with
CTNNB1 p.Ser33Cys and p.Ser37Phe) showed the nuclear expres-
sion of β-catenin. β-Catenin is involved mainly in cell-to-cell
adhesion and is a component of the Wnt signaling pathway. The
deregulation of β-catenin signaling is crucial in the genesis of
multiple tumors,43 and elevated levels of β-catenin activity are
associated with CTNNB1 mutations.44 S33 and S37 are hotspot
mutation sites at exon 3 of CTNNB1 and are the phosphorylation
sites for GSK-3β. Mutations in exon 3 of CTNNB1 can induce the
accumulation of nuclear β-catenin and activate the canonical Wnt
pathway.44 It is not very clear why the four patients with CTNNB1
mutations had relatively good prognoses, which may need to be
further investigated and validated in future studies. However,
mutations in CTNNB1 exon 3 may be potential markers for drugs
targeting the Wnt pathway in GB-NECs.
We predicted six known somatic mutation signatures in GB-

NECs: signatures 1, 3, 30, 6, 7, and 13. In the COSMIC database
(https://cancer.sanger.ac.uk/cosmic/signatures_v2), signature 1 is
characterized by an endogenous mutational process initiated by
the spontaneous deamination of 5-methylcytosine. Signature 3 is
associated with the failure of DNA double-strand break repair by
homologous recombination. Signature 6 is associated with
defective DNA mismatch repair and is found in tumors with
microsatellite instability. Signature 7 is likely due to ultraviolet
light exposure. Signature 13 is related to the activity of the AID/
APOBEC family of cytidine deaminases. The etiology of signature
30 remains unknown. Signature 1 was also found in GBCs in our
previous study,12 but signatures 3, 6, 7, 13, and 30 were discovered
in GB-NECs in the current study. These signature-related biological
processes may play a role in gene mutations and the occurrence
of GB-NEC.
In summary, we have revealed mutations and potential somatic

SNVs in GB-NEC. The large scale of genetic characteristics in GB-
NEC may offer mechanistic insights for cancer diagnosis and
therapeutic targets.

MATERIALS AND METHODS
Patient tissue collection, processing, and WES
In total, FFPE tumor samples from individual GB-NEC patients were
collected from four hospitals: the Second Affiliated Hospital of
Zhejiang University School of Medicine, Ganzhou People’s
Hospital, Ningbo Ninth Hospital, and Ningbo Medical Center
Lihuili Eastern Hospital. The FFPE tumor samples of GBC patients
were collected from Xinhua Hospital Affiliated to Shanghai Jiao
Tong University School of Medicine. This study was approved by
the ethics committees of the participating hospitals. Clinical data
associated with the samples were collected. The clinical informa-
tion on GB-NEC and GBC patients is briefly summarized in Table 1
and Supplementary Table S1, respectively. Clinical staging was
performed based on the eighth staging system of the American
Joint Committee on Cancer. The FFPE tumor samples were
pathologically verified. Subsequently, DNA was extracted to
prepare the next-generation sequencing library.
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DNA length and integrity were confirmed on an Agilent 2100
Bioanalyzer (Agilent, Santa Clara, USA). The library was constructed
as described in our previous study and according to the procedure
recommended by Illumina.12 Briefly, genomic DNA was fragmen-
ted, purified, end-repaired, adenylated on the 3′ ends, ligated with
indexed pair-end adaptors, purified again, and amplified by
polymerase chain reaction (PCR). Exome capture was performed
using Agilent SureSelect Human All Exon V6 Probes (Agilent, Santa
Clara, USA). After PCR amplification, purification, library validation,
normalization, and pooling, the libraries were sequenced with the
Illumina HiSeq Series Analyzer, yielding 300 base pairs (2 × 150)
from the final library fragments.

WES data analysis
Adapter trimming, BWA read mapping and GATK processing
was conducted as described in our previous study.12,45–47 The
resulting bam files from BWA have also been uploaded to the
Sequence Read Archive (SRA) database (https://www.ncbi.nlm.
nih.gov/sra). We uploaded the WES data of GBC and GB-NEC as
separate projects. The accession number of the GB-NEC project
in this database is PRJNA636203, and the accession number of
the GBC project is PRJNA638698. VarScan 2 software48 was
applied for variant detection with default parameters, except
for “--min-coverage 15 --min-var-freq 0.08”. The fpfilter module
of VarScan 2 was used to remove false-positive variations. We
also used our inner database of false-positive mutations to
conduct an additional filter. VEP, SnpEff, and GEMINI soft-
ware49–51 were applied to annotate the variants using informa-
tion from publicly available databases, including ClinVar and
ExAc. After annotation, we further filtered the mutations using
the following criteria: (1) the impact of the mutations predicted
by SnpEff was “HIGH” or “MODERATE”; (2) the depth of the
alternative allele was >5; and (3) the frequency of the
alternative allele in the population (max_aaf_all provided by
GEMINI) was <0.0005 and such mutations were defined as “rare
mutations” in the general population.

Summary of WES data analysis results
The genome-wide distribution of the mutations was visualized
as a CIRCOS figure using ClicO FS.52 Maftools53 was applied for
the analysis, statistics, and visualization of mutations from MAF
files, including the variant classifications, proportions of SNVs,

oncoplots of genes with the most frequent mutations, lollipop
plots of genes, mutually exclusive or cooccurring set of genes,
Pfam domains with significant mutations, mutation comparisons
of the two cohorts, and known oncogenic signaling pathways in
the TCGA cohorts. Heatmap and Venn diagram figures were
made by TBtools.54

Pathway enrichment analysis
Pathway enrichment analysis was performed by using the
ConsensusPathDB (http://cpdb.molgen.mpg.de).55 The overrepre-
sentation analysis module of the web-based software was applied.
The KEGG database was used as the pathway reference database.
The analysis criteria were as follows: minimum overlap with input
list, 2; and p value cutoff 0.01 for the genes with mutations and
0.05 for the genes with CNVs.

SMG analysis
We used MutSigCV56 to detect SMGs in the 15 GB-NEC samples.
MutSigCV software was run with default covariate tables to
calculate gene mutational significance. Silent mutations (predicted
by SnpEff as “LOW”) with a < 0.0005 frequency of the alternative
allele in the population were also included in the analysis. Genes
with a p value ≤ 0.05 in the output file were involved in the SMGs
and used for subsequent analysis. In addition, genes for which
information on expression levels and HiC-based chromatin state
estimation was unavailable in the MutSigCV database were
removed from the results.

CNV analysis
We used our own pipeline to analyze CNVs. Briefly, in each sample
and for each gene, we calculated the number of sequencing reads
of all exons by extracting the information from the bam files
according to the genomic locations of exons downloaded from
the UCSC Genome Browser (https://genome.ucsc.edu). Subse-
quently, the data were balanced by the average sequencing depth
of the corresponding sample. The resulting data were then
compared with our internal control dataset generated from the
sequencing data of peripheral blood leukocytes, and the relative
copy numbers of the exons of each gene were calculated. Then, to
avoid false positives, we focused only on genes with more than
two exons. Genes were determined as having copy number gain if
all of the exons had a copy number >2.8. Correspondingly, genes

Table 1. Clinical information of the GB-NEC patients

Sample_ID Gender Age Family
history

Tumor site Jaundice T stage N stage M stage TNM stage Differentiation Overall
survival status

Months to
last
follow up

GBNEC_1 Male 66 No Bottom Yes 3 1 0 IIIB G3 Dead 11.03

GBNEC_2 Female 50 No Bottom No 4 1 0 IVB G3 Dead 4.10

GBNEC_3 Female 65 No Body No 2a 0 0 IIA G2 Dead 4.67

GBNEC_4 Male 54 No Body No 3 0 1 IVB G2 Alive 124.73

GBNEC_5 Female 82 No Bottom No 3 2 0 IVB G3 Dead 6.33

GBNEC_6 Female 65 No Neck No 1b 0 0 I G2 Alive 44.23

GBNEC_7 Female 72 No Neck Yes 3 2 0 IVB G3 Dead 2.87

GBNEC_8 Female 68 No Neck Yes 4 1 1 IVB G3 Dead 1.70

GBNEC_9 Female 54 No Neck and body No 2a 0 0 IIA G3 Alive 32.27

GBNEC_10 Male 66 No Neck No 1b 0 0 I G3 Alive 35.30

GBNEC_11 Female 68 No Neck No 2a 2 0 IVB G3 Dead 2.83

GBNEC_12 Male 59 No Neck Yes 3 1 0 IIIB G3 Dead 20.07

GBNEC_13 Female 64 No Neck and body No 3 0 0 IIIA G3 Dead 13.67

GBNEC_14 Female 60 No Bottom No 3 2 0 IVB G3 Dead 22.67

GBNEC_15 Female 59 No Bottom No 3 2 0 IVB G3 Alive 6.83
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were determined as having copy number loss if all of the exons
had a copy number <1.2. The distributions of genes with CNVs
among samples were summarized with Oncoprinter.57

Somatic mutation prediction
We first used ISOWN (Identification of SOmatic mutations Without
matching Normal tissues),58 a supervised machine learning
algorithm, to predict potential somatic SNVs. Briefly, the original
SNVs generated from the process described above were
annotated with COSMIC (v69), dbSNP (v142), ExAC (release 2),
PolyPhen WHESS (released in 2015), and Mutation Assessor
(released in 2013). The somatic SNVs were then predicted by
ISOWN using default criteria. Subsequently, we applied another
single-sample variant caller, SomVarIUS,59 to further analyze the
somatic mutations. Somatic SNVs predicted by both ISOWN and
SomVarIUS were subjected to the subsequent analysis.

Mutation signature analysis
We used Mutalisk60 to analyze the mutation signatures of the
somatic SNVs. A linear regression test was applied as the
maximum likelihood estimation method for the decomposition
of mutation signatures referring to the 30 COSMIC signatures. The
best decomposition model was ranked and chosen based on
the BIC.

Statistical analysis
Survival analysis was performed using GraphPad Prism version
8.2.1 for Mac (GraphPad Software, La Jolla California USA, www.
graphpad.com). The comparison of survival curves was performed
using the log-rank test. The p value and hazard ratio of the log-
rank test were also calculated. The comparison of RB1/NAB2
expression between RB1/NAB2 wild-type and mutant samples was
also performed by GraphPad Prism using an unpaired t test.

Immunohistochemistry
Immunohistochemical staining was performed using a standard
immunoperoxidase staining procedure. Antibodies against RB1
and NAB2 were used at dilutions of 1:150 and 1:200, respectively.
Immunoreactivity was semiquantitatively scored on a scale from
0 to 4+ as follows: 0 (<10%), 1+ (10–25%), 2+ (>25–50%), 3+
(>50–75%), or 4+ (>75%).61 Strong and intact nuclear expression
of RB1 in endothelial cells served as an internal positive control.
Moderate nuclear and cytoplasmic expression of NAB2 in
glandular epithelial cells also served as a positive control.
Antibodies against β-catenin were used at a dilution of 1:100.
The nuclear expression of β-catenin was compared between the
CTNNB1 wild-type and mutant samples.
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