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Abstract

BACKGROUND: The causal biology underlying schizophrenia is not well understood, but it is 

likely to involve a malfunction in how neurons adjust synaptic connections in response to patterns 

of activity in networks. We examined statistical dependencies between neural signals at the cell, 

local circuit, and distributed network levels in the prefrontal and parietal cortex of monkeys 

performing a variant of the AX-CPT paradigm. We then quantified changes in the pattern of neural 

interactions across levels of scale following NMDAR blockade and related these changes to a 

pattern of cognitive control errors closely matching the performance of patients with 

schizophrenia.

METHODS: We recorded the spiking activity of 1762 neurons along with local field potentials at 

multiple electrode sites in prefrontal and parietal cortex concurrently, generated binary time series 

indicating the presence or absence of spikes in single neurons, or LFP power above or below a 

threshold. We then applied causal discovery analysis to the time series to detect statistical 

dependencies between the signals (causal interactions) and compared the pattern of these 

interactions before and after NMDAR blockade.
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RESULTS: Global blockade of NMDAR produced distinctive, and frequently opposite changes in 

neural interactions at the cell, local circuit and network levels in prefrontal and parietal cortex. 

Cognitive control errors were associated with decreased interactions at the cell level and opposite 

changes at the network level in prefrontal and parietal cortex.

CONCLUSIONS: NMDAR synaptic deficits change causal interactions between neural signals at 

different levels of scale that correlate with schizophrenia-like deficits in cognitive control.
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MAIN TEXT

Patients with schizophrenia (1–3) and other neuropsychiatric disorders (4–8) exhibit deficits 

in cognitive control, defined as the ability to use contextual information, such as goals or 

rules, stored in working memory, to modify behavioral responses to environmental stimuli 

(9). This deficit has been measured using variants of the AX continuous performance task 

(AX-CPT)(3,7,10) in which a contextual cue (designated A or B) stored in working memory 

modifies the subsequent response to a probe stimulus (designated X or Y). Patients with 

schizophrenia (1,3), including those at first episode (11,12), as well as their first-degree 

relatives (13), exhibit robust deficits on the AX-CPT, suggesting this task measures a 

specific deficit in cognition. Patients exhibit the most profound deficit when a B-cue stored 

in working memory countermands the habitual response to a subsequent X-probe (‘BX’ 

errors), a pattern of deficit observed to a lesser degree in other neuropsychiatric disorders, 

including depression (7,8), and bipolar disorder (4–6). To better understand the underlying 

defect in neural circuit operation that may contribute to this specific defect in cognitive 

control, we translated a dot-pattern variant (DPX) of the AX-CPT to nonhuman primates and 

conducted neural recording in prefrontal and posterior parietal cortex. We have shown 

previously that monkeys treated with an NMDAR antagonist exhibit the same BX-selective 

error pattern (14) as patients with schizophrenia performing the DPX task (15). Here we 

contrast neural dynamics in the prefrontal-parietal network under baseline conditions and 

following NMDAR blockade to understand how reduction of this synaptic mechanism 

disrupts neural circuit dynamics at the cellular, local circuit, and distributed network levels.

Cognitive control is thought to depend on goal or rule information that is represented in 

working memory by the persistent activation of subsets of prefrontal neurons selective for 

the items of stored information (9,16–20). The persistent activation of prefrontal neurons in 

turn is thought to depend on recurrent excitation in axon collateral networks that are 

particularly prominent in layer III (16,21,22) and particularly dependent on NMDAR 

synaptic currents. Pharmacological blockade of NMDAR but not AMPAR synaptic currents 

reduces persistent activity in prefrontal neurons of monkeys performing working memory 

tasks (23,24), and the sustained activity of neurons in artificial neural networks modeled on 

prefrontal cortex depends on NMDAR currents (25,26).

The above synaptic and circuit mechanisms of working memory in prefrontal cortex are 

selectively degraded in schizophrenia. Functional neuroimaging studies show reduced delay 
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period prefrontal activation in patients performing working memory tasks (27), specifically 

on B-cue trials of the AX-CPT (1,11). NMDAR antagonists administered to healthy subjects 

replicate both hypofrontality and working memory deficits seen in schizophrenia (28,29), 

and a prominent cluster of schizophrenia risk mutations occur near genes with functional 

roles at NMDAR synapses (30–33). NMDAR are found on dendritic spines (34), which are 

reduced in density in schizophrenia, particularly in prefrontal cortex and particularly in layer 

III (21,35,36) where recurrent excitation in axon collateral networks is thought to contribute 

to persistent activity. These facts identify candidate neural circuit and synaptic mechanisms 

in prefrontal cortex the disruption of which could contribute to working memory and 

cognitive control deficits in schizophrenia.

However, it is not known how biological events at the cell, synaptic, local circuit and 

distributed network levels mutually influence each other to drive pathogenesis in 

schizophrenia or any other neuropsychiatric disease. There is as yet no ready way to 

measure the operation or functional state of individual neurons in the human brain of 

patients with neuropsychiatric disorders. To enable cell level analysis of brain network 

failure during cognitive control deficits like those seen in schizophrenia, we have used a 

nonhuman primate model (14,18,37). Here we apply causal discovery analysis to time series 

of neural activity recorded at different levels of scale in prefrontal and parietal cortex to 

understand how physiological signals at the cellular, local circuit and distributed network 

levels interact during cognitive control, and how these interactions are disrupted by NMDAR 

synaptic malfunction.

METHODS AND MATERIALS

Behavioral task

The behavioral and neural data we analyze in the present report were collected as part of our 

prior studies (18,37). Additional detail regarding experimental methods can be found in 

those reports, and in the Supplemental Information. Two male rhesus macaque monkeys 

performed the dot-pattern expectancy (DPX) task (Fig. 1A-D). The DPX task is identical to 

the AX continuous performance task except that dot patterns replace letters as stimuli. Gaze 

angle was monitored using a video eye tracking system (ISCAN, Inc.), and monkeys 

maintained gaze fixated on a central target throughout each trial. Following 500 ms of initial 

fixation, a cue stimulus (1 s) was presented, followed by a delay period (1 s), and then a 

probe stimulus (0.5 s). One dot pattern constituted the A-cue, and 5 dot patterns collectively 

constituted B-cues. (Fig. 1C). Similarly, one dot pattern constituted the X-probe, and 5 dot 

patterns collectively constituted Y-probes (Fig. 1D). Monkeys moved a joystick to the left or 

right using their right hand following the onset of the probe. The rewarded joystick direction 

was a function of the cue-probe sequence. The AX cue-probe sequence was the target 

sequence and required a leftward movement (Fig. 1A). All other cue-probe sequences were 

nontarget requiring a rightward movement (Fig. 1B; BX sequence shown). On the majority 

of trials (69%), the AX sequence was presented, establishing a prepotent tendency to 

produce the target (leftward) response to the X-probe. On the remaining 31% of trials, 

nontarget sequences were presented (12.5% AY, 12.5% BX, 6% BY). Successful trials were 

rewarded with a drop of sweetened water. All animal care and experimental procedures 
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conformed to National Institutes of Health guidelines and were approved by the Animal 

Care and Use Committee at the Minneapolis Veterans Administration Medical Center.

Neural recording, NMDAR antagonist regimen, and neural database

We recorded 34 neuronal ensembles in the Control condition (either with or without an 

injection of saline, before first exposure to NMDAR antagonist) and 34 neuronal ensembles 

in the Drug condition (following injection of the NMDAR antagonist phencyclidine, 0.25–

0.30 mg/kg i.m.). We restricted analyses to the subsets of neurons in prefrontal and parietal 

cortex that significantly modulated their firing in relation to task events (see Supplementary 

Information). In total, we analyzed the spiking activity of 1,762 cortical neurons. The 34 

neuronal ensembles in the Control condition included 289 task-related parietal neurons 

(average 11 per ensemble) and 468 task-related prefrontal neurons (average 15 per 

ensemble). The 34 neuronal ensembles in the Drug condition included 434 task-related 

parietal neurons (average 13 per ensemble) and 571 task-related prefrontal neurons (average 

14 per ensemble).

Format of data for Causal Discovery Analysis

We performed a causal discovery analysis separately on each simultaneously-recorded 

neuronal ensemble in the Control and Drug conditions. The data for each analysis consisted 

of time series of both neural and task data, concatenated over trials (average of 217 trials per 

set for the Control condition and 235 trials per set for the Drug condition). Each trial was 

represented by a set of binary time series (all values coded as 0 or 1) that represented the 

spiking of single neurons, modulations in LFP oscillatory power, and task state. Single 

neuron spiking data (between 2 and 32 neurons across ensembles) indicated whether or not 

an individual neuron generated an action potential in each 1 ms time bin. LFP data indicated 

whether oscillatory power fell above (1) or below (0) a threshold value in delta, theta, alpha, 

beta, and gamma bands (5 LFP variables per cortical area). The threshold was the 75th 

percentile of the distribution of values in each frequency band. We computed the time-

varying power of LFP signals (from 1–100 Hz) using a Morlet wavelet analysis, 

implemented using the ft_freqanalysis function in the FieldTrip Matlab toolbox (38). Time-

frequency LFP data were calculated at a 1000 Hz resolution, and then averaged across 

frequencies within frequency bands (delta: 1–4 Hz, theta: 4.1–8 Hz, alpha: 8.1–15 Hz, beta: 

15.1–35 Hz, gamma: 35.1–100 Hz). LFP data were restricted to one channel selected at 

random in each cortical area to limit the total number of variables entered. Five task state 

variables were non-overlapping step functions indicating whether (1) or not (0) the fixation, 

cue, delay, probe and intertrial epoch was currently active at each 1 ms time step. All data 

(single neuron, LFP, and task) were represented at 1000 Hz, beginning 499 ms before the 

onset of the cue stimulus and ending 1500 ms after the onset of the probe stimulus, for a 

total of 4000 data points per trial.

Causal Discovery Analysis

We used causal discovery (39,40) to estimate causal interactions between neural signals 

recorded at different levels of scale in the prefrontal-parietal network. We provide a 

conceptual description of the analysis here and additional detail in Supplemental 

Information. Each experiment is represented as a set of nodes in a graph, representing task 
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state or neural signals recorded on a single electrode in prefrontal or parietal cortex. We used 

Fast Greedy Equivalence Search (FGES)(41), a causal discovery algorithm that finds the 

pattern of causal interactions between nodes (directed edges; Fig. 3), represented as a 

Bayesian network, that simultaneously (1) maximizes the probability of the data given the 

model, and (2) minimizes the number of edges. The probability of the data given the model 

is given by

P X ∣ M = Πs ∈ SΠv ∈ V PM v = Xs, v ∣ Mpa v = XS, Mpa v

Where X is the data, M is the model, and S and V are the samples and variables. PM is a 

multinomial probability distribution computed from the data and stored as conditional 

probability tables in model M, Xs,ν is the value of variable v in sample s (0 or 1 in our case), 

Mpa(ν) is the set of variables that are parents of v (e.g. send directed edges to v) in model M, 

and XS, Mpa v  is the corresponding set of values in those parent variables in sample s. The 

conditional probabilities between nodes are represented by directed edges in the graphs (Fig. 

3). This expression states that the conditional probability of the data X given model M is the 

product across connected nodes and samples of the conditional probabilities of the sample 

values. The conditional probabilities between the sample values defined by the pattern of 

connected nodes are computed directly from the data. In the example shown (Fig. 2A), three 

nodes (two spike trains in individual neurons and one LFP power time series) are ‘parents’ 

providing input to a fourth, ‘child’ node (neuron). The directed edges imply that the state of 

the parents at each time step (sample), represented as combinations of 0s and 1s (Fig. 2B, 

left; [0,1,1; 1,0,1...]) influences the state of the child (Fig. 2B, right; [0 or 1]). This influence 

is expressed as the conditional probability that the child (V4) takes on a given value given 

the concurrent values of its three parents (V1, V2,, V3). At the first time step (S1), the parents 

have values [0,1,1] and the child has value [0]. The conditional probability associated with 

this concurrent set of values in parents and child is P(V4 = 0 | V1, = 0, V2,=1, V3=1 ) (0.001 

in this hypothetical example). That conditional probability is determined by counting the 

number of instances that this particular combination of values in parents and child occurs, 

divided by the total number of instances when the parents took on the values [0, 1, 1] 

regardless of the state of the child. The edges can be interpreted as ‘causal’ in the sense that 

they indicate which nodes influence other nodes, in terms of providing conditional 

probabilities included in the model. We evaluated conditional probabilities at 0-lag to 

measure synchronous neural interactions, analogous to the 0-lag spike correlation in 

prefrontal cortex we investigated previously (37). Consequently, the interactions we detected 

are likely mediated by reciprocal dynamics in polysynaptic networks that modulate 

synchrony at multiple levels of scale. We define microscale interactions as conditional 

probabilities between the spike trains (action potential time series) of individual neurons. We 

define mesoscale interactions as statistical dependencies between the spike trains of 

individual neurons and modulations in LFP power recorded in the same cortical area. We 

define macroscale interactions as statistical dependencies in neural signals (either spikes or 

LFPs) between cortical areas.

Kummerfeld et al. Page 5

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Quantification of neural interactions

We expressed the number of directed edges obtained in Bayesian networks as a proportion 

of the total possible number of edges given the number of variables entered, and bias 

corrected these proportions by subtracting the number of edges that we could expect either at 

chance or to reflect entrainment of neural signals to external events (stimuli and responses), 

rather than real-time physiological interactions between neurons in circuits. For this purpose, 

we generated a permutation distribution of 100 Bayesian graphs for each neuronal ensemble 

after applying causal discovery analysis to trial-shuffled neural data (keeping the time series 

for each trial within each variable intact). This retained the entrainment of neural signals to 

external events but broke the simultaneity of the neural signals, precluding physiological 

interactions between neurons in circuits from contributing to the detected interactions. We 

then subtracted the mean of the number of directed edges in the permutation distribution 

from the number of directed edges in the original data. (See Supplemental Figure 1 for an 

example of this correction procedure.) Differences in the proportion of bias-corrected 

directed edges in the Bayesian networks between Control and Drug conditions in the 

original data were deemed significant if they exceeded the 95th percentile of 100 condition 

differences generated from the trial-shuffled data

RESULTS

Behavioral performance

In the baseline condition, the monkeys’ performance on the DPX task (Fig. 1A, B) was 97% 

correct, and the BX error rate was 8% (Fig. 1E, gray). In the drug condition, the BX error 

rate increased to 38% (Fig. 1E, black), and the proportion of errors was significantly greater 

on BX trials in comparison to the other trial types (X2 1 = 2218, n = 12,676 trials, p < 

0.001). BX trials impose high proactive cognitive control demand (12,42) as the B-cue 

stored in working memory must countermand the habitual target response to the subsequent 

X-probe. AY trials impose high reactive cognitive control demand because presentation of 

the Y-probe must countermand the habitual target response associated with the A-cue stored 

in working memory. AY trials were associated with elevated response time (RT) in both the 

Drug (Fig. 1F, black) and Control Fig. 1F, gray) conditions, perhaps reflecting elevated 

reactive control demand. In the Drug condition, RTs significantly differed as a function of 

trial type (Fig. 1F; Kruskal-Wallis test; 2 = 2292, d.f. = 3, 11488, p < 0.001), with RTs on 

AY trials being significantly greater than RTs on BY trials (Tukey HSD, p < 0.05). The 

similarity in RTs across trial types in the Drug and Control conditions (Fig. 2F) suggests that 

monkeys applied similar cognitive strategies to task stimuli with and without NMDAR 

blockade. The difference in RT on AY versus BY trials in the Drug condition provides 

evidence that monkeys continued to treat the task as a conditional response task following 

NMDAR blockade, as the cue (A vs. B-cue) continued to influence processing time to 

respond to the probe (Y-probe).

Causal interactions between neural signals

The results of the causal discovery analysis applied to our neural data described interactions 

at three levels of scale in the brain. Microscale interactions (Fig. 3; pink arrows) were 

detected between the spike trains of simultaneously recorded neurons within the same 
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cortical area, indicating the influence of spiking in one neuron on spiking in another neuron. 

Mesoscale interactions were detected between spike trains of neurons and simultaneously 

recorded LFP signals within the same cortical area (Fig. 3; orange arrows). Mesoscale 

interactions captured the extent to which power fluctuations in oscillatory LFP components 

influenced single neuron spiking in local circuits. Macroscale interactions were detected 

between LFP signals (or LFP signals and neuronal spike trains) recorded simultaneously in 

different cortical areas (Fig. 3; black arrows). Macroscale interactions captured neural 

dynamics across cortical areas communicating in distributed corticocortical networks.

Microscale (cell-cell) interactions

We quantified microscale (cell-cell) interactions between the spike trains of neurons at the 

population level by counting the number of directed edges between neurons detected by 

causal discovery analysis in relation to the total number of edges possible in the data 

(constrained by the number of pairs of simultaneously recorded neurons). We found that 

systemically blocking NMDAR produced opposite effects on microscale (cell-cell) 

interactions in parietal and prefrontal local circuits, significantly enhancing these 

interactions in parietal cortex (Fig. 4A; p < 0.01, permutation test, Methods), and 

suppressing them in prefrontal cortex (Fig. 4B; p < 0.01). The prefrontal finding is 

consistent with our prior report based on a different statistical analysis (37).

Mesoscale (local circuit-cell) interactions

In parietal cortex, mesoscale interactions between LFP and neuronal spike trains were 

dominated by LFP oscillations in the theta band (4–8 Hz) relative to other frequencies (Fig. 

5A). In prefrontal cortex, the prominent peak of mesoscale interactions at theta frequencies 

was not evident (Fig. 5B). NMDAR blockade significantly weakened theta band mesoscale 

interactions in parietal cortex, and significantly enhanced them in prefrontal cortex (Fig. 5A, 

B, red vs. blue; p < 0.01). Collapsing across frequencies, mesoscale interactions were 

significantly weakened in both cortical areas, although modestly in prefrontal cortex (Fig. 

5C, D).

Macroscale (area-area) interactions

Blocking NMDAR significantly increased bottom-up (Fig. 6A) and decreased top-down 

(Fig. 6B) macroscale interactions between LFP signals in prefrontal and parietal cortex. 

Blocking NMDAR increased bottom-up (Fig. 6C) and also top-down (Fig. 6D) macroscale 

interactions between LFP signals in the theta band in one cortical area and spikes in the 

other. Collapsing across frequency bands, bottom-up macroscale interactions between LFP 

signals in parietal cortex and spikes in prefrontal cortex were significantly enhanced (Fig. 

6E).

Multiscale interactions that predict failure in cognitive control

Patients with schizophrenia (11,12), and monkeys administered NMDAR antagonists (14) 

(Fig. 1E) performing the AX-CPT and DPX tasks both exhibit a selective increase in errors 

on BX trials, when a B-cue stored in working memory must countermand a habitual 

response to the X-probe. To isolate changes in network dynamics associated with the 
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commission of BX errors, we stratified trials by cue-probe sequence and trial outcome and 

repeated the causal discovery analysis on the resulting subsets of trials (Fig. 7). To 

understand how network dynamics change in response to increased cognitive control 

demand associated with the B-cue, we compared causal interactions on correct BX trials to 

interactions on AX trials. To understand how failure of network interactions leads to BX 

errors, we compared causal interactions on BX correct trials to interactions on BX error 

trials. We restricted this analysis to trials performed in the Drug condition, when there were 

enough errors to analyze (Fig. 1E). We found that in the Drug Condition, microscale (spike-

spike) interactions between neurons increased in both parietal cortex (Fig. 7A) and 

prefrontal cortex (Fig. 7B) on correct BX trials (light purple) relative to correct AX trials 

(orange), and further that these changes reversed when monkeys made BX errors (dark 

purple). We also found that in the Drug Condition, macroscale (LFP-LFP) parietal-to-

prefrontal interactions increased (Fig. 7A), whereas prefrontal-to-parietal interactions 

decreased (Fig. 7B) on correct BX trials (light purple) relative to correct AX trials (orange). 

These changes in macroscale interactions on correct BX relative to AX trials (Fig. 7E, F) 

were in the same direction as changes seen in the Drug relative to the Control conditions 

overall (Fig. 6A, B; collapsing across trial types). That suggests that perturbations in 

macroscale interactions in the Drug relative to the Control condition may have been 

pronounced on BX trials in the Drug condition. The decrease in prefrontal-to-parietal 

macroscale interactions evident on BX correct trials reversed on BX error trials (Fig. 7F). 

Mesoscale interactions exhibited a weaker relation to trial type and outcome (Fig. 7C, D). 

These data provide a dynamical signature of cognitive control failure in the form of altered 

neural interactions in the prefrontal-parietal network when monkeys made BX errors.

DISCUSSION

Schizophrenia is a complex disorder resulting from interactions among biological variables 

operating at different levels of scale in the brain. For example, risk mutations have been 

identified that alter cell-level variables, such as the molecular mechanisms of synaptic 

transmission, synaptic plasticity and electrical excitability in neurons (31–33,43). Other risk 

mutations alter circuit-level variables, such as the pattern and density of axonal projections 

linking cells into neural circuits (44–46). These changes in neural function and circuit 

connectivity are likely to distort the physiological dynamics of neural circuits. Schizophrenia 

risk mutations engineered into animal models have been shown to distort attractor dynamics 

in visual cortex (47) and hippocampus (48), as well as oscillatory synchrony between the 

prefrontal cortex and hippocampus (49). Since schizophrenia is likely to involve both cell 

and circuit level changes, it is important to understand how cell and circuit level variables 

interact during pathogenesis. Neurons adjust their electrical excitability and synaptic 

connectivity to other neurons in response to the spatial and temporal pattern of synaptic 

inputs they experience (50). Those changes in synaptic connectivity in turn modify patterns 

of network activity, and therefore feedback to further modify synaptic inputs to neurons. A 

complex interplay between cell state and circuit activity therefore tunes neural networks as 

neurons adjust their intrinsic properties in response to electrical activity patterns. We 

recently proposed that schizophrenia may involve a distortion of this feedback process, by 

which reduction in synchronous spiking between neurons at the circuit level and 
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disconnection of synapses at the cell level may accelerate each other in a positive feedback 

loop driving a downward spiral that ultimately disconnects prefrontal networks via an 

activity-dependent process (37). This theory has much in common with other theories of 

schizophrenia pathogenesis that also involve feedback interactions between cell and circuit 

level variables as elaborated by other groups (51–53). To further explore the relationship 

between cell and circuit level variables, and learn how their interaction might be distorted in 

schizophrenia, we applied causal discovery analysis to time series of neural activity recorded 

at the cell, local circuit, and distributed network level in prefrontal and posterior parietal 

cortex of monkeys performing a cognitive control task that measures deficits in 

schizophrenia (7,14,18). This allowed us to investigate how interactions between neural 

events across levels of scale were distorted by NMDAR synaptic malfunction, a 

schizophrenia-relevant manipulation (30,31,54).

NMDAR are broadly distributed throughout the cerebral cortex (34,55). One might predict 

that brain-wide blockade of NMDAR via systemic administration of antagonist would have a 

globally suppressive effect on neuronal excitability, producing comparable effects in 

prefrontal and parietal cortex. Instead, we found marked divergence in how prefrontal and 

parietal neurons, circuits and networks responded to NMDAR blockade. Generally, 

communication between prefrontal neurons and top-down prefrontal output were 

suppressed, whereas communication between parietal neurons and bottom-up parietal output 

were increased following NMDAR blockade (Figs. 4 and 6). This provides evidence that 

prefrontal and parietal local circuits are differentially dependent on NMDAR synaptic 

mechanisms, and that global insult to NMDAR can produce circuit-specific effects on neural 

activity. NMDAR subunits (NR1, NR2A, and NR2B) are expressed by most prefrontal and 

parietal neurons but their concentration is higher in prefrontal cortex (56,57). Layer 3 

pyramidal neurons in prefrontal and parietal cortex differ substantially in morphology, 

physiological properties and patterns of gene expression (58). In prefrontal cortex, layer 3 

pyramidal neurons are more likely to exhibit a bursting response to input, and have more 

highly branched basilar dendrites that exhibit a higher density of spines in comparison to 

layer 3 pyramidal neurons in parietal cortex (58). Cross-correlation analysis has indicated 

that coincident spiking is more prevalent between parietal than prefrontal neurons (59). 

These data suggest that there may be differences in synaptic and local circuit mechanisms 

within prefrontal and parietal cortex that contribute to the differences in NMDAR sensitivity 

we observed.

One important question of particular relevance to schizophrenia is the nature of the 

communication failure that occurs in prefrontal circuits and networks when monkeys make 

BX errors in the task, as this is the dominant pattern seen in the performance of patients. We 

identified specific changes in both microscale (Fig. 7A, B) and macroscale (Fig. 7E, F) 

neural interactions associated with successful engagement of cognitive control on correctly 

performed BX trials that reversed on BX errors. These data provide a dynamical signature of 

neural interactions that can predict cognitive control failure following NMDAR synaptic 

malfunction on a trial-by-trial basis.

Systemic administration of NMDAR antagonists to monkeys weakens LFP beta oscillations 

that encode trial outcome (60), as well as patterns of neuronal activity (24) and spike-field 
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coherence (61) that encode cognitive rules. Iontophoretic application or systemic 

administration of NMDAR antagonists weakens the persistent activity of prefrontal neurons 

(23), but spares their post-saccadic responses (23), suggesting circuit-specific effects. 

Administration of NMDAR antagonist to healthy subjects reduces functional connectivity 

between prefrontal and posterior parietal cortex during working memory tasks (28), but 

increase functional connectivity in the resting state (62,63), suggesting state-specific effects. 

In rat prefrontal cortex, NMDAR blockade increases neuronal firing rate but decreases 0-lag 

spike synchronization (64), suggesting that NMDAR influence spike timing independently 

of spike rate, as we have observed (37)(Fig. 4B).

Applying a combination of computational modeling and dynamic causal analysis to MEG 

data, Shaw and colleagues (65) report that persons with schizophrenia performing a visual 

discrimination task exhibit reductions in gamma power that are consistent with reduced 

inhibitory tone in cortical circuits. Applying dynamic causal modeling to fMRI data, Zhou 

and colleagues (66) report reduced top-down drive from prefrontal to parietal cortex, as well 

as increased bottom-up drive from posterior cingulate to prefrontal cortex, a pattern of 

results broadly consistent with our own data (Fig. 6A, B). Roche and colleagues (67) 

demonstrated that administration NMDAR antagonist to healthy subjects disrupted causal 

interactions within prefrontal cortex, as we observed (Fig. 4B).

Our data document distinctive and in some cases opposite changes in network dynamics 

within prefrontal and parietal cortex in response to systemic administration of NMDAR 

antagonists. These findings suggest that NMDAR synaptic mechanisms play circuit-specific 

roles in the two cortical areas. We found that causal interactions linked neural signals across 

the cellular, local circuit and distributed network levels of scale, potentially making it 

possible to infer the state of neurons from the state of networks. We also found that the 

pattern of causal interactions across scales varied with cognitive control load and predicted 

cognitive control failure on a trial-by-trial basis following NMDAR blockade. These data 

open a cell and circuit level window into how prefrontal networks fail following NMDAR 

synaptic malfunction that could provide mechanistic insight into how prefrontal networks 

fail in schizophrenia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DPX task and behavioral performance.
A. AX trial event sequence. The A-cue is followed by the X-probe, requiring a target 

response (left joystick movement). B. BX trial event sequence. The B-cue is followed by the 

X-probe, requiring a nontarget response (right joystick movement). C. Cue stimuli. D. Probe 

stimuli. E. Proportion of errors as a function of cue-probe sequence in the Control condition 

(gray) and Drug condition (black). F. Response time as a function of cue-probe sequence in 

the Control condition (gray) and the Drug condition (black). Error bars in (E) and (F) 

represent twice the standard error of the mean.
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Figure 2. Conceptual schematic illustrating application of causal discovery analysis to neural 
time series data.
A. Graph showing directed edges from three parent nodes V1, V2, V3, (two spiking neuron 

and one LFP power) to a child node, V4 (spiking neuron). B. Sequence of activity states 

(samples) each represented as a 0 or a 1 at each time step, in the three parent nodes and the 

one child node, along with the conditional probabilities associated with each combination of 

states at each time step. FGES finds the pattern of edges that maximizes the product of the 

conditional probabilities over all samples and nodes in the network, while minimizing the 

number of edges.
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Figure 3. Example graphs illustrating the pattern of multiscale interactions detected in 
simultaneously recorded neural data.
Causal discovery analysis was applied to time series of neural signals recorded 

simultaneously in prefrontal (red) and parietal (blue) cortex. Data are from examples of 

individual neural recording sessions. Thresholded LFP time series at each of five frequency 

bands are represented by boxes. Time series of spiking activity in individual neurons are 

represented by circles. Edges indicate detected interactions between neural signals, color 

indicates the level of scale of the interaction: microscale (between spiking neurons; pink 

arrows), mesoscale (between spiking neurons and LFP signals in the same cortical area, 

orange arrows), or macroscale (between cortical areas, either spiking neurons or LFP 

signals: black arrows). A. Example directed graph derived from an individual neural 

recording session under the Control condition. B. Example directed graph derived from a 

different individual neural recording session under the Drug condition.
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Figure 4. Influence of NMDAR blockade on microscale interactions.
Permutation-corrected proportion of significant interactions between neurons relative to the 

total number of possible interactions given the numbers of neurons recorded. Significant 

differences are indicated by * (p < 0.01; permutation test). Blue, Control condition. Red, 

Drug condition. A. Parietal neurons. B. Prefrontal neurons. Error bars represent the standard 

deviation of the permutation distributions.
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Figure 5. Influence of NMDAR blockade on mesoscale interactions.
Permutation-corrected proportion of significant interactions between LFP signals and spike 

trains within the same cortical area relative to the total number possible given the number of 

paired LFP recordings, the number of frequency bands analyzed, and the number of 

recorded neurons. Blue, Control condition. Red, Drug condition. Significant differences are 

indicated by * (p < 0.01; permutation test). A, B. Mesoscale interactions within (A) parietal 

and (B) prefrontal cortex separated by LFP frequency band. Delta, theta, alpha, beta and 

gamma bands are represented by D, T, A, B and G respectively. C, D. Mesoscale 

interactions in (C) parietal and (D) prefrontal cortex collapsed across frequency bands. Error 

bars represent the standard deviation of the permutation distributions.
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Figure 6. Influence of NMDAR blockade on macroscale interactions.
Permutation-corrected proportion of interactions between LFP signals or between LFP 

signals and neuronal spike trains in prefrontal and parietal cortex relative to the total number 

possible given the number of LFP frequency bands and simultaneously recorded neurons. 

Blue, Control condition. Red, Drug condition. Significant differences are indicated by * (p < 

0.01; permutation test). A, B. Bottom-up (A) and top-down (B) macroscale (LFP-LFP) 

interactions. C, D. Bottom-up (C) and top-down (D) macroscale (LFP-spike) interactions 

separated by frequency band. Delta, theta, alpha, beta and gamma bands are represented by 
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D, T, A, B and G respectively. E, F. Bottom-up (E) and top-down (F) macroscale (LFP-

spike) interactions collapsed across frequency bands. Error bars represent the standard 

deviation of the permutation distributions.
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Figure 7. Relation of multiscale interactions to behavioral performance in the Drug condition.
Causal interactions stratified by trial type (cue-probe sequence) and trial outcome (correct = 

corr, error = err). Data are permutation-corrected proportion of significant interactions 

between neural signals at different levels of scale relative to the total number possible on AX 

correct (orange), BX correct (light purple), and BX error (dark purple) trials. Significant 

differences are indicated by * (p < 0.01; permutation test). A, B. Microscale (spike-spike) 

causal interactions in parietal (A) and prefrontal (B) cortex as a function of trial type and 

outcome. C, D. Mesoscale (LFP-spike) interactions within parietal (C) and prefrontal (D) 
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cortex as a function of trial type and outcome. E, F. Macroscale (LFP-LFP) interactions in 

parietal (E) and prefrontal (F) cortex as a function of trial type and outcome. Error bars 

represent the standard deviation of the permutation distributions.
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