Skip to main content
. 2021 Jan 7;11:587378. doi: 10.3389/fgene.2020.587378

Table 1.

Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 1 with different link functions.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp
Model 1: identity link, n = 3, 000, SNR = 0.3
5 0.1359 0.1371 0.2067 0.1341 0.1346 0.1341 0.1346
0.1699 0.1695 0.2466 0.1687 0.1691 0.1686 0.1691
10 0.1396 0.1394 0.2108 0.1371 0.1377 0.1371 0.1376
0.1721 0.1710 0.2497 0.1710 0.1715 0.1709 0.1714
20 0.1373 0.1372 0.2064 0.1342 0.1348 0.1342 0.1347
0.1703 0.1693 0.2464 0.1686 0.1691 0.1685 0.1690
Model 1: log-exp link, n = 3, 000, SNR = 0.3
5 0.1347 0.1359 0.2048 0.1330 0.1335 0.1330 0.1335
0.1684 0.1680 0.2441 0.1673 0.1677 0.1672 0.1677
10 0.1384 0.1382 0.2088 0.1359 0.1366 0.1359 0.1365
0.1706 0.1695 0.2472 0.1695 0.1701 0.1695 0.1699
20 0.1361 0.1360 0.2044 0.1331 0.1337 0.1330 0.1336
0.1689 0.1679 0.2439 0.1672 0.1678 0.1671 0.1676
Model 1: exp link, n = 3, 000, SNR = 0.3
5 24.724 25.398 33.688 24.496 24.723 24.436 24.709
30.827 30.860 39.296 30.608 30.773 30.577 30.749
10 25.254 25.681 34.208 24.843 25.162 24.812 25.149
31.085 31.052 39.621 30.869 31.076 30.850 31.048
20 24.878 25.260 33.587 24.390 24.679 24.325 24.651
30.744 30.695 39.181 30.479 30.689 30.438 30.646

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.