Skip to main content
. 2021 Jan 7;11:587378. doi: 10.3389/fgene.2020.587378

Table 2.

Comparison of mean-absolute-error (MAE) and rooted-mean-squared-error (RMSE) for Model 2 with different link functions.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp
Model 2: identity link, n = 3, 000, SNR = 0.3
5 0.1218 0.1386 0.1384 0.1388 0.1388 0.1382 0.1382
0.1498 0.1658 0.1656 0.1660 0.1660 0.1656 0.1656
10 0.1257 0.1414 0.1412 0.1418 0.1418 0.1411 0.1411
0.1525 0.1682 0.1679 0.1687 0.1687 0.1684 0.1684
20 0.1239 0.1390 0.1385 0.1393 0.1393 0.1387 0.1387
0.1507 0.1662 0.1655 0.1667 0.1667 0.1663 0.1663
Model 2: log-exp link, n = 3, 000, SNR = 0.3
5 0.1201 0.1366 0.1364 0.1368 0.1368 0.1362 0.1362
0.1479 0.1635 0.1633 0.1637 0.1637 0.1634 0.1634
10 0.1240 0.1395 0.1393 0.1399 0.1399 0.1392 0.1392
0.1506 0.1660 0.1657 0.1664 0.1664 0.1661 0.1661
20 0.1222 0.1371 0.1366 0.1374 0.1374 0.1368 0.1368
0.1487 0.1640 0.1633 0.1645 0.1645 0.1641 0.1641
Model 2: exp link, n = 3, 000, SNR = 0.3
5 21.030 23.794 23.733 23.915 23.911 23.542 23.541
25.984 28.185 28.135 28.297 28.292 28.126 28.125
10 21.641 24.165 24.127 24.322 24.319 23.928 23.928
26.357 28.475 28.430 28.618 28.614 28.473 28.472
20 21.368 23.802 23.712 23.956 23.952 23.571 23.571
26.071 28.216 28.102 28.379 28.375 28.208 28.207

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.