Skip to main content
. 2021 Jan 7;11:587378. doi: 10.3389/fgene.2020.587378

Table 3.

Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 1 with different link functions and the censoring distribution is mis-specified with α = 0.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp
Model 1: identity link, n = 3, 000, SNR = 0.3
5 0.1361 0.1353 0.2051 0.1337 0.1344 0.1336 0.1342
0.1706 0.1681 0.2457 0.1687 0.1693 0.1685 0.1690
10 0.1444 0.1430 0.2160 0.1402 0.1408 0.1403 0.1408
0.1755 0.1732 0.2523 0.1726 0.1731 0.1725 0.1730
20 0.1392 0.1372 0.2078 0.1345 0.1351 0.1345 0.1351
0.1723 0.1699 0.2484 0.1694 0.1700 0.1692 0.1698
Model 1: log-exp link, n = 3, 000, SNR = 0.3
5 0.1348 0.1341 0.2032 0.1325 0.1333 0.1324 0.1330
0.1691 0.1667 0.2432 0.1673 0.1679 0.1671 0.1676
10 0.1431 0.1418 0.2139 0.1390 0.1396 0.1391 0.1396
0.1740 0.1718 0.2497 0.1712 0.1717 0.1711 0.1716
20 0.1380 0.1360 0.2060 0.1335 0.1341 0.1334 0.1340
0.1708 0.1685 0.2460 0.1681 0.1687 0.1679 0.1685
Model 1: exp link, n = 3, 000, SNR = 0.3
5 24.906 25.157 33.628 24.471 24.826 24.427 24.784
30.984 30.687 39.205 30.609 30.852 30.591 30.800
10 26.381 26.553 35.410 25.738 26.015 25.678 25.996
31.799 31.593 40.265 31.403 31.607 31.373 31.574
20 25.096 25.145 33.418 24.461 24.741 24.365 24.680
30.940 30.746 39.152 30.609 30.831 30.551 30.759

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.