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W) Check for updates

In Search of “Hepatic Factor”: Lack of Evidence for
ALK1 Ligands BMP9 and BMP10

To the Editor:

Considerable evidence suggests that the liver produces or modifies a
circulating factor critical for preventing pulmonary arteriovenous
malformations (PAVMs). In hepatopulmonary syndrome, liver
dysfunction is associated with hypoxemia secondary to PAVMs, and
PAVMs are reversed by liver transplantation (1). Additionally,
portosystemic shunts that allow gut venous effluent to bypass the liver
lead to PAVMs, which resolve when the shunt is closed (2). Further
evidence comes from single-ventricle patients who undergo a three-
staged surgery to relieve hemodynamic burden on the heart and
correct oxygen desaturation. The second-stage surgery, the
bidirectional Glenn, directs passively draining venous return from the
superior vena cava (SVC) to the pulmonary circulation, with venous
return from the inferior vena cava (IVC) pumped to the systemic
circulation. Although the Glenn effectively decreases ventricular
hemodynamic stress, intrapulmonary arteriovenous shunting is
pervasive, and up to 25% of Glenn patients develop clinically
significant hypoxemia secondary to diffuse PAVMs (3, 4). Although
early theories of PAVM development focused on the absence of
pulsatile flow or increased lower lobe perfusion (3), later evidence
implicated the exclusion of a liver-derived substance from the
pulmonary vasculature. This “hepatic factor” was postulated based on
correlation between laterality of PAVMs and laterality of exclusion of
hepatic venous effluent (5), and its existence is strongly supported by
evidence that the third-stage Fontan procedure (completion of the
total cavopulmonary anastomosis), which reroutes IVC flow to the
lungs without restoring pulsatility, is strongly associated with PAVM
regression (6). Despite the strong evidence for hepatic factor, its
identity remains unknown.

Approximately 80% of PAVMs are associated with hereditary
hemorrhagic telangiectasia, a genetic disorder caused primarily by
mutations in BMP (bone morphogenetic protein) receptors ENG
(endoglin) and ACVRLI (activin A receptor like type 1, which
encodes ALK1) (7). This pathway is active in lung endothelium, and
ligands include BMP9 and BMP10 homodimers and BMP9/10
heterodimer (8, 9). Both BMP9 and BMPIO0 are transcribed in hepatic
stellate cells (9). Given the strong relationship between PAVMs and
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hereditary hemorrhagic telangiectasia, the hepatic origins of BMP9 and
BMPI0, and evidence of decreased plasma BMP9 in hepatopulmonary
syndrome (10), we hypothesized that ALK1 ligands may be the
hepatic factor required for PAVM prevention. We expect that hepatic
factor is either labile or actively removed from circulation on first pass
through the systemic circulation, making it unavailable to the lung
vasculature in Glenn circulation. Accordingly, in normal circulation,
we hypothesized that concentrations of ALK1 ligands would be
higher in the right atrium and pulmonary artery compared with the
SVC and infrahepatic IVC. Some of the results of these studies have
been previously reported in the form of an abstract (11), and some
have been previously reported in the form of a preprint (https://
doi.org/10.1101/2020.07.09.20148320).

Methods

This study was approved by the University of Pittsburgh Institutional
Review Board. Participants undergoing clinically indicated cardiac
catheterization were recruited between September 2015 and February
2017 and provided informed child assent and/or parental consent.
Patients with bidirectional Glenn, prior to Fontan, were compared with
two-ventricle control subjects. Excluded diagnoses among control
subjects included single ventricle physiology, unrepaired complex
congenital heart disease, and large shunt lesions. Patients with liver
disease, anemia (Hb <8 g/dl), cardiac surgery within 30 days, or
transfusion within 48 hours were excluded from both cohorts.

We collected 1 ml blood in K,EDTA tubes from five sites: the
right atrium, pulmonary artery, aorta, SVC, and infrahepatic IVC.
We measured ligands in duplicate in 30 pl of plasma via sandwich
ELISAs (R&D Systems) using DY3209 (BMP9), MAB2926 and
BAF3956 (BMP10), and MAB2926 and BAF3209 (BMP9/10),
with in-house generated recombinant proteins for the latter two
standard curves. We fit data to a four-parameter logistic curve and
performed statistical analysis using GraphPad Prism. We ran all
samples from an individual on a single plate, and the operator was
blinded to sample identity. Sample volume limitations prevented us
from assaying all ligands in every individual.

Results
Diagnoses in 38 control subjects (mean age, 5.8 yr [4 mo to 12.6 yr]; 21
males, 17 females) included small shunt lesions (21), repaired forms of
congenital heart disease with two-ventricle physiology (11), vascular
stenosis (5), valvar obstructive lesions (2), and hypertrophic
cardiomyopathy (1). Primary cardiac diagnoses in nine Glenn cases
(mean age, 2.9 yr [range, 22 mo to 5.1 yr]; 7 males, 2 females) included
variants of hypoplastic left heart syndrome (5), pulmonary atresia
with intact ventricular septum (2), double outlet right ventricle with
pulmonary atresia (1), and heterotaxy with right atrial isomerism (1).
BMPs are generated as proprotein dimers that are cleaved
between the N-terminal prodomains and C-terminal growth factor
domains, releasing the disulfide-bonded GFD (growth factor dimer).
In control plasma, we detected BMP9 GFD, BMP10 proprotein, and
BMP9/10 GFD (Figure 1) but not BMP10 GFD (DY2926; R&D
Systems; data not shown). However, we found no differences in
plasma concentrations of any ALK1 ligand when comparing within-
subject values across the right atrium, pulmonary artery, aorta, SVC,
and IVC (Figure 1). This result suggests that these ligands are neither
particularly labile nor actively removed on first pass through the
systemic or pulmonary circulation, failing to support the hypothesis
that they represent the hepatic factor required to prevent PAVMs.
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Figure 1. Plasma BMP9, BMP10, and BMP9/10 concentrations do not differ between pulmonary inflow and systemic venous circulation. Plasma from
control subjects was sampled from the right atrium, pulmonary artery, aorta, superior vena cava, and infrahepatic inferior vena cava and ligands quantified
by sandwich ELISA. All values are growth factor dimer equivalents. Colored lines connect samples from a single patient. The following were not significant
by repeated-measures one-way ANOVA: BMP9, n=31, P=0.13; BMP10, n=31, P=0.17; and BMP9/10, n=21, P=0.21. IVC =inferior vena cava;
PA =pulmonary artery; RA =right atrium; SVC = superior vena cava.

Evaluation of plasma from Glenn cases similarly revealed no P =0.04; BMP10, P=0.0002, BMP9/10, P=0.002). Although our
significant differences in within-subject ligand concentrations across ~ sample set is underpowered, we saw no correlation between ligand

sampling sites (data not shown). However, after collapsing data concentration and PAVMs (Figure 2).

across sites, comparison of grand means revealed significant

decreases in plasma concentrations of all ligands in Glenn cases Discussion

compared with control subjects (Figure 2), and significance We found no within-subject differences in plasma concentrations of

persisted after age adjustment (multiple linear regression; BMP9, = BMP9 GFD, BMP10 proprotein, or BMP9/10 GFD across different
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Figure 2. Plasma BMP9, BMP10, and BMP9/10 concentrations are lower in Glenn cases compared with control subjects. Within-patient data were

averaged across all sampling sites (right atrium, pulmonary artery, aorta, superior vena cava, and inferior vena cava) for control subjects and Glenn cases
and evaluated by Welch’s t test. Error bars represent SD. BMP9: control, n=31; Glenn, n=5; P=0.02. BMP10: control, n=31; Glenn, n=7; P=0.0006.
BMP9/10: control, n=21; Glenn, n=6; P=0.01. *P < 0.05 and ***P < 0.001. Open circles indicate cases with pulmonary arteriovenous malformations.
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sampling sites, in agreement with a recent report regarding BMP9
GFD (12) and failing to support the idea that ALK1 ligands are the
“hepatic factor” required to prevent PAVMs. However, it remains
possible that liver-derived BMP9 or BMP9/10 proproteins (not
assayed) may exhibit site-dependent concentration differences or
that enzymes required to cleave proproteins are unavailable in the
Glenn circulation. Surprisingly, we found that Glenn cases had
significantly lower concentrations of all three ligands compared
with control subjects. Measurement of these ligands in additional
Glenn cases and in Fontan cases will be required to determine the
biological significance of this finding with respect to Glenn-associated
PAVMs.
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W) Check for updates

Pulmonary Vascular Pruning on Computed
Tomography and Risk of Death in the Framingham
Heart Study

To the Editor:

Pulmonary vascular disease, including pulmonary hypertension
(PH), is a heterogeneous group of disorders that are associated
with a high risk of death. Regardless of etiology, this condition is
characterized histologically by the narrowing and loss of the small
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