Table 5.
p | SRF | Naive.Cox | Naive.km | Lu.id | Lu.exp | Wang.id | Wang.exp |
---|---|---|---|---|---|---|---|
Model 1: identity link, n = 3, 000, SNR = 0.3 | |||||||
5 | 0.1363 | 0.1378 | 0.2067 | 0.1352 | 0.1357 | 0.1352 | 0.1357 |
0.1701 | 0.1702 | 0.2467 | 0.1697 | 0.1702 | 0.1697 | 0.1702 | |
10 | 0.1376 | 0.1385 | 0.2073 | 0.1358 | 0.1363 | 0.1358 | 0.1363 |
0.1709 | 0.1706 | 0.2472 | 0.1699 | 0.1704 | 0.1699 | 0.1704 | |
20 | 0.1371 | 0.1371 | 0.2062 | 0.1341 | 0.1347 | 0.1342 | 0.1347 |
0.1698 | 0.1691 | 0.2464 | 0.1682 | 0.1688 | 0.1682 | 0.1688 | |
Model 1: log-exp link, n = 3, 000, SNR = 0.3 | |||||||
5 | 0.1350 | 0.1366 | 0.2046 | 0.1340 | 0.1345 | 0.1340 | 0.1345 |
0.1686 | 0.1687 | 0.2441 | 0.1683 | 0.1688 | 0.1683 | 0.1688 | |
10 | 0.1363 | 0.1373 | 0.2053 | 0.1346 | 0.1352 | 0.1347 | 0.1352 |
0.1695 | 0.1692 | 0.2447 | 0.1685 | 0.1690 | 0.1685 | 0.1690 | |
20 | 0.1359 | 0.1359 | 0.2043 | 0.1330 | 0.1335 | 0.1330 | 0.1336 |
0.1683 | 0.1677 | 0.2439 | 0.1669 | 0.1674 | 0.1669 | 0.1674 | |
Model 1: exp link, n = 3, 000, SNR = 0.3 | |||||||
5 | 24.537 | 25.171 | 33.190 | 24.322 | 24.601 | 24.304 | 24.600 |
30.701 | 30.750 | 38.999 | 30.549 | 30.735 | 30.532 | 30.715 | |
10 | 24.802 | 25.317 | 33.359 | 24.468 | 24.743 | 24.445 | 24.744 |
30.798 | 30.832 | 39.142 | 30.577 | 30.757 | 30.560 | 30.742 | |
20 | 24.852 | 25.188 | 33.406 | 24.300 | 24.567 | 24.272 | 24.570 |
30.732 | 30.654 | 39.103 | 30.384 | 30.583 | 30.371 | 30.576 |
The number of covariates p = 5, 10, 20, for each p, the first row is MAE, the second row is RMSE. SRF, proposed random forest-bases estimator; Naive.km, estimate based on Kaplan–Meier estimator without adjusting for the covariates; Naive.Cox, Cox regression based estimator; Lu.id, method of Tian et al. (2014) with identity link; Lu.exp, method of Tian et al. (2014) with exponential link; Wang.id, method of Wang and Schaubel (2018) with identity link; Wang:exp, method of Wang and Schaubel (2018) with exponential link.