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a b s t r a c t 

In this paper, a new stochastic fractional Coronavirus (2019-nCov) model with modified parameters is 

presented. The proposed stochastic COVID-19 model describes well the real data of daily confirmed cases 

in Wuhan. Moreover, a novel fractional order operator is introduced, it is a linear combination of Caputo’s 

fractional derivative and Riemann-Liouville integral. Milstein’s higher order method is constructed with 

the new fractional order operator to study the model problem. The mean square stability of Milstein 

algorithm is proved. Numerical results and comparative studies are introduced. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronavirus disease is an infectious and harmful disease, for 

ore details see [10,11] . The first case of the novel corona virus 

ppeared in December 2019 in Wuhan, the capital of Hubei, China, 

nd has since spread globally, resulting in the ongoing 2020 pan- 

emic outbreak [18] . In the meantime many mathematical models 

re presented to describe the spread of Coronavirus disease, see for 

xample [1,12–16,27–29] . Most of these models are deterministic 

nd missed of account environmental noises, but as is thought to 

ll, various random elements from the environment play an impor- 

ant position within the unfolding and development of infectious 

llnesses. The populace is often subject to a continuous spectrum 

f disturbances. Noises change the conduct of populace systems 

otably and might suppress the capability population explosion. 

ence, Coronavirus models with deterministic parameters are not 

oing to be practical. In view of the consequences of environmen- 

al variability, stochastic Coronavirus models have attracted excel- 

ent [22–24] . 

It is known that mathematical models with fractional deriva- 

ives are more suitable to describe the biological model with mem- 

ry [3–8,14] . 

In [9] a hybrid fractional operator is constructed. This new oper- 

tor is general than the Caputo’s fractional derivative operator. It is 
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 linear combination of Caputo fractional derivative and Riemann- 

iouville integral. 

Using the new hybrid derivative, we aim to study the stochas- 

ic model problem, for more details on deterministic model see 

12] . We show that our stochastic COVID-19 model describes well 

he real data of daily confirmed cases in Wuhan during the two 

onths outbreak (66 days to be precise, from January 4 to March 

, 2020) [18] . In order to approximate the proposed model Mil- 

tein’s higher order numerical method with the constant pro- 

ortional Caputo discretization (CPC-Milstein) is constructed. The 

ean-square stability of the CPC-Milstein method is studied. More- 

ver, Comparative studies are given. 

This article is organized as follows: In Section 2 , the basic 

athematical formulas are introduced. The hybrid fractional order 

tochastic Coronavirus (2019-nCov) mathematical model (HFSCM) 

s presented in Section 3 . The numerical methods and the mean 

quare stability are given in Section 4 . Numerical results are given 

n Section 5 . In Section 6 , conclusions are given. 

. Notations and preliminaries 

In the following, some important definitions used throughout 

he remaining sections are introduced. Consider the following gen- 

ral form of a hybrid fractional order stochastic differential equa- 

ion: 

PC 
 

D 

α
t y (t) = ξ (t, y (t)) + 

˙ W (t) σ (t, y (t)) , 0 < t ≤ T . 

y (0) = y 0 , (1) 

https://doi.org/10.1016/j.chaos.2021.110762
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.110762&domain=pdf
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Table 1 

The variables of system (7) and their definitions 

[12] . 

Variable Definition 

H Hospitalized class. 

R Recovery class. 

E Exposed class. 

S Susceptible class. 

F Fatality class. 

I Symptomatic and infectious class. 

P Super-spreaders class. 

A Infectious but asymptomatic class. 
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here, σ (t, y (t)) : [0 , T ] × R 

d −→ R 

d , d > 1 , ξ (t, y (t)) is a vec-

or field, ˙ W (t) = 

dW 

dt 
describes a state dependent random noise 

nd W (t) is Wiener process defined on filtered probability space 

�, � , { � t } t≥t 0 , P ) to be a complete probability space with a filtra-

ion { � t } t≥t 0 . 

• The Caputo fractional order derivative is defined as follows 

[2] : 

C 
0 D 

α
t y (t) = 

[∫ t 

0 

(t − s ) −αy ′ (s ) ds 

]
1 

�(1 − α) 
. (2) 

where, 0 < α < 1 and � is the Euler gamma function. 
• The integral in the sense of the Riemann-Liouville [2] : 

RL 
0 I 

α
t y (t) = 

[∫ t 

0 

(t − s ) α−1 y (s ) ds 

]
1 

�(α) 
. (3) 

where, y (s ) is an integrable function and 1 > α > 0 . 
• The hybrid fractional operator is defined as follows [9] : 

CP 
0 D 

α
t y (t) = [∫ t 

0 

(y (s ) K 1 (α, s ) + y ′ (s ) K 0 (α, s ))(t − s ) −αds 

]
1 

�(α) 
, (4) 

K 1 (α, t) = t α(1 − α) , K 0 (α, t) = t (1 −α) αC 2 α, 

here 0 < α < 1 , C is a constant. In the special case when K 0 and

 1 are independent of t, the new operators are given as follows: 

efinition 2.1. The proportional-Caputo hybrid operator (CP) is de- 

ned as [9] : 

P 
 

D 

α
t y (t) = 

[∫ t 

0 

(y (s ) K 1 (α, s ) + y ′ (s ) K 0 (α, s ))(t − s ) −αds 

]
1 

�(α) 
, 

= (y ′ (t) K 0 (α, t) + K 1 (α, t) y (t)) × ( 
t α

�(1 − α) 
) . (5) 
Table 2 

All parameters of systems (7) and their definitions [1

Parameter Description 

L Hospitalized patients relative transm

βα Coefficient of infected individual 

βα
1 Coefficient of super-spreaders 

K α The exposure rate become infectiou

ρ1 Rate at which exposed people becom

ρ2 Rate at which exposed people becom

γ α
i 

Recovery without being hospitalized

γ α
r Recovery hospitalized patients rate 

γ α
a Hospitalized rate 

δα
i 

Disease induced death due to infect

δα
h 

Disease induced death hospitalized 

δα
p Disease induced death super-spread

2 
Or as constant proportional Caputo (CPC) [9] : 

PC 
 

D 

α
t y (t) = 

[∫ t 

0 

(y (s ) K 1 (α) + y ′ (s ) K 0 (α))(t − s ) −αds 

]
1 

�(α) 

= K 1 (α) RL 
0 I 

1 −α
t y (t) + K 0 (α) C 

0 D 

α
t y (t) , (6) 

here, K 0 (α) , K 1 (α) are constants and depending only on α, 

K 1 (α) = (1 − α) Q 

α, K 0 (α) = αQ 

(1 −α) C 2 α and Q, C are con-

tants. 

. A hybrid fractional stochastic COVID-19 model 

In this section, we consider the model given in [13] which 

onsists of eight non linear differential equations. Consider the 

robability space (�, � , { � t } t 0 ≤t , P ) with a filtration { � t } t≥t 0 . Let

, W (t) are the white noises of intensities and Wiener process 

espectively. In Tables 1 and 2 describe the variables and the 

arameters respectively. Therefore, the perturbed fractional order 

tochastic system can be described as follows: 

CPC 
0 D 

α
t S = − βα IS 

N 

− Lβα HS 

N 

− βα
1 

P S 

N 

+ σ S ˙ W (t) , 

CPC 
0 D 

α
t E = βα IS 

N 

+ Lβα HS 

N 

+ βα
1 

P S 

N 

− K 

αE + σE ˙ W (t) , 

CPC 
0 D 

α
t I = K 

αρ1 E − (γ α
a + γ α

i ) I − δα
i I + σ I ˙ W (t) , 

CPC 
0 D 

α
t P = K 

αρ2 E − (γ α
a + γ α

i ) P − δα
p P + σP ˙ W (t) , 

CPC 
0 D 

α
t A = K 

α(1 − ρ1 − ρ2 ) E + σA 

˙ W (t) , 

PC 
 

D 

α
t H = γ α

a (I + P ) − γ α
r H − δα

h H + σH 

˙ W (t) , 

CPC 
0 D 

α
t R = γ α

i (I + P ) + γ α
r H + σR 

˙ W (t) , 

CPC 
0 D 

α
t F = δα

i I + δα
p P + δα

h H + σ F ˙ W (t) , (7) 

hereww, the stochastic perturbation in (7) model is a white noise 

ype that is directly proportional to all the model variables. The 

tability of the system (7) may be investigated by Lyapunov stabil- 

ty method [20,26] . 

.1. Basic reproduction number 

In the following, we use the next generation method [25] to 

nd the basic reproduction number in deterministic case for sys- 

em (7) . Consider the following matrices F and V, where 
3] . 

Value (per day −α) 

issibility 1.56 dimensionless 

2 . 55 α

7 . 65 α

s 0 . 25 α

e infected I 0.580 dimensionless 

e super-spreaders 0.001 dimensionless 

 rate 0 . 27 α

0 . 5 α

0 . 94 α

ed class rate 3 . 5 α

class rate 0 . 3 α

ers rate 1 α
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Fig. 1. Real data verses model (7) fitting at α = 1 , and σ = 0 . 0 . 

Fig. 2. Real data verses model (7) fitting at α = 1 , and σ = 0 . 05 . 

i

F

V
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w
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4

h

F represents the new infection terms, V represents the remain- 

ng transfer terms [25] : 

 = 

⎛ 

⎜ ⎝ 

0 βα βα βα
1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

, 

 = 

⎛ 

⎜ ⎝ 

−K α 0 0 0 

−K α −(γ α
a + γ α

i 
) 0 0 

−K αρ1 0 −(γ α
a + γ α

i 
+ δα

p ) 0 

0 γ α
a γ α

a −(γ α
r + δα

h 
) 

⎞ 

⎟ ⎠ 

. 
C

3 
Then, 

 0 = ρ(F V −1 ) = ⎡ 

⎢ ⎢ ⎣ 

βαρ1 

(
γ α

a L + (γ α
r + δα

h 
) 

)

(γ α
r + δα

h 
)(γ α

a + γ α
i 

+ δα
i 
) 

+ 

(
βαγ α

a L + βα
1 (γ

α
r + δα

h 
) 

)
ρ2 

(γ α
r + δα

h 
)(γ α

a + γ α
i 

+ δα
p ) 

⎤ 

⎥ ⎥ ⎦ 

, (8) 

here, R 0 is the basic reproduction number of the model, and ρ
ndicates the spectral radius of F V −1 . 

. Numerical methods 

A cross the paper, we constructed a new method to solve the 

ybrid stochastic fractional order system (7) . This method called 

PC- Milstein method, moreover, from this method we have the 
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Fig. 3. Real data verses model (7) fitting at α = 1 , and σ = 0 . 1 . 

Fig. 4. Real data verses model (7) fitting and σ = 0 . 1 . 
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μ

0

0

aputo discretization with Milstein’s method (C-Milstein). We will 

ive a brief summary of both methods as follows: 

.1. CPC- Milstein method 

Consider the general form of the hybrid stochastic fractional or- 

er Eq. (1) , by using (4) we have: 

n 
 

i =0 

[
(i + 1) (1 −α) − (i ) (1 −α) 

]

(
(1 − α) t αi y n −i +1 + αC 2 αt (1 −α) 

i 

y n −i +1 − y n −i 

τ

)
1 

τα−2 �(2 − α) 

= τξ (t n , y (t n )) + σ (t n , y n ) � W n + 

1 

2 
σ (t n , y n ) 

∂σ

∂y 
(t n , y n )[(� W n ) 

2 − τ ] .

(9)
4 
r, by using (6) we have: 

 +1 
 

i =0 

Q 

α(1 − α) 

τα−2 �(2 − α) 

[
(i + 1) (1 −α) − (i ) (1 −α) 

]
y n −i +1 

+ 

αC 2 αQ 

(1 −α) 

τα−1 

(
y n +1 −

n +1 ∑ 

i =1 

μi y n +1 −i − q n +1 y 0 

)

= τξ (t n , y (t n )) + σ (t n , y n ) � W n 

+ 

1 

2 

σ (t n , y n ) 
∂σ

∂y 
(t n , y n )[(� W n ) 

2 − τ ] , (10) 

here, K 0 (α) = αC 2 αQ 

(1 −α) , K 1 (α) = (1 − α) Q 

α, ω 0 = 1 , ω i =
1 − α

i 
) ω i −1 , t n = nτ, τ = 

T f 
N n 

, N n ∈ N . μi = (−1) i −1 
(

α
i 

)
,

1 = α, q i = 

i α

�(1 −α) 
, and consider [17,19] : 

 < μi +1 < μi < ... < μ1 = α < 1 , 

 < q i +1 < q i < ... < q 1 = 

1 

. 

�(1 − α) 
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Fig. 5. Mean solution for the model (7) at different α, T f = 60 , δi = δh = δp = 0 and σ = 0 . 5 . 
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.2. C- Milstein’s method 

Let K 1 (α) = 0 and K 0 (α) = 1 , in (10) , then we have C-Milstein

ormula as follows: 

1 

τα−1 

(
y n +1 −

n +1 ∑ 

i =1 

μi y n +1 −i − q n +1 y 0 

)

= τξ (t n , y (t n )) + σ (t n , y n ) � W n + 

1 

2 
σ (t n , y n ) 

∂σ

∂y 
(t n , y n )[(� W n ) 

2 − τ ] . 

(11) 

.3. Mean square stability of CPC-Milstein method 

In this section, we will prove that the CPC-Milstein approxima- 

ion (10) is stable. Let us consider a test problem of the following 

orm: 

PC 
 

D 

α
t y (t) = ay (t) + σy (t ) ˙ W (t ) , 0 < t ≤ T . 

y (0) = y 0 , (12) 
5 
heorem 4.1. The CPC-Milstein method given in (10) is a mean 

quare stable. 

roof. In the following, we will prove Theorem 4.1 to a test prob- 

em (12) for all t ≥ 0 , this is only for simplicity. Using Milstein

ethod (10) and (12) , we have: 

y n +1 + A 

n +1 ∑ 

i =1 

y n −i +1 B + G 

(
y n +1 −

n +1 ∑ 

i =1 

μi y n +1 −i − q n +1 y 0 

)

= τay n + σy n � W n + 

1 

2 

σ 2 y n [(� W n ) 
2 − τ ] , (13) 

here, A = 

Q α(1 −α) 

τα−2 �(2 −α) 
, B = 

Q α (1 −α) 

τα−2 �(2 −α) 
, G = 

αC 2 αQ (1 −α) 

τα−1 . 

Then, 

 n +1 = 

(
τa + σ� W n + 

1 
2 
σ 2 [(� W n ) 2 − τ ] 

A + G 

)
y n (14) 
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Fig. 6. Mean solution for the model (7) at different α, T f = 60 , δi = δh = δp = 0 and σ = 0 . 1 . 

a

y

t

y

f

σ

E

�

+ G 

(
n +1 ∑ 

i =1 

μi y n +1 −i − q n +1 y 0 

)

−
(

A 

n +1 ∑ 

i =1 

y n −i +1 B 

)
, (14) 

lso, 

 n +1 = 

(
τa + σ� W n + 

1 
2 
σ 2 [(� W n ) 

2 − τ ] 

A + G 

)
y n 

+ G 

(
n +1 ∑ 

i =1 

μi y n +1 −i − q n +1 y 0 

)

6 
−
(

A 

n +1 ∑ 

i =1 

y n −i +1 B 

)
, (15) 

hen we can claim: 

 n +1 ≤
(

τa + σ� W n + 

1 
2 
σ 2 [(� W n ) 

2 − τ ] 

A + G 

)
y n , (16) 

rom [21] , the numerical scheme (10) is a mean square stable for 

, τ, a if 

 

(∣∣∣∣τa + σ� W n + 

1 
2 
σ 2 [(� W n ) 2 − τ ] 

A + G 

∣∣∣∣
2 )

≤ 1 . 
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Fig. 7. Mean solution for the model (7) at different α, T f = 60 , δi = δh = δp = 0 and σ = 0 . 005 . 

7 
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Fig. 8. Mean solution for the model (7) at different α, T f = 60 , δi = δh = δp = 0 and σ = 0 . 

8 
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Fig. 9. Mean solution for the model (7) at α = 0 . 9 , T f = 60 , δi = δh = δp = 0 and σ = 0 . 6 . 
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. Numerical results 

In this section, CPC-Milstein (10) and C-Milstein (11) are in- 

roduced to study the model problem (7) . The initial conditions 

re given as follows: R (0) = 0 , F (0) = 0 , S(0) = N − 6 , E(0) = 0 ,

(0) = 1 , A (0) = 0 , P (0) = 5 , [12] . 

The simulations will be run 10 0,0 0 0 iterations in order to ex- 

mine the inclusion of stochastic effects into deterministic model. 

ig. 1 shows the comparison between real data from WHO verses 

resent considered model at σ = 0 , α = 1 . From this figure, it 

an be noticed that our model shows a strong agreement with 

eal data collected by WHO during the two months outbreak (66 

ays to be precise, from January 4 to March 9, 2020) [18] . Also,

ig. (2) -( 3 ) show the comparison between real data from WHO 

erses present considered model at different values of σ. More- 

ver, Fig. 4 shows the comparison between real data from WHO 
9 
erses present considered model at σ = 0 . 1 , α = 0 . 9 . From Figs. 5-

3 , we consider δi = δh = δp = 0 , with different values of σ . Figs.

-8 , show how the solutions are changed with different values of 

he order α. 

Figs. (9 ) to (12) show the level of noises at different values of 

and α = 0 . 9 by using (10) and (11) . Comparing the results ob-

ained from Fig. 11 with Fig. 12 at the same data, we can claim that

he results which obtained by Fig. 11 is the best, because these re- 

ult is more convergent to the deterministic case than the results 

hich obtained with Caputo operator. Fig. 13 shows the numeri- 

al simulations in 3 dimensions of the mean solutions for I and 

 at σ = 0 . 09 , α = 0 . 9 in Fig. 13 (a) and σ = 0 . 009 , α = 0 . 9 in

ig. 13 (b). In Figs. 14-16 , we considered δi , δh and δp , not equal

ero as in Table 2 . These figures, show how the level of noises

hange at different values of σ and α. All computations are done 

sing MATLAB. 
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Fig. 10. Mean solution for the model (7) at α = 0 . 9 , T f = 60 , δi = δh = δp = 0 and σ = 0 . 6 . 

10 
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Fig. 11. Mean solution for the model (7) at α = 0 . 9 , T f = 60 , δi = δh = δp = 0 and σ = 0 . 06 . 

11 
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Fig. 12. Mean solution for the model (7) at α = 0 . 9 , T f = 60 , δi = δh = δp = 0 and σ = 0 . 06 . 

12 
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Fig. 13. Mean solution for the model (7) at α = 0 . 9 , T f = 60 , δi = δh = δp = 0 at σ = 0 . 09 in (a) and σ = 0 . 009 in (b). 

13 
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Fig. 14. Mean solution for the model (7) at different α, T f = 60 and σ = 0 . 1 . 

14 
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Fig. 15. Mean solution for the model (7) at different α, T f = 60 and σ = 0 . 05 . 
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Fig. 16. Mean solution for the model (7) at different α, T f = 60 and σ = 0 . 
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. Conclusions 

In this work, the HFSCM is presented, where the new CPC 

perator which given in [9] is successfully used to constructed 

he proposed Coronavirus model. The proposed stochastic COVID- 

9 model describes well the real data of daily confirmed cases 

n Wuhan. This model shows a strong agreement with real data 

ollected by WHO [18] . The model provides new insights into 

pidemic-logical situations when the environmental noise (pertur- 

ations) and fractional calculus are considered in the COVID-19 

odel. The combination of white noise and fractional order in 

he epidemic model, has a considerable impact on the persistence 

nd extinction of the infection and enriches the dynamics of the 

odel. 

Milstein’s method is constructed with the new operator to sim- 

late the model problem. The mean-square stability is given. Nu- 

erical simulations in this article are implemented for different 

and α. We concluded that the level of noise reduced when 

he value of σ convergent to zero. From our results which ob- 

ain in this article we concluded that the proposed hybrid oper- 

tor derivative is more general and suitable to study the Coron- 

virus model than the Caputo’s derivative. Some simulations are 

resented to support our theoretical findings. Finally, we suggest 

hat the CPC derivative could be useful for the scientists and 

esearchers. 
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