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TERT gene promoter mutations are known in multiple cancer types. Other TERT alterations remain poorly
characterized. Sequencing data from 30,773 tumors analyzed by a hybridization capture next-
generation sequencing assay (Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling
of Actionable Cancer Targets) were analyzed for the presence of TERT alterations. Promoter rear-
rangements (500 bases upstream of the transcriptional start site), hypermethylation (n Z 57), and
gene expression (n Z 155) were evaluated for a subset of cases. Mutually exclusive and recurrent
promoter mutations were identified at three hot spots upstream of the transcriptional start site in
11.3% of cases (�124: 74%; �146: 24%; and �138: <2%). Mutually exclusive amplification events
were identified in another 2.3% of cases, whereas mutually exclusive rearrangements proximal to the
TERT gene were seen in 24 cases. The highest incidence of TERT promoter mutations was seen in
cutaneous melanoma (82%), whereas amplification events significantly outnumbered promoter muta-
tions in well-differentiated/dedifferentiated liposarcoma (14.1% versus 2.4%) and adrenocortical
carcinoma (13.6% versus 4.5%). Gene expression analysis suggests that the highest levels of gene
expression are seen in cases with amplifications and rearrangements. Hypermethylation events
upstream of the TERT coding sequence were not mutually exclusive with known pathogenic alterations.
Studies aimed at defining the prevalence and prognostic impact of TERT alterations should
incorporate other pathogenic TERT alterations as these may impact telomerase function. (J Mol Diagn
2021, 23: 253e263; https://doi.org/10.1016/j.jmoldx.2020.11.003)
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Human telomeres are composed of telomeric TTAGGG
DNA repeats that are protected by the shelterin complex and
the telomerase complex.1,2 Unlike stem cells, in most
differentiated cells, silencing of telomerase reverse tran-
scriptase (TERT ) occurs over time with consequent telo-
meric shortening.1 This leads to activation of DNA damage
response signaling and replicative arrest.1 An early event in
many neoplasms involves bypassing this replicative arrest
through telomerase reactivation, thereby increasing both
cancer cell viability and genomic instability.1 The most
common mechanism of telomerase reactivation across
several cancer types involves TERT reactivation through hot
spot promoter mutations, which generates a de novo binding
Pathology and American Society for Investiga
site for activating erythroblast transformation-specific (ETS)
family transcription factors.2e4 This leads to increased
recruitment of multimeric GA-binding protein transcription
factors to the mutant TERT promoter sequence and tran-
scriptional up-regulation of TERT.2,3,5

In addition to promoter mutations, the spectrum of acti-
vating TERT alterations includes genomic amplifications as
tive Pathology. Published by Elsevier Inc. All rights reserved.
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well as structural alterations at the TERT locus or hyper-
methylation events upstream of the TERT transcriptional
start site.6e10 The Memorial Sloan Kettering-Integrated
Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT) assay used in this study is designed to detect
TERT promoter mutations and genomic amplifications.
Although a few structural variants were detected within a
short 500-bp sequence immediately upstream of the tran-
scriptional start site, the vast majority of these rearrange-
ments (which have primarily been reported in
neuroblastomas) occur over a 50-kb region proximal to the
TERT gene.7e9 This assay is therefore not designed to detect
these alterations when they occur further upstream of the
transcription start site. Finally, hypermethylation at specific
CpG islands upstream of the transcriptional start site has
been correlated with increased TERT gene expression, and
this assay does not document methylation status at these
sites.6,10,11 Methylation status was determined for a smaller
subset of cases using an alternate assay.

Relatively few large-scale pan-cancer studies have stud-
ied TERT alterations across tumor types.2,12,13 Herein, we
present pan-cancer data pertaining to both promoter muta-
tions and amplification events across 30,773 specimens that
were profiled as part of an institutional clinical sequencing
cohort. This data set is unique as TERT promoter mutations
are often not evaluated in whole exome sequencing assays,
whereas TERT amplification events are rarely documented
in large pan-cancer data sets.14 In addition, a limited number
of cases in this study have been profiled for rarer alterations,
such as structural variants and hypermethylation events
upstream of the TERT transcription start site, which have
been shown to up-regulate TERT expression, as well as
relative gene expression status.

Materials and Methods

Case Selection

This study was approved by the institutional review board
and involved analysis of molecular profiling data of multiple
solid tumors profiled by a next-generation
sequencingebased assay (MSK-IMPACT), as part of an
institutional clinical cancer genomics initiative.14e16 DNA
sequencing results for 30,773 tumor samples obtained from
formalin-fixed, paraffin-embedded tissue, performed in a
Clinical Laboratory Improvement Amendmentseapproved
setting, were analyzed for TERT alterations.

Next-Generation Sequencing: MSK-IMPACT

Details of the MSK-IMPACT assay have been previously
reported.14e16 In brief, this assay involves paired analysis of
tumor and normal specimens to filter out germ-line variants.
Specifically, hybridization capture-based library preparation
is followed by deep sequencing of select noncoding regions
and 6614 protein-coding exons of 468 genes. Noncoding
254
sequences include the TERT promoter (extending to 500 bp
upstream of the transcriptional start site), intronic sequences
of commonly rearranged genes, microsatellite sites, and
several single-nucleotide polymorphisms. In all, the capture
probes target approximately 1.5 megabases of the human
genome. Accurate genome-wide copy number assessment is
facilitated by homogeneous distribution of single-nucleotide
polymorphism tiling probes across the genome. On the basis
of previously reported criteria, amplifications were defined
as a fold change �2.0.17e20 Rearrangements involving the
TERT promoter (500-bp sequence immediately upstream of
the transcriptional start site) were identified on the basis of
previously published criteria, which included the following:
five paired or split reads, a mapping quality of 20, and a
length >500-bp sequence.15 This assay is currently
approved by the US Food and Drug Administration as a
class II in vitro diagnostic test.
TERT Gene Expression Analysis

Details pertaining to RNA extraction and the MSK-Fusion
assay have been previously reported.21,22 Eight gene-
specific primers were designed by ArcherDx (Boulder,
CO) and added to the MSK-Fusion panel to specifically
detect TERT expression levels. The total number of unique
RNA reads for TERT, obtained using all eight gene-specific
primers, were normalized to the total number of unique
RNA reads for five separate housekeeping genes interro-
gated as part of the assay. The relative TERT gene expres-
sion status was evaluated for 155 cases that were profiled
using MSK-IMPACT from available archived formalin-
fixed, paraffin-embedded tissue. Broad categories of tumor
types evaluated included colorectal adenocarcinoma (n Z
35), lung adenocarcinoma (n Z 25), sarcoma (n Z 20),
gliomas (n Z 19), breast carcinoma (n Z 14), melanoma (n
Z 12), pancreaticobiliary cancer (n Z 10), salivary cancer
(n Z 4), thyroid carcinoma (n Z 4), carcinoma of unknown
primary (n Z 4), and miscellaneous tumor types (n Z 8).
TERT Promoter Methylation Analysis

TERT promoter hypermethylation status was detected via
bisulfite conversion followed by methylation array for 57
cases profiled by MSK-IMPACT, as previously described.23

Herein, methylation status of three CpG sites upstream of
the TERT transcription start site was evaluated. This
included the cg11625005 CpG site, where hypermethylation
has been previously reported to be associated with high-
grade tumors and increased TERT gene expression.6,10,11
Statistical Analysis

All statistical tests were two sided, and P < 0.05 was
considered statistically significant.
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Results

TERT Promoter Mutation and Amplification
A hybrid capture library preparation strategy was used to
sequence the TERT promoter region, including 500 bases
upstream of the transcriptional start site. The mean depth of
coverage for the promoter region across all 30,773 speci-
mens that were profiled was 425�, with an interquartile
range of 240� to 551� (Figure 1A). In all, 4205 of these
specimens (13.6%) harbored either a TERT promoter
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Figure 1 Next-generation sequencing (MSK-IMPACT) for TERT alterations. A: A
(500 bp upstream of the transcription start site) for 30,773 specimens is depict
across 30,773 specimens is depicted on the right side of the figure, whereas the l
the interquartile range. B: The frequency of TERT genomic amplifications at the 5p
cases that were profiled is shown. C: The spatial distribution of TERT promoter mut
changes that contribute to presumptive ETS transcription factor binding sites are
upstream of the transcriptional start site). Variant nucleotide sequences are hig
mutations at the �138 position are shown.

The Journal of Molecular Diagnostics - jmdjournal.org
mutation or an amplification. Of note, TERT promoter mu-
tations (11.3%) and amplifications (2.3%) were mutually
exclusive, with the promoter mutations occurring 4.9 times
as frequently compared with amplification events
(Figure 1B).

Although TERT promoter mutations showed a wide
spatial distribution, consistent with our prior studies, three
recurring hot spots that were mutually exclusive were
identified.14 Relative to the transcription start site, hot spot
promoter alterations at position �124 were the most
TERT Amplifica�on (n = 715;
2.3%)

TERT  Promoter Muta�on
(n = 3490; 11.3%)

No TERT  Amplifica�on/
Promoter Muta�on
(n = 26,568; 86.3%)

a�ents

box plot depicting the mean depth of coverage for the TERT promoter region
ed. The y axis demonstrates the depth of coverage. The range of coverage
eft side of the figure shows a magnified area of the box plot that highlights
15.33 locus and promoter mutations, both mutually exclusive events, for all
ations relative to the transcription start site is depicted. Specific nucleotide
highlighted for three mutational hot spots (�124, �146, and �138 bases
hlighted in red. D: Furthermore, tumor types that exhibit TERT promoter
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Figure 2 Relative frequency of
TERT alterations in multiple tumor
types. AeF: The relative frequency
of TERT promoter mutations and
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cancer (A), melanoma (B), gliomas
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common (n Z 2448; 74%), followed by those at positions
�146 (nZ 790; 24%) and�138 (nZ 57;<2%) (Figure 1C).
Although TERT promoter mutations at the �138 position
were seen in varied tumor types, they predominantly occurred
256
in melanoma (75.8% of cases) (Figure 1D). Consistent with
prior reports, G-to-A substitutions at these sites led to the
formation of presumptive ETS transcription factor binding
sites, including at position �138.14
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Relative Frequency of TERT Alterations in Multiple
Tumor Types

Solid tumor types with high rates of TERT alterations (in
combined primary and metastatic tumors) have been high-
lighted (Figure 2). Cutaneous neoplasia, such as squamous
cell carcinoma, basal cell carcinoma, and cutaneous mela-
noma, primarily harbored TERT hot spot promoter muta-
tions in association with a UV-induced mutational signature
(ie, predominant G-to-A and C-to-T mutations), whereas
amplifications were relatively rare (Figure 2, A and B). In
contrast, similar alterations were infrequently identified in
Merkel cell carcinoma and mucosal/ocular melanoma.
Consistent with prior reports, TERT hot spot mutations in
central nervous system glial neoplasia predominantly
occurred in an IDH1 wild-type setting in high-grade gliomas
(84% of IDH1 wild-type cases) compared with low-grade
gliomas, where they tended to occur in association with
IDH1 mutations (56% of IDH1 mutant cases)
(Figure 2C).24e26 Among genitourinary malignancies, the
highest incidence was seen for urothelial carcinoma, with a
relatively lower frequency observed for upper tract disease
(53% versus 74%) (Figure 2D). As previously reported,
TERT promoter mutations showed a strong association with
the underlying subtype in thyroid carcinoma
(Figure 2E).13,27e33 No alterations were identified in med-
ullary thyroid carcinoma, and up to 77% of anaplastic thy-
roid carcinomas harbored these alterations. Interestingly,
although a lower frequency was seen for papillary thyroid
carcinoma (including classic and follicular variants; 38%),
the aggressive tall cell variant showed a much higher fre-
quency (68%). As expected, other tumor types with a high
frequency of TERT promoter mutations included myxoid
liposarcoma, hepatocellular carcinoma, and granulosa cell
tumors (Figure 2F).34e36 In contrast, tumor types where
TERT amplification was the prevalent alteration included
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well-differentiated/dedifferentiated liposarcoma (14.1%)
and adrenocortical carcinoma (13.6%) (Figure 2F).37,38

Of note, high rates of TERT alterations were documented
in the primary tumors themselves for aggressive variants of
thyroid cancer, such as poorly differentiated (nZ 73; 52%),
anaplastic (n Z 55; 69%), and tall cell variant of papillary
thyroid cancer (n Z 43; 74%), as is depicted in Figure 3. In
contrast, these alterations were predominantly documented
in metastatic/recurrent tumors for classic well-differentiated
papillary thyroid cancer (n Z 58; 52%) and Hurthle cell
carcinoma (n Z 26; 54%).

TERT Promoter Rearrangements

Prior studies have identified recurrent genomic rearrange-
ments at the TERT locus, upstream of the TERT coding
sequence, primarily in high-risk neuroblastoma.7,8 These
cases showed substantial induction of TERT gene expres-
sion and downstream increases in telomerase activity, likely
secondary to the juxtaposition of strong enhancer elements
adjacent to the TERT coding sequence.7,8 Although subse-
quent studies have confirmed the presence of TERT pro-
moter rearrangements, these remain challenging to identify
as these rearrangements often occur over a 50-kb region
proximal of the TERT gene.9,11,39,40 Although the MSK-
IMPACT assay only tiles for 500 bases of this 50-kb re-
gion, 24 cases occurring in multiple tumor types were found
to harbor similar rearrangements upstream of the TERT
coding sequence (Figure 4). No recurrent break point or
partner gene was identified for these cases. In addition, these
events were mutually exclusive with TERT hot spot pro-
moter mutations/genomic amplifications.

Relative TERT Gene Expression

Herein, 155 specimens of archived formalin-fixed, paraffin-
embedded specimens that were initially evaluated using
Primary Metastasis

** Figure 3 Relative distribu-
tion of TERT alterations in pri-
mary compared with metastatic/
recurrent tumors. TERT promoter
mutations and amplifications
combined, for specific tumor
types, are depicted for primary
compared with metastatic/recur-
rent tumors. **P < 5 � 10�3.
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MSK-IMPACT were retrieved and further interrogated for
TERT mRNA expression using the MSK-Fusion assay.
Unique TERT-specific RNA reads were normalized to the
expression of multiple housekeeping genes and quantified.
This included cases that lacked TERT alterations or harbored
amplifications, hot spot promoter mutations, or rearrange-
ments. Interestingly, cases with genomic amplifications and
promoter rearrangements showed statistically significant
increases in TERT gene expression, in contrast to cases with
hot spot promoter mutations (Figure 5).

Although multiple studies have attempted to demonstrate
TERT protein expression using immunohistochemistry, this
has historically been controversial. Such efforts have been
hampered by poor reproducibility, unexpected patterns of
subcellular localization, as well as documented cross-
reactivity with other proteins.41,42 Validation of such an
immunohistochemical assay would require establishing a
baseline status for all cases that was inclusive of not only
promoter mutations, but also amplifications, upstream
rearrangements, and methylation events to correlate protein
expression with underlying tumor biology. Although mul-
tiple antibodies were to be validated, the validation failed
because of a lack of consistency with the underlying pre-
diction of TERT expression status and unexpected patterns
of protein localization (data not shown).
TERT Promoter Hypermethylation Status

Recent studies have suggested that hypermethylation up-
stream of the TERT transcriptional start site is required for
TERT gene expression and corresponding telomerase ac-
tivity in neoplastic cells compared with nonneoplastic
cells.6,9e11 At least one study has suggested that these
hypermethylation events are not mutually exclusive with
either TERT promoter mutations or rearrangements.11
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Figure 4 TERT promoter rearrangements. Diverse tumor types for which
TERT promoter rearrangements were identified within 500 bp immediately
upstream of the transcriptional start site are shown.
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Although cases with hypermethylation were not evaluated
for relative gene expression, 57 cases of high-grade glioma
profiled by MSK-IMPACT were further evaluated for
methylation status upstream of the TERT gene. This was
performed to determine if hypermethylation events were
mutually exclusive with activating alterations, such as hot
spot promoter mutations and amplifications. Our results
suggest that these are not mutually exclusive events as 37 of
42 (88%) of cases with promoter mutations also exhibited
hypermethylation upstream of the transcriptional start site
(Figure 6).
Discussion

Telomerase reactivation in cancer is often driven by TERT
expression, and the predominant underlying alteration in-
volves promoter mutations that generate a de novo binding
site for activating ETS family transcription factors that lead
to transcriptional up-regulation.1e5 Other alterations that
can up-regulate TERT expression include genomic amplifi-
cation and rearrangements or hypermethylation events up-
stream of the TERT transcriptional start site.6e10

The mean coverage for the TERT promoter region across
all 30,773 specimens evaluated by MSK-IMPACT was
425� and revealed the presence of TERT alterations in
13.7% of all cases. Promoter mutations were found to be 4.9
times more prevalent compared with amplification events.
Although promoter mutations were distributed along the
length of the entire promoter region that was sequenced,
consistent with our prior report, three recurrent and mutually
exclusive hot spots were identified.14 Among the hot spot
mutations, the canonical alterations at positions �124 and
�146 bases relative to the transcription start site accounted
for 74% and 24% of cases, respectively. An additional
noncanonical hot spot at position �138 accounted for <2%
of cases, and all these alterations are predicted to generate
de novo ETS transcription factor binding sites.14 Therefore,
this latter category of promoter mutations (�138) might be
missed in a small subset of cases in targeted assays that
interrogate/report only the canonical hot spot alterations
(�124 and �146). Similarly, amplification events can be
missed in a much larger subset of cases. This is particularly
relevant for tumor types where amplification events signif-
icantly outnumber promoter mutations, such as in well-
differentiated/dedifferentiated liposarcoma (14.1% versus
2.4%) and adrenocortical carcinoma (13.6% versus
4.5%).37,38,43

TERT alterations were found to be enriched in specific
tumor types, and a subset of these has been highlighted with
the caveat that the institutional (tertiary referral center)
clinical sequencing cohort presented herein has a bias to-
ward patients who present with high stage and aggressive
disease.
Some relevant associations include cutaneous mela-

nomas, which showed a high rate of TERT alterations (85%)
jmdjournal.org - The Journal of Molecular Diagnostics
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Pan-Cancer Study of TERT Alterations
in a background of a UV-induced mutational signature, as
opposed to both mucosal (10%) and ocular melanoma (0%),
and these trends and frequencies are consistent with what
has been previously reported in the literature.2,13,44 A
similar high incidence of TERT alterations was seen in sun-
exposed cutaneous squamous cell (72%) and basal cell
carcinomas (82%).3

Prior studies have shown that TERT promoter mutations
in high-grade gliomas occur infrequently in the background
of IDH1 mutations (<3%) as opposed to low-grade gliomas
(34%).26 Our results support this trend as the vast majority
of TERT alterations in high-grade gliomas occurred in the
IDH1 wild-type setting (n Z 856; 84%) and, similarly, a
large number of TERT alterations in low-grade gliomas
occurred in the IDH1 mutant setting (n Z 161; 56%).

Among genitourinary cancers, TERT alterations had an
exceedingly low prevalence in prostatic adenocarcinoma
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and testicular germ cell tumors (<0.5%), followed by a low
incidence in renal cell carcinoma (5.7%), as has been pre-
viously reported.2,14,45 The highest incidence was seen in
urothelial carcinoma (overall: 73%). The overall frequency
is consistent with published reports that suggest that on the
basis of a high incidence, and the observation that TERT
alterations may be an early event in urothelial carcinoma,
the detection of these alterations may be exploited as a
potential urothelial cancer screening tool, particularly using
urine/cytology specimens.2,12,13,46e48 On the basis of our
results, some variables that may confound the results of
urothelial cancer screening assays that rely on the detection
of TERT promoter mutations include the presence of these
alterations in a subset of renal cell carcinoma (false posi-
tives), whereas the absence of TERT alterations in a subset
of cases or the presence of amplification events (2.6% of
cases) may contribute to false negatives.45,46,48

With regard to thyroid cancer, prior studies have shown
absence of TERT promoter mutations in medullary thyroid
carcinoma, a relatively low incidence in papillary carcinoma
(7% to 25.5%), Hurthle cell carcinoma (13% to 33%), and
follicular thyroid carcinoma (14% to 36%), and the highest
incidence in poorly differentiated carcinoma (21% to 60%)
and anaplastic thyroid carcinoma (13% to 73%); these
studies suggest that these alterations are enriched in thyroid
carcinomas that exhibit more aggressive behavior.2,13,27e33

In our series of 511 thyroid carcinomas, with many pa-
tients presenting with advanced disease, an absence of TERT
promoter mutations in medullary thyroid carcinoma was
confirmed, followed by progressively increasing incidence
in papillary, Hurthle cell, and follicular thyroid carcinomas
(39%, 48%, and 55%, respectively) compared with 57% in
poorly differentiated and 77% in anaplastic thyroid carci-
nomas. TERT amplifications were detected in 2% of cases,
which is close to the previously reported incidence of
4.9%.27 Furthermore, consistent with prior reports, our re-
sults underline the higher incidence of TERT alterations in
the tall cell variant compared with classic well-differentiated
259
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papillary thyroid carcinoma (69% versus 39%).2 Among
poorly differentiated, anaplastic and tall cell variants of
papillary thyroid carcinoma, there was no significant dif-
ference in the frequency of TERT promoter mutations when
comparisons were made between primary and metastatic
tumors. This finding is consistent with their (more)
aggressive biology.30,33 However, among classic well-
differentiated papillary thyroid carcinoma and Hurthle cell
carcinoma, TERT was more commonly mutated in meta-
static/recurrent disease than in primary tumors (classic well-
differentiated papillary thyroid carcinoma: 52% versus 30%;
and Hurthle cell carcinoma: 54% versus 33%), suggesting
that these genetic alterations may identify a relatively more
aggressive subset of well-differentiated thyroid carcinomas
with a tendency to metastasize/recur. However, these results
must be interpreted with caution because of sampling bias
(ie, the fact that the vast majority of thyroid cases subjected
for testing were from patients with relatively more aggres-
sive disease).

Other tumor types that have high reported incidences of
TERT alterations include hepatocellular carcinoma (ampli-
fications: 10%; and promoter mutations: 44%) and ovarian
granulosa cell tumors (22%), whereas myxoid liposarcomas
(74%) have the highest reported incidence among soft tissue
tumors.34e36 Our results revealed a similar trend, revealing
an overall frequency of promoter mutations/amplifications
of 59%, 60%, and 82% for hepatocellular carcinoma,
granulosa cell tumors, and myxoid liposarcoma, respec-
tively. Of note, the frequency of these alterations in ovarian
granulosa cell tumors has been reported to be significantly
higher among recurrences, and furthermore, their presence
has been correlated with poor outcomes.34 In hepatocellular
carcinoma, up to 6.4% of cases harbored amplifications of
TERT and are likely to be missed if they are evaluated using
assays that do not evaluate copy number changes.

With regard to TERT gene expression, although a large
number of studies have demonstrated the impact of TERT
hot spot promoter mutations on transcriptional up-regulation
in vitro, similar studies that have directly evaluated the ef-
fect of TERT promoter mutations on gene expression in
tumor-derived biospecimens are limited.3 Furthermore,
several studies have documented only modest increases in
TERT gene expression in both in vitro studies and in tumor
specimens.11,46,49 Our results confirm that cases with
genomic amplifications and promoter rearrangements
showed statistically significant increases in TERT gene
expression and highlight the importance of identifying such
cases.7e9 In contrast, relative gene expression in cases with
promoter mutations did not show a statistically significant
increase. This could be secondary to the age and type
(archived formalin fixed and paraffin embedded) of spec-
imen evaluated, potentially modest increases in gene
expression, and/or potentially low sensitivity of the assay
used. A limitation of our study involves a lack of correlation
of TERT expression with downstream gene expression sig-
natures, particularly related to ETS transcription factors.50,51
260
This approach was not utilized in the current study as gene
expressionespecific primers to perform such an analysis
were not included in the MSK-Fusion assay. However,
future studies may utilize such a strategy when interrogating
TERT gene expression status.
Perhaps the most intriguing category of TERT alterations

involves structural variants that have been previously re-
ported to be present in neuroblastomas.7e9 Specifically, these
have been reported in 23% to 31% of high-risk neuroblas-
tomas, have exhibited a large structural diversity of TERT
promoter rearrangement events, and were frequently clus-
tered approximately 50 kb upstream of the TERT transcrip-
tional start site.7,8 These events were reported to lead to a
juxtapositioning of superenhancer elements and were asso-
ciated with a massive transcriptional up-regulation of the
TERT gene.7,8 Although reports of such alterations are pre-
dominantly restricted to neuroblastomas that show aggressive
clinical behavior, 24 such events were identified across
diverse tumor types and significantly higher TERT gene
expression was reported in seven such cases where archived
material was available for downstream analysis, to validate
these findings.7e9 In summary, prior studies pertaining to
neuroblastoma suggest that TERT promoter rearrangements
are associated with high levels of TERT gene expression, and
our results confirm these findings.7,8 However, future studies
are needed to define the true prevalence of these alterations
and their impact on tumor biology.7e9

Recent studies have shown that hypermethylation at
specific CpG islands upstream of the TERT transcriptional
start site has been associated with increased TERT gene
expression, particularly in pediatric brain tumors and in
melanoma.6,10,11 As there is a paucity of studies that have
evaluated large data sets for such hypermethylation events
in the context of other pathogenic alterations, 57 cases with
known promoter mutation and copy number status on the
basis of profiling by MSK-IMPACT were evaluated.
Consistent with the results of a prior study that evaluated
a limited number of cases in a similar manner, these events
were not mutually exclusive with either amplification events
or promoter mutations.11 However, it is possible that a
subset of cases that are considered to be wild type for TERT
may in fact harbor epigenetic alterations that have a sig-
nificant impact on gene expression.11

Given the high prevalence of TERT alterations in cancer,
there have been ongoing efforts to target components of the
telomerase holoenzyme.14,52e54 Although such approaches
are currently not in clinical use, they represent exciting
future cancer therapy strategies. Herein, we provide a
snapshot of the landscape of somatic TERT alterations
across multiple cancer types. Although canonical hot spot
promoter mutations (positions �124 and �146, relative to
the transcription start site) are the prevalent pathogenic
alteration, our data support the presence of an additional,
mutually exclusive, hot spot alteration at position �138.14

Other alterations of note include genomic amplification
events and rearrangements proximal to the TERT gene,
jmdjournal.org - The Journal of Molecular Diagnostics
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which may have a significant impact on gene expression but
are likely missed by targeted assays that interrogate only the
conventional promoter hot spot mutations. In addition, these
data suggest that upstream hypermethylation events, which
have been reported to be associated with increased gene
expression, are not mutually exclusive with known acti-
vating TERT alterations, and additional studies are needed to
further define their role across varied cancer types. In
summary, studies aimed at defining the prognostic impact of
TERT alterations should attempt to incorporate other path-
ogenic alterations, including amplifications, upstream rear-
rangements, and hypermethylation events, as these might
significantly impact telomerase function.
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