Table 1.
p | SRF | Naive.Cox | Naive.km | Lu.id | Lu.exp | Wang.id | Wang.exp |
---|---|---|---|---|---|---|---|
Model 1: identity link, n = 3, 000, SNR = 0.3 | |||||||
5 | 0.1359 | 0.1371 | 0.2067 | 0.1341 | 0.1346 | 0.1341 | 0.1346 |
0.1699 | 0.1695 | 0.2466 | 0.1687 | 0.1691 | 0.1686 | 0.1691 | |
10 | 0.1396 | 0.1394 | 0.2108 | 0.1371 | 0.1377 | 0.1371 | 0.1376 |
0.1721 | 0.1710 | 0.2497 | 0.1710 | 0.1715 | 0.1709 | 0.1714 | |
20 | 0.1373 | 0.1372 | 0.2064 | 0.1342 | 0.1348 | 0.1342 | 0.1347 |
0.1703 | 0.1693 | 0.2464 | 0.1686 | 0.1691 | 0.1685 | 0.1690 | |
Model 1: log-exp link, n = 3, 000, SNR = 0.3 | |||||||
5 | 0.1347 | 0.1359 | 0.2048 | 0.1330 | 0.1335 | 0.1330 | 0.1335 |
0.1684 | 0.1680 | 0.2441 | 0.1673 | 0.1677 | 0.1672 | 0.1677 | |
10 | 0.1384 | 0.1382 | 0.2088 | 0.1359 | 0.1366 | 0.1359 | 0.1365 |
0.1706 | 0.1695 | 0.2472 | 0.1695 | 0.1701 | 0.1695 | 0.1699 | |
20 | 0.1361 | 0.1360 | 0.2044 | 0.1331 | 0.1337 | 0.1330 | 0.1336 |
0.1689 | 0.1679 | 0.2439 | 0.1672 | 0.1678 | 0.1671 | 0.1676 | |
Model 1: exp link, n = 3, 000, SNR = 0.3 | |||||||
5 | 24.724 | 25.398 | 33.688 | 24.496 | 24.723 | 24.436 | 24.709 |
30.827 | 30.860 | 39.296 | 30.608 | 30.773 | 30.577 | 30.749 | |
10 | 25.254 | 25.681 | 34.208 | 24.843 | 25.162 | 24.812 | 25.149 |
31.085 | 31.052 | 39.621 | 30.869 | 31.076 | 30.850 | 31.048 | |
20 | 24.878 | 25.260 | 33.587 | 24.390 | 24.679 | 24.325 | 24.651 |
30.744 | 30.695 | 39.181 | 30.479 | 30.689 | 30.438 | 30.646 |
The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.