Table 3.
p | SRF | Naive.Cox | Naive.km | Lu.id | Lu.exp | Wang.id | Wang.exp |
---|---|---|---|---|---|---|---|
Model 1: identity link, n = 3, 000, SNR = 0.3 | |||||||
5 | 0.1361 | 0.1353 | 0.2051 | 0.1337 | 0.1344 | 0.1336 | 0.1342 |
0.1706 | 0.1681 | 0.2457 | 0.1687 | 0.1693 | 0.1685 | 0.1690 | |
10 | 0.1444 | 0.1430 | 0.2160 | 0.1402 | 0.1408 | 0.1403 | 0.1408 |
0.1755 | 0.1732 | 0.2523 | 0.1726 | 0.1731 | 0.1725 | 0.1730 | |
20 | 0.1392 | 0.1372 | 0.2078 | 0.1345 | 0.1351 | 0.1345 | 0.1351 |
0.1723 | 0.1699 | 0.2484 | 0.1694 | 0.1700 | 0.1692 | 0.1698 | |
Model 1: log-exp link, n = 3, 000, SNR = 0.3 | |||||||
5 | 0.1348 | 0.1341 | 0.2032 | 0.1325 | 0.1333 | 0.1324 | 0.1330 |
0.1691 | 0.1667 | 0.2432 | 0.1673 | 0.1679 | 0.1671 | 0.1676 | |
10 | 0.1431 | 0.1418 | 0.2139 | 0.1390 | 0.1396 | 0.1391 | 0.1396 |
0.1740 | 0.1718 | 0.2497 | 0.1712 | 0.1717 | 0.1711 | 0.1716 | |
20 | 0.1380 | 0.1360 | 0.2060 | 0.1335 | 0.1341 | 0.1334 | 0.1340 |
0.1708 | 0.1685 | 0.2460 | 0.1681 | 0.1687 | 0.1679 | 0.1685 | |
Model 1: exp link, n = 3, 000, SNR = 0.3 | |||||||
5 | 24.906 | 25.157 | 33.628 | 24.471 | 24.826 | 24.427 | 24.784 |
30.984 | 30.687 | 39.205 | 30.609 | 30.852 | 30.591 | 30.800 | |
10 | 26.381 | 26.553 | 35.410 | 25.738 | 26.015 | 25.678 | 25.996 |
31.799 | 31.593 | 40.265 | 31.403 | 31.607 | 31.373 | 31.574 | |
20 | 25.096 | 25.145 | 33.418 | 24.461 | 24.741 | 24.365 | 24.680 |
30.940 | 30.746 | 39.152 | 30.609 | 30.831 | 30.551 | 30.759 |
The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.