Skip to main content
. 2021 Jan 7;11:587378. doi: 10.3389/fgene.2020.587378

Table 5.

Comparison of Mean-Absolute-Error (MAE) and Rooted-Mean-Squared-Error (RMSE) for Model 1 with different link functions and the censoring distribution is mis-specificed with α = 1.5.

p SRF Naive.Cox Naive.km Lu.id Lu.exp Wang.id Wang.exp
Model 1: identity link, n = 3, 000, SNR = 0.3
5 0.1363 0.1378 0.2067 0.1352 0.1357 0.1352 0.1357
0.1701 0.1702 0.2467 0.1697 0.1702 0.1697 0.1702
10 0.1376 0.1385 0.2073 0.1358 0.1363 0.1358 0.1363
0.1709 0.1706 0.2472 0.1699 0.1704 0.1699 0.1704
20 0.1371 0.1371 0.2062 0.1341 0.1347 0.1342 0.1347
0.1698 0.1691 0.2464 0.1682 0.1688 0.1682 0.1688
Model 1: log-exp link, n = 3, 000, SNR = 0.3
5 0.1350 0.1366 0.2046 0.1340 0.1345 0.1340 0.1345
0.1686 0.1687 0.2441 0.1683 0.1688 0.1683 0.1688
10 0.1363 0.1373 0.2053 0.1346 0.1352 0.1347 0.1352
0.1695 0.1692 0.2447 0.1685 0.1690 0.1685 0.1690
20 0.1359 0.1359 0.2043 0.1330 0.1335 0.1330 0.1336
0.1683 0.1677 0.2439 0.1669 0.1674 0.1669 0.1674
Model 1: exp link, n = 3, 000, SNR = 0.3
5 24.537 25.171 33.190 24.322 24.601 24.304 24.600
30.701 30.750 38.999 30.549 30.735 30.532 30.715
10 24.802 25.317 33.359 24.468 24.743 24.445 24.744
30.798 30.832 39.142 30.577 30.757 30.560 30.742
20 24.852 25.188 33.406 24.300 24.567 24.272 24.570
30.732 30.654 39.103 30.384 30.583 30.371 30.576

The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.