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Summary box

What is already known on this subject?
►► Gut microbiota diversity and stability is lower in 
patients with IBD.

►► Microbiota-based classification between 
disease and control has been successful, but not 
between active and inactive disease.

►► Differentially abundant microbes between these 
groups have also been identified, but these 
often differ between country of origin, study 
and methods.

What are the new findings?
►► We found temporal intra-individual microbiota 
changes indicative of disease activity.

►► Geographic location was a major determinant 
of microbiota variation, even though a majority 
of compositional variance remains unexplained.

How might it impact on clinical practice in the 
foreseeable future?

►► Ethnicity, diet, and geographical locations 
need to be considered in future microbiota 
studies with implications for the prospect of 
personalised therapeutics.

►► Furthermore, longitudinal sampling is important 
to leverage intra-individual variance for 
increasing potential diagnostic and prognostic 
power.

ABSTRACT
Objective  The microbiome contributes to the 
pathogenesis of inflammatory bowel disease (IBD) 
but the relative contribution of different lifestyle and 
environmental factors to the compositional variability of 
the gut microbiota is unclear.
Design  Here, we rank the size effect of disease activity, 
medications, diet and geographic location of the faecal 
microbiota composition (16S rRNA gene sequencing) in 
patients with Crohn’s disease (CD; n=303), ulcerative 
colitis (UC; n = 228) and controls (n=161), followed 
longitudinally (at three time points with 16 weeks 
intervals).
Results  Reduced microbiota diversity but increased 
variability was confirmed in CD and UC compared 
with controls. Significant compositional differences 
between diseases, particularly CD, and controls were 
evident. Longitudinal analyses revealed reduced 
temporal microbiota stability in IBD, particularly in 
patients with changes in disease activity. Machine 
learning separated disease from controls, and active 
from inactive disease, when consecutive time points 
were modelled. Geographic location accounted for most 
of the microbiota variance, second to the presence or 
absence of CD, followed by history of surgical resection, 
alcohol consumption and UC diagnosis, medications and 
diet with most (90.3%) of the compositional variance 
stochastic or unexplained.
Conclusion  The popular concept of precision medicine 
and rational design of any therapeutic manipulation 
of the microbiota will have to contend not only with 
the heterogeneity of the host response, but also with 
widely differing lifestyles and with much variance still 
unaccounted for.

Introduction
Clinical and experimental research has linked the 
gut microbiota with the pathogenesis of Crohn’s 
disease (CD) and ulcerative colitis (UC).1–5 Reduced 
microbial diversity and other non-disease-specific 
changes in the microbiome, which probably reflect 
changes secondary to inflammation, have been 
reported by several investigators. In addition, 
some have recently reported apparent disease-
specific changes.6–9 However, diet, medications, 
ethnicity, geography and a multitude of lifestyle or 

environmental variables may confound the inter-
pretation and replication of microbiome studies. 
This is particularly problematic with small studies. 
Few large-scale longitudinal studies across stages of 
disease activity have been conducted,9-11 particu-
larly with intercontinental comparisons. Therefore, 
we undertook a study over different time points of a 
large population of patients with CD and UC from 
two socioeconomically developed but geographi-
cally separated regions (Ireland and Canada), during 
periods of active (relapse) and inactive (remission) 
disease and ranked the contribution of variables to 
microbiota composition.

The results confirm microbiota compositional 
instability in patients with fluctuating disease 
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Table 1  Subject characteristics and sample sizes for the Irish and the Canadian cohorts

Type of cohort

Manitoba Cork

CD UC
Non-IBD 
control CD UC Non-IBD control

Number of subjects 186 144 79 117 84 82

Gender (%female) 72.0 58.3 36.7 48.7 36.9 50.0

Age (mean±SD) 54.4±12.6 56.9±12.6 57.6±15.9 41.0±11.7 45.6±12.6 40.88±16.5

Age of disease onset (mean±SD) 30.5±11.9 36.1±13.2 NA 26.4±10.6 30.8±12.1 NA

Sample type (all time points) Active Inactive Active Inactive Non-IBD 
control

Active Inactive Active Inactive Non-IBD control

 � Number of samples 238 340 167 324 96 55 180 61 150 179

Prior resection (%) 47.5 41.8 91.6 91.7 NA 65.5 52.2 93.4 98.0 NA

 � Smoking status  �   �

 � Non (%) 40.1 41.1 35.4 39.8 51.9 55.3

 � Ex (%) 44.3 44.2 24.0 48.1 41.5 14.5

 � Current (%) 9.5 6.1 2.1 12.0 6.6 6.1

 � Alcohol consumption  �

 � >2 units per day (%) 3.3 4.9 11.5 12.0 9.9 5.0

 � <2 units per day (%) 47.9 49.1 38.5 42.3 47.2 31.8

 � Non (%) 42.9 37.5 11.5 45.6 41.5 14.0

Medication  �

 � Biologics (%) 17.6 8.0 4.2 2.8 0.0 27.3 20.6 11.5 10.7 0.0

 � 5-ASA (%) 26.9 25.0 50.9 49.4 0.0 40.0 32.8 57.4 57.3 0.0

 � Mercaptopurine (%) 13.9 24.1 11.4 11.4 0.0 14.5 22.2 18.0 24.7 0.0

 � Corticosteroids (%) 5.9 3.5 9.6 3.7 1.0 25.5 10.6 24.6 7.3 1.1

 � Proton pump inhibitors (%) 26.1 20.9 23.4 11.1 31.3 18.2 18.3 4.9 17.3 2.2

 � Other gastrointestinal drugs (%) 19.3 22.1 13.8 7.1 2.1 14.5 10.0 3.3 6.7 1.1

 � Antibiotics (%) 2.9 4.4 4.2 0.9 0.0 0.0 0.0 1.6 0.7 0.0

 � Supplements (%) 60.9 66.8 47.9 45.4 21.9 12.7 20.6 14.8 18.0 10.1

 � NSAIDs (%) 28.2 28.5 31.1 23.1 18.8 14.5 4.4 0.0 8.0 1.7

 � Diabetes drugs (%) 1.7 1.7 6.6 4.9 0.0 3.6 3.9 4.9 4.0 0.0

5-ASA, 5-aminosalicylic acid; NSAIDs, non-steroidal anti-inflammatory drugs.

activity, but show that geographic location (which may reflect 
ethnic and lifestyle differences) ranks higher in its contribution 
to microbiota variance than common variables such as prior 
surgical resection, age, gender and diet. However, the majority 
of the compositional variance remains unaccounted. The find-
ings have implications for the prospect of personalised therapeu-
tics based on microbial manipulation.

Methods
Study populations, sample and data collection
All patients had well-established diagnoses by conventional and 
investigative criteria.10 Patients were not invited to comment 
on the study design and were not consulted to develop patient-
relevant outcomes or interpret the results. Patients were not 
invited to contribute to the writing or editing of this document 
for readability or accuracy. An active state of IBD was defined as 
a faecal calprotectin measurement of ≥250 µg/g.11 Patients from 
Cork, Ireland (n=283) and Manitoba, Canada (n=409), were 
sampled at three separate time points approximately 16 weeks 
apart (table 1). All subjects completed a Food Frequency Ques-
tionnaire (FFQ) to capture long-term dietary habits through 
frequencies of medium food servings of 157 items.12 13 The FFQ 
used in Ireland was adapted for the Canadian participants to 
reflect common food items consumed by the Canadian popula-
tion.14 These frequencies were normalised to per month counts 
and were grouped into 30 broader food categories.

Sample processing and sequencing
All samples were processed in a single laboratory in Cork using 
the same protocols. Irish subjects brought samples to a morning-
time gastroenterology clinic which were promptly delivered to 
the microbiology laboratory and frozen at −80°C. Canadian 
samples were stored at −80°C, before shipment to Cork on dry 
ice. There were no inadvertent episodes of freeze-thawing. An 
experiment was conducted to investigate the time delay in trans-
porting the Canadian samples (see ‘Results).

Aliquots of approximately 0.2 g were transferred into tubes 
with one 3.5 mm glass bead, 0.1 mL of 1.0 mm zirconia/silica 
beads and 0.1 mL of 0.1 mm glass beads (Biospec, Bartlesville, 
USA). QIAamp Fast DNA stool kit (Qiagen, Germany) was used 
for DNA extraction. First, 1 mL of InhibitEX buffer was added 
to the faecal samples, which were disrupted by bead-beating in a 
Mini-Beadbeater-24 (Biospec) for 30 s, thrice at maximum speed 
(3450 strokes/min). Samples were heated at 95°C for 5 min and 
subsequently processed according to the kit instructions resulting 
in genomic DNA eluted in 200 µL ATE buffer (10mM Tris-Cl 
pH 8.3, 0.1mM EDTA, 0.04%NaN3 (sodium-azide)). DNA 
concentrations were measured using a NanoDrop 2000 Spec-
trophotometer (Thermo Scientific, USA) and stored at −80°C 
until 16S rRNA gene amplicon sequencing library preparation. 
Library preparation was performed following Illumina (San 
Diego, USA) recommendations. Aliquots of 15 ng of extracted 
DNA were subjected to PCR amplification of the 16S rRNA 
V3-V4 hypervariable region in a total volume of 30 µL. Primers 
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(forward: 5’-CCTACGGGNGGCWGCAG-3’, reverse: 5’-​GACT​
ACHV​GGGT​ATCT​AATCC-3’) were selected from Klindworth 
et al15 and Illumina adapters, containing overhang nucleotide 
sequences, were added to the gene-specific sequences.16 The PCR 
primers (Eurofins Genomics, Germany) at a concentration of 0.2 
µM were used with the Phusion High-Fidelity DNA polymerase 
(Thermo Scientific, USA). PCR amplification was performed on 
a 2720 Thermal Cycler (Applied Biosystems, USA) at 98°C for 
30 s, followed by 25 cycles of 98°C for 10 s, 55°C for 15 s, 72°C 
for 20 s and 72°C for 5 min. Post-PCR products of the amplified 
16S rRNA gene band was verified in an agarose gel and purified 
using Agencourt AMPure XP magnetic beads (Beckman-Coulter, 
USA) and eluted in 50 µL of EB Buffer (Qiagen). After purifica-
tion, 5 µL of DNA was amplified in a second PCR employing 
Nextera XT Index primer (Illumina) run at 98°C for 30 s, and 
followed by eight cycles of 98°C for 10 s, 55°C for 15 s, 72°C 
for 20 s and 72°C for 5 min, followed by a second purification 
step with Agencourt AMPure XP magnetic beads. The amplicons 
containing the Nextera indexes were finally eluted in 25 µL of 
EB Buffer and DNA concentration quantified using Qubit high-
sensitivity double stranded DNA assay kit (Thermo Scientific). 
A randomised pooled library was created by adding 40 ng of 
each sample. Finally, a diluted sample of this library with a 30 
nM concentration was sent for MiSeq sequencing (Illumina) to 
Eurofins Genomics.

An additional −80°C frozen aliquot containing approxi-
mately 0.5 g of faecal material was used to measure calprotectin 
concentration in an ImmunoCap 250 autoanalyser employing 
EliA Calprotectin Immunoassay V.2 (Phadia-Thermo Scientific, 
Sweden). The BÜHLMANN fCAL ELISA kit was deployed for 
faecal calprotectin measurement in the Canadian cohort. Results 
were expressed as μg/g faeces for both assays.

Bioinformatic analysis and statistics
First, ‘cutadapt’17 was used to remove the adapter sequences from 
the V3-V4 region of the 16S rRNA amplicon reads allowing for 
an error rate of 0.2. USEARCH (V.8.1.1861) script ‘fastq_merge’ 
was employed to merge forward and reverse reads. The QIIME 
script ‘split_libraries’ was used to demultiplex retaining reads 
with a minimum average PHRED quality of Q25 and a length of 
390–465 bp. De novo clustering of operational taxonomic units 
(OTUs) was carried out using ‘cluster_otus’ in USEARCH, while 
chimaeras were removed using ‘uchime_ref’ with the Chime-
raSlayer GOLD database.18 The Mothur implementation of the 
Ribosomal Database Project (RDP) classifier (V.11.4) was used 
to classify OTU taxonomy (phylum and genus) with a bootstrap 
cut-off of 80%, and all others assigned as unclassified at that 
particular rank.19 For species classification and Clostridium clus-
ters, SPINGO (V.1.3)20 was performed against the RDP database 
(V.11.4) with similarity score of 0.5 and bootstrap cut-off of 
0.8.21 Sequence data are available at NCBI SRA PRJNA414072.

All downstream analysis was performed in R V.3.6.0. Alpha 
and beta diversity was calculated using R package ‘phyloseq’ 
while plots were constructed in ‘ggplot2’. Differential taxa 
abundance was done using ‘MetagenomeSeq’ (V.1.26.3), while 
differences in diet consumption were calculated using Wilcoxon 
tests. Heatplots were constructed using the ‘made4’ library with 
Spearman’s correlations combined with hierarchical Ward-
clustering. Hierarchical clusters were cut using ‘dynamicTreeCut’ 
with a minimum cluster size of 75 samples and tested with Fish-
er’s tests for the categorical data and the Wilcoxon tests for 
quantitative data. Spearman’s correlations were used to assess 
correlations between food groups/taxa/metadata and principal 

coordinates analysis (PCoA)/principal component analysis (PCA) 
axes. Adonis from the ‘vegan’ library based on Bray-Curtis 
dissimilarity was performed to investigate and rank the effect 
of 14 environmental factors including medications on overall 
microbial composition. The FFQ data were condensed into one 
factor, the Healthy Food Diversity (HFD) Index, as previously 
described,22 using individual food items. For the different ther-
apies and disease activities, the variance was adjusted for IBD 
group to quantify effects between active/inactive and treated/
untreated, rather than the effect of healthy/IBD sufferer. Cumu-
lative explained variance was calculated in a greedy stepwise 
approach, whereby environmental factors contributing with the 
highest R2 value (p<0.1) were iteratively added to the model 
in the previous iteration. To distinguish between health/disease 
and active/inactive disease, gradient boosted trees models were 
generated via ‘xgboost’ based on either proportional normalised 
OTUs present in at least 5% of the samples, or ratios between 
these OTUs of two time points from patients with non-changing 
disease states. Optimal model parameters were determined with 
bootstrapping of 1000 iterations and fivefold cross-validations. 
For each binary classification, n leave-one-out models were 
generated to predict the class of the nth sample. OTU impor-
tance was determined by the gain an OTU added to a model 
and the frequency with which each OTU was used for a model. 
Performance of each classification was measured by area under 
the receiver operating characteristics. P values were adjusted 
for multiple testing where appropriate, using the Benjamini and 
Hochberg method.23

Results
Microbial composition in IBD differs from that of controls
We collected 1815 stool samples from 303 patients with CD, 
228 patients with UC and 161 healthy controls from the regions 
of Manitoba, Canada (59% of subjects) and Cork, Ireland. The 
samples were longitudinally collected from subjects who were 
either in relapse (active; 34% of 1515 IBD samples) or in remis-
sion (inactive) with time intervals of on average 16 weeks (95% 
CI: 15.6 to 17.0). See table 1 for subject characteristics.

The 16S rRNA V3-V4 region of all samples were amplified, 
sequenced and subjected to quality and chimaera filtering in 
Cork, resulting in a mean of 21 647 (95% CI: 21 298 to 21 
996) usable reads per sample. These were clustered into 3148 
OTUs with ≥97% identity and analysed further. To ensure that 
the time lag in mailing the Canadian samples to Cork did not 
confound microbiota results, we analysed four fresh samples 
stored in duplicates for up to 7 days at room temperature. There 
was no significant difference between time points in terms of 
microbiota alpha diversity, nor was any OTU differentially abun-
dant between samples processed at different time points (online 
supplementary figure 1).

Beta diversity analysis based on Bray-Curtis distances 
(figure  1A) showed a significant disease-associated shift along 
Principal components (PCs) 1 and 2, with CD samples located 
furthest from healthy controls, followed by UC. Samples from 
patients with active disease were further from controls than 
those from patients in remission (inactive) for both UC along 
PC1 (p<0.013) and CD along PC2 (p<0.012).

Several food groups and other metadata (discussed later) 
were significantly correlated to PC1 and/or PC2 axes and, thus, 
associated with the overall variation in microbiota composition 
(figure 1B; online supplementary table 1). Among the strongest 
correlates were geographic location, resection, age of onset and 
food supplements. However, the overall strongest correlation 
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Figure 1  Microbiota composition and diversity in Crohn’s disease (CD), ulcerative colitis (UC) and control subjects. (a) Principal coordinates analysis 
(PCoA) based on Bray-Curtis distances with proportional normalisation on all operational taxonomic units (OTUs) present in >5% of samples, with 
samples grouped by disease and activity state. Violin plots show projections of PCoA points into PC1 and PC2. (b) Spearman’s correlations between 
PC axes and food groups/metadata and alpha diversity. Only categories with significant correlations are represented. The direction and length of the 
arrows indicate the direction and strength of the correlation. (c) Comparison of Chao1 alpha diversity for disease type and status of patients with 
IBD vs healthy controls.(d) Comparison of distances between time points from the same subject based on intra-individual Bray-Curtis distances. (e) 
Comparison of intra-individual and inter-individual Bray-Curtis distances. *p<0.05; **p<0.01; ***p<0.001.

was for alpha diversity, which was lower in patients with IBD. 
Irrespective of correlations with beta diversities, alpha diversity 
was significantly lower in patients with CD and UC compared 
with controls (figure  1C; online supplementary table 2), and 
also in active versus inactive UC. For individual subjects (pair-
wise version of figure 1C), active UC showed significantly lower 
alpha diversity than the corresponding inactive sample from the 
same subject (online supplementary figure 2).

Species associated with disease
The OTUs were classified to species level and filtered down 
to 200 species present in at least 5% of the samples in order 
to remove outlier taxa with low prevalence. MetagenomeSeq 
analysis showed a greater number of species with significantly 
higher abundance in disease compared with controls. Of these, 
68 were significantly decreased and 35 significantly increased in 
CD relative to controls. Similarly, 60 species were significantly 
decreased, and 27 species were increased in UC compared with 

controls (figure 2; online supplementary tables 3–5). The most 
significantly increased species in CD compared with controls 
were Ruminococcus gnavus and Eggerthella lenta. In contrast, 
several Eubacteria (E. eligens and E. rectale) and Faecalibacte-
rium prausnitzii species were decreased in CD when compared 
with controls. E. lenta was also increased in UC versus controls 
along with Holdemania filiformis and Clostridium innocuum, 
whereas E. eligens and Clostridium aminobutyricum were 
decreased in UC relative to controls. There were no significant 
differences between active and inactive CD, or active and inac-
tive UC.

A microbial signature for CD has been suggested using a Boolean 
algorithm on eight differentially abundant taxa resulting in accu-
racies between 64%–82% and 77%–85% to distinguish patients 
against UC and healthy controls, respectively.7 Applying the same 
algorithm and genera to our dataset generated lower accuracies 
of 61% (UC vs CD) and 68% (control vs CD). A more powerful 
approach, particularly for heterogeneous datasets,24 is the Machine 
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Figure 2  Differential species abundances (volcano plots) between disease groups and disease state. Points above the horizontal line are significant 
while the X-axis position of each point indicates the direction of fold change. The size of each point refers to the abundance of the species across the 
cohort while the colour indicates the family rank. CD, Crohn’s disease;UC, ulcerative colitis.

Learning technique Extreme Gradient Boosting. With this method, 
we observed an area under the curve (AUC) of 0.88 (84% accuracy) 
for CD versus control, and 0.88 (83% accuracy) for UC versus 
control, with E. rectale and Clostridium cluster XIVa being the 
most important discriminatory OTUs in both diseases, respectively 
(figure 3; online supplementary table 6). The AUC for CD versus 
UC was, however, much lower (0.67; 64% accuracy). Repeating 
the classification within each location only marginally changed the 
AUCs (figure 3), whereas intercontinental cross-validation reduced 
AUCs somewhat with an average of 0.071 (online supplementary 
figure 3; online supplementary table 7). Curiously, classifying 
disease activity was only possible by using longitudinal within-
subject change between two consecutive time points as ratios of 
each OTU, as opposed to OTUs from a single time point. With the 
former method, we obtained higher AUCs of 0.81 (81% accuracy; 
Hydrogenoanaerobacterium saccharovorans most important) for 
CD, 0.73 (85%; Bifidobacterium) for UC and 0.91 (89% accu-
racy; Anaerostipes hadrus) for patients combined (figure 4; online 
supplementary table 8).

Hierarchical clustering reveals groups dominated by 
prevalent species
In view of the heterogeneity of UC and CD, we assessed poten-
tial stratification based on microbiota composition. Hierar-
chical clustering revealed 10 subgroups (clusters) based on their 
proportional species composition, with several clusters domi-
nated by particular species (figure  5). Clusters ranging in size 

between 79 and 328 samples were often distinguished by varying 
relative family abundances. Among these, clusters 7–10 had 
significantly more (mainly Canadian) patients with IBD than the 
other clusters. Cluster 1 (Bacteroides vulgatus), cluster 7 (Esch-
erichia/Shigella) and cluster 8 (Akkermansia muciniphila for 1/3 
of subjects) contained significantly more subjects postresection, 
while clusters 1, 2 (Prevotella copri) and 10 had more subjects 
taking biologics (antitumour necrosis factor) (online supplemen-
tary figure 4; online supplementary table 9).

Temporal stability
Temporal stability was assessed by comparing within-subject 
Bray-Curtis distances across multiple time points. Patients 
with CD or UC had significantly greater within-subject differ-
ences (reduced microbiota stability) compared with controls 
(figure  1D; online supplementary table 10). In addition, we 
observed significantly higher within-subject transitional micro-
biota differences in samples taken across different activity stages 
for both CD and UC, than in samples from patients whose 
disease activity did not change. Inter-individual differences were 
also substantially larger than intra-individual differences for all 
cohorts (figure 1E).

We further investigated temporal stability by testing whether 
samples from the same subject had a higher tendency to be adja-
cent to each other in the hierarchical tree clustering (figure 5). 
Of all samples in this tree, 36% were closest to samples from 
the same subject. In support of the temporal observations above 
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Figure 3  Machine learning classification of the subject cohorts, first combined and then separated by geographic location. Receiver operating 
characteristic curves (ROC) for the boosted tree models on the bases of proportional normalised operational taxonomic units (OTUs) present in >5% 
of samples. Below each ROC curve, variable importance plots show the relative importance for the 10 OTUs with the highest gain for each comparison 
alongside their highest known classification. The white UC and CD labels within the bars indicate which OTUs are increased in their respective patient 
group, bars without mark indicate that their respective taxon is increased in the other class of the model. A model with an area under the curve (AUC) 
of 0.5 has no discriminatory capacity, whereas an AUC of 1 indicates perfect separation of the response variables.
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Figure 4  Single and dual time-point machine learning classification of disease activity for patients with Crohn’s disease (CD) and ulcerative colitis 
(UC) separately and combined cohorts based on proportional normalised operational taxonomic units (OTUs) present in >5% of samples. The receiver 
operating characteristics (ROC) curves for the boosted tree models on the second row were generated based on the ratio of each OTU between two 
consecutive time points. Only subjects that did not transition between disease states were included, Canadian and Irish combined. Below each ROC 
curve are variable importance displayed indicating the relative importance for the 10 OTUs with the highest gain for each model.

(figure  1D; online supplementary table 11), samples from the 
same (either CD or UC) subject, but with transitioning activity 
states, were less likely to be next to each other than with a sample 
with non-changing activity state. Samples from the same control 
subjects were more likely to be next to each other than samples 
for patients with CD or UC.

Age, diet and geography affect the microbiota
Separating the beta diversity PCoA into the two geographical 
locations (online supplementary figure 5) showed that CD micro-
biota from Manitoba subjects were to a higher degree responsible 
for the horizontal shift observed in figure 1A and online supple-
mentary figure 6, primarily attributed to resection (see next 
section). There were otherwise no major differences between 
disease, activity and control cohorts across the two locations. 
The alpha diversity for Cork controls and UC inactive subjects 

was significantly increased compared with the Manitoba cohort 
(online supplementary figure 7). As the latter cohort were older 
than the Cork cohort (table 1), we adjusted for geographical loca-
tion, but still found the same two Cork cohorts having significantly 
higher alpha diversities than the corresponding Manitoba cohorts. 
Age was also negatively correlated with alpha diversity for Cork 
inactive and Manitoba active CD cohorts (online supplementary 
figure 8a). We observed significant shifts in microbiota composi-
tion between the two locations along both principal components 
also for separate cohorts (online supplementary figure 6). Thus, 
a number of species were significantly different between the two 
locations with 68 species for CD (13 active, 51 inactive), 57 for 
UC (13 active, 27 inactive) and 20 different between the control 
groups (online supplementary figure 9; online supplementary 
tables 12–18). The carbohydrate fermenting Clostridium leptum 
was the most significantly abundant species in Manitoba subjects 
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Figure 5  Hierarchical clustering of stool microbiota. Heatplot of operational taxonomic units (OTUs) classified at species level with Spearman’s 
correlations and ward-linkage clustering. The vertical colour bar represents the family of each species. The samples were divided into 10 clusters 
(tertiary horizontal colour bar) using dynamicTreeCut. The first horizontal colour bar indicates the disease and status of each sample, the second 
horizontal bar shows samples of the same patient that clustered adjacent to each other. The species names on the right of the plot, along with the 
cluster number, are the drivers of the clustering. The bar chart shows the taxonomic composition at family level of each sample ordered by phylum. 
The principal coordinates analysis (PCoA) at the bottom is the same as figure 1 but labelled by the 10 clusters. CD, Crohn’s disease; UC, ulcerative 
colitis.
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Figure 6  Food composition in Crohn’s disease (CD), ulcerative colitis (UC) and control subjects. (a) Principal component analysis (PCA) of the food 
groups coloured by disease and disease status. Violin plots represent the points in the PCA projected to the principal component (PC)1 and PC2 
axes to assess shifts in the groups. Patients with greater than one identical questionnaire are indicated by black circles. (b) Spearman’s correlations 
between PC axis of PCA and food groups/metadata. Only features with significant correlations are represented. The direction and length of the arrows 
indicate the direction and strength of the correlation. *p<0.05; **p<0.01; ***p<0.001.

for both CD and UC compared with Cork, overall and for inac-
tive states.

Several food groups (high sugar foods, brown pasta, poultry, 
red meats, alcohol and brown bread) were significantly correlated 
with overall microbiota composition, as illustrated by correlations 
to the two PC axes in figure 1B (online supplementary table 1). 
Across both geographical locations, consumption of high sugar 
foods, nuts, butter and oils were increased in subjects with IBD, 
while controls consumed more fruit, vegetables, high-fibre and 
breakfast cereals, sauces and alcohol (figure 1b; online supple-
mentary table 19). Additionally, 20 food groups were consumed 
differently between the population cohorts (online supplemen-
tary figure 10) with potatoes, beans, white bread, processed 
meats, sauces and breakfast cereals significantly increased in the 
Cork cohort, while among others vegetables, high-sugar foods, 
nuts, pasta and rice were increased in the Manitoba group.

We found microbiota diversity to be positively correlated 
with the HFD Index for all cohorts combined and for Manitoba 
UC inactive (online supplementary figure 8b). Unexpectedly, 
microbiota diversity in patients with inactive UC in Cork was 
negatively correlated with the HFD Index, in contrast to their 
Canadian counterparts. A microbiota-independent PCA based 
on the 157 food items showed that the long-term dietary habits 
of patients with CD and UC were somewhat different from 
controls with a significant shift away from controls along PC2 
(figure 6A). The main drivers of this shift were brown pasta/rice 
and dressing (higher in controls) and butter and oils (higher in 
IBD) (figure 6B; online supplementary table 20).

Medications and bowel resection associated with a changing 
microbiota
Both microbiota diversity and composition were significantly 
associated with bowel resection and the use of some medications. 

Resected subjects had lower alpha diversity than non-resected 
subjects and controls (online supplementary figure 11), and 
also showed a significant shift in beta diversity away from non-
resected subjects and from healthy controls (online supplemen-
tary figure 12). Resection was a treatment primarily within our 
CD cohorts; thus, when comparing these subjects it became 
evident that resection in Manitoba had a particularly marked 
effect on the microbiota composition (online supplementary 
figure 13). The significant shifts along PC2 away from controls 
and non-resected subjects had the same directions for both coun-
tries, but was much more pronounced for Manitoba.

There were up to 63 species differentially abundant (online 
supplementary tables 21–25) between any of these resection/
non-resection groups, including F. prausnitzii and C. leptum 
being increased in non-resected subjects, and Blautia producta, 
Bacteroides fragilis and R. gnavus being increased in resected 
subjects.

Subjects on proton pump inhibitors (PPIs) medication were 
located further away from controls than non-users and had 
also significantly lower alpha diversity (online supplemen-
tary figure 11; online supplementary table 26). Two out of 10 
significantly increased species in PPI users belonged to the Strep-
tococcus genus (S. agalactiae and S. mutans). The only medi-
cated subjects with microbiota composition closer to controls 
(higher PC1 values) were those taking 5-aminosalicylates (online 
supplementary figure 12). Similarly, alpha diversity (online 
supplementary figure 11) was significantly higher for patients 
on 5-aminosalicylates, and controls, compared with those who 
were not. However, these changes were not attributable to any 
particular species.

Finally, we tested how much microbiota variance (beta diver-
sity) was explained by the 25 environmental factors for 650 
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Figure 7  Factors explaining microbiota variance. Association between 25 tested environmental factors and the microbiota beta diversity of n=650 
individuals (291 Crohn’s disease (CD), 236 ulcerative colitis (UC), 120 controls; one randomly chosen time point per subject) at operational taxonomic 
unit (OTU) level in terms of explained fraction of the variance in Bray-Curtis dissimilarity. Of available 692 subjects, 42 were excluded due to missing 
values in the metadata. Adjusted permutational multivariate analysis of variance p values: *p<0.05; **p<0.01; ***p<0.001. 5-ASA, 5-aminosalicylic 
acid; NSAID, non-steroidal anti-inflammatory drug; NS, not significant.

subjects at one randomly selected time point (figure  7). Pres-
ence or absence of a CD diagnosis had the greatest impact on 
the microbiota, followed by geographic location, previous 
surgical resection, alcohol consumption and UC diagnosis. Diet 
(summarised in the HFD Index), anthropometrics and medi-
cations also explained some variation in the microbial compo-
sition. The reason why smoking and disease activity showed 
non-significance may be due to the relatively small and uneven 

sizes of these groups (table 1). It should, however, be noted that 
when combined, these factors explain <9.7% of the total micro-
biota variance.

Discussion
The relationship between microbiota and pathogenesis of IBD 
is well established, but there is limited information to rank 
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the influence of known variables on microbiota composition, 
including longitudinal follow-up at different phases of disease 
activity. Our results show that disturbances in faecal microbial 
composition are most marked in active disease, particularly 
in CD. The longitudinal study design allowed for microbiota 
dynamics to be investigated, showing that inter-individual vari-
ance was greater than intra-individual, and that the microbiota 
was more unstable in CD and UC compared with controls. 
This is consistent with earlier reports of smaller cohorts.9 25 26 
The greatest changes in microbiota composition were linked 
with transitions across active and inactive phases of disease. 
The importance of longitudinal sampling became even more 
apparent with machine learning models capable of separating 
active and inactive disease, even though specific taxa were not 
linked with different activity states. This was only possible when 
using intra-individual ratios of each OTU between two consec-
utive time points, but not when using OTUs from single time 
points. Biologically, this is intuitively obvious since inflamma-
tion and other disease-related factors (such as medications to 
treat inflammation, antibiotic use, surgery, etc) are more likely 
to lead to microbiota variability in patients with IBD than in 
controls. Thus, frequent and long-term sampling might permit 
an improved classification, and potentially relapse-predicting, 
models.27

As expected, faecal microbiota alpha diversity was reduced in 
both CD and UC, but in contrast to microbiota composition, 
diversity did not vary significantly with disease activity. Of the 
microbial species found to be significantly increased in CD 
compared with controls, we concur with previous reports for R. 
gnavus28 29 and Fusobacterium nucleatum,30 although the oppo-
site has also been reported for the former species.30 We found 
decreased abundance in CD for Ruminococcus albus, E. rectale 
and F. prausnitzii compared with controls, in agreement with 
previous studies30 31 and meta-analysis.32 Eubacterium and Rose-
buria species were among the most important taxa for classifying 
CD and UC compared with controls.

Some species were particularly prominent in certain subgroups 
of patients. For example, clusters associated with B. vulgatus, 
A. muciniphila and Escherichia/Shigella were prominent in 
patients with prior surgical resections, which has also been noted 
by others.33 It has been proposed that reduced stool pH with 
5-aminosalicylate might account for blooms of Bifidobacteria 
and Lactobacilli, theoretically reducing mucosal inflammation 
and minimising alterations in the microbiota.34 Patients receiving 
5-aminosalicylic acid drugs may also have a microbiota closer to 
that of controls because of milder disease than those requiring 
biologics.

Significant associations between compositional changes 
and habitual diet were observed and which are consistent 
with reports of dietary constituents as potential risk factors 
for IBD.35 Remarkably, about 90% of the microbiota variance 
in IBD remains unaccounted for, either not measured or due 
to stochastic factors. This is higher than what was previously 
observed (84%) in a large Belgian-Dutch cohort,36 where UC 
had a relatively small effect on overall variance. Geographic 
location (which may reflect variance in lifestyle, diet and 
ethnicity) had the second greatest non-disease-related influ-
ence in our cohort and was recently shown to have significant 
impact among infants.37 Although similar trends were evident in 
both geographic locations studied by us, the work of others has 
highlighted ethnicity38 and geographic location39 as important 
considerations for studies of the microbiota. This might also 
contribute to some of the inconsistency in microbiota studies of 
IBD. Regardless, both microbiota and host heterogeneity, which 

may be interdependent, will represent a challenge for the pros-
pect of personalised prognostics or therapeutics based on micro-
biota manipulation.
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