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Abstract

For the last century we have relied on model organisms to help understand fundamental biological 

processes. Now, with advancements in genome sequencing, assembly and annotation, non-model 

organisms may be studied with the same advanced bioanalytical toolkit as model organisms. 

Proteomics is one such technique, which classically relies on predicted protein sequences to 

catalog and measure complex proteomes across tissues and biofluids. Applying proteomics to non-

model organisms can advance and accelerate biomimicry studies, biomedical advancements, 

veterinary medicine, agricultural research, behavioral ecology, and food safety. In this post-model 

organism era we can study almost any species, meaning that many non-model organisms are in 

fact important emerging model organisms. Herein we focus specifically on eukaryotic organisms 

and discuss steps to generating sequence databases, analyzing proteomic data with or without a 

database, interpreting results, and future research opportunities. Proteomics is more accessible 

than ever before, and will continue to rapidly advance in the coming years, enabling critical 

research and discoveries in non-model organisms that were hitherto impossible.
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Introduction

Beginning with fruit flies at the turn of the 20th century, model organisms have enabled 

biological discoveries by bringing testable yet complex biological systems to the lab. These 

organisms, including mice, rats, frogs, zebra fish, roundworms, yeast, maize, Arabidopsis, 

and Escherichia coli, are easily maintained in the lab, have well established methods and 

molecular tools, can be manipulated at the molecular level, and have a vast body of 

associated literature1–2. Over the last 100 years, these model organisms have been crucial to 

revealing fundamental biological truths and developing the theoretical framework for 

molecular biology. But as cutting-edge biomolecular analysis in non-model organisms is 

becoming more routine, we are on the cusp of a new frontier3–4. Over billions of years, 

natural selection has favored countless adaptations to allow organisms to inhabit and thrive 

in all corners of the earth. Through the study of non-model organisms, scientists are 

revealing insights into the molecular basis of a vast array of human conditions. Naturally 

occurring adaptations and susceptibilities inform the evolutionary and genetic underpinning 

of chronic and genetic disease in humans, from cancer to neurodegeneration (expertly 

reviewed by Stenvinkel et al.5–6). For instance, elephants and naked mole rats illuminate 

molecular mechanisms at play in cancer resistance7–9, deer antlers hold clues to organ 

regeneration10–11, diving mammals inform ischemia reperfusion injury resistance12–16, 

hibernating arctic squirrels and grizzly bears teach lessons about neuroprotection and 

metabolism17–19, and naked mole rats and bats possess secrets to longevity20–23. Plants are 

also treasure troves of information including how compartmentalization in plants avoids 

senescence24–25. This field of study, biomimetics, seeks to understand these adaptations and 

provide insight into chronic disease in humans, and is made possible by non-model organism 

research.

In addition to biomimetics, non-model organisms are important in other key areas, including 

agricultural research, veterinary medicine, behavioral ecology, and food safety. Emerging 
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plant diseases in high value agricultural crops, such as citrus greening disease26–28 and 

cotton blue disease29–33, are forcing rapid development of bioanalytical capabilities to study 

non-model plant species, plant pathogens and insect vectors of plant pathogens. Knowledge 

of these virus-interacting host proteins paves the way for genome editing approaches to 

develop durable resistance. Non-model organism research is also critical in veterinary 

medicine for industries such as zoos and aquariums or pets ($3 billion and $18 billion 

annual, respectively34–35), which rely on bioanalytical measurements for development and 

validation of new techniques translated from human medicine. In cases such as bats, 

genomic and proteomic analysis is being harnessed to better understand longevity, as well as 

their innate immunity and ability to serve as disease reservoirs36–38. Maybe less apparent is 

the applicability of proteomics to behavioral ecology (expertly reviewed by Valcu and 

Kempenaers39), such as eusociality in the naked mole-rat40. Lastly, with growing concerns 

of food authenticity, proteomic analysis in non-model organisms offers promising avenues of 

tracking and validation in aquaculture and agriculture41–45. These topics are economically 

critical and rely on our ability to rapidly develop cutting edge analytical capabilities in non-

model organisms. Classical model organisms are vitally important, but there is an enormous 

promise of untold discoveries and applications by studying non-model organisms (Figure 1).

Given the current SARS-CoV-2 pandemic, it is important to specifically highlight the 

importance and potential of non-model organism research when studying zoonotic viruses. 

Although predicting zoonosis includes many non-molecular factors46–47, it has been shown 

that sequence homology between host receptors (e.g., ACE2 in SARS and SARS-CoV-2 

infection) can predict zoonotic potential and species tropism48–50. For instance, SARS-

CoV-2 entry potential correlates with ACE2 receptor homology between reservoirs and 

hosts50. Current studies of SARS-CoV-2 utilizing structural information such as receptor 

binding domain51 and glycosylation of the viral spike protein52 will continue to improve 

predictive power even further53–54. Undoubtedly proteomic analysis of these non-model 

reservoirs can provide empirical evidence of structural and glycosylation predictions on vital 

molecular targets, which is made possible only by directly studying the non-model 

organism. Furthermore, determining host-virus interactions by protein-protein interaction 

(PPI) proteomic analysis is critical to understanding infection, such as with Ebola virus55, 

Zika virus56 and SARS-CoV-257, but similar PPI studies in viral reservoirs themselves could 

be equally enlightening for innate and adaptive immunity as well as zoonotic spillover 

potential. Broad proteomic studies across hundreds of reservoir and host species will 

improve our understanding of viral infection, zoonotic prediction, and highlight possible 

treatments.

Proteomics in non-model systems is driven by genomics

Currently, the most common method of proteomic analysis is shotgun proteomics (also 

referred to as bottom-up proteomics). By digesting proteins to peptides, proteomics 

researchers use mass spectrometers and database search algorithms to identify and quantify 

near complete proteomes (such as recent studies in human58–59 and yeast60). Traditional 

data-dependent acquisition (DDA) or newer techniques such as data-independent acquisition 

(DIA) or BoxCar61 may be used if the search space can be defined using protein sequences 

and appropriate post-translational modifications. When using shotgun proteomics to study a 
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non-model organism that may not have an annotated genome available, the search space is 

the major hurdle62–63. If an annotated genome is available, any limitation that applies to 

proteomics in model organisms will also apply to a non-model (e.g., studying glycosylation 

with DIA data is difficult regardless). Knowledge of current solutions and best practices in 

non-model organisms is limiting widespread adoption. For starters, in the past, genome 

sequencing and annotation could prove an insurmountable or very expensive problem to 

overcome, but this is no longer the case.

In recent years, post-2015, there has been an explosion of genome sequencing as the cost to 

generate accurate highly-contiguous genome assemblies has continued to drop64. There are 

ongoing large sequencing efforts (e.g., Earth BioGenome Project, Vertebrate Genomes 

Project, DNA Zoo, Zoonomia Project, Bat1K Project, Bird 10 000 Genomes Project) that are 

beginning to hit their stride and soon will be releasing hundreds of genomes per year to 

achieve many thousands of genomes by completion. Of the roughly 5400 mammal species, 

currently 430 have genomes, while of the roughly 400 000 plant species, there are 630 plant 

genomes, and of the nearly 1 million named species of insects less than 500 genomes are 

complete65 (Figure 2). When a genome is not available, especially in the case of mammals 

the most affordable path to de novo sequencing is to use short-read sequencing with 

proximity ligation techniques (such as Hi-C or Chicago). The resulting genome assemblies 

are accurate for transcriptomic and proteomic studies (e.g., proteomic analysis using a 

Chicago-based mammalian assembly66). In cases of highly heterogeneous and repetitive 

genomes (e.g., Mollusca), additional and more expensive techniques may be required such 

as long-read sequencing based on Oxford Nanopore Technologies or PacBio, as well as 

optical mapping. But in the case of many species, a de novo assembly can be generated in 

the matter of months for minimal cost and expertise. Once completed, quality measures 

including contiguity (i.e., scaffold and contig N50) and completeness (i.e., BUSCO67) can 

be evaluated, but since there are no universal quality thresholds, we recommend comparing 

quality metrics of phylogenetically similar published assemblies. Alternatively, 

proteogenomics represents experimental validation of a genome assembly using 

proteomics66, 68–69. Peptide identification can help validate polymorphisms and predicted 

alleles while top-down proteomic methods can confirm predicted isoforms. Future 

development of genome annotation pipelines may include ways to integrate mass 

spectrometry-based proteomic data.

Genome sequencing and availability does not seem to be the main roadblock to proteomics 

in non-model species: the current bottleneck is genome annotation. Complete and accurate 

genome annotation is key to proteomic workflows. Broadly there are two paths to 

annotation: in-house annotation or making the data publicly available for annotation by 

NCBI or Ensembl. In the case of in-house annotation, publicly available and often free, 

high-performance computing (HPC) resources such as XSEDE (Extreme Science and 

Engineering Discovery Environment; including JetStream), ACI-REF (Advanced 

Cyberinfrastructure Research and Education Facilitators) Network, NCI (National 

Computational Infrastructure) Australia, PRACE (Partnership for Advanced Computing in 

Europe) and the ELIXIR (the European life-sciences Infrastructure for biological 

Information) network, have enabled novice bioinformaticians without a local HPC to 

annotate genome assemblies using pipelines like MAKER (see tutorials70–71). Although still 
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an iterative task, this is made possible by having thousands of processing hours on a virtual 

cluster. The second path to genome annotation is using free public resources like NCBI 

RefSeq or Ensembl. Specifically, the RefSeq project maintains and curates new and updated 

genome annotations72–73. RefSeq has published guidelines on how genomes are selected for 

annotation74, related to assembly contiguity, secondary RNA-seq data, and need by 

researchers. Once a high-quality genome assembly has been made public on DDBJ (DNA 

Data Bank of Japan), ENA (European Nucleotide Archive) or GenBank, it may be annotated 

and publicly released by RefSeq in a matter of weeks. But of the hundreds of genomes on 

GenBank, only a fraction have been annotated (Figures 2 and 3). What may not be evident is 

that a researcher not associated with the original genome project but with access to RNA-seq 

data may upload new sequence read archives (SRA), which can help begin or improve 

annotations of already existing high-quality genome assemblies. This is also an excellent 

way to demonstrate interest and improve annotation as more secondary gene evidence and 

transcript diversity typically results in more complete and accurate annotations. For instance, 

multiple tissue single-stranded RNA sequencing data were used by RefSeq to annotate the 

California sea lion genome75. The current annotation system is ripe for democratization and 

team science approaches, especially for pre-existing publicly available genome assemblies.

Following in-house or RefSeq genome annotation as described above, there will be a 

sequence database (a collection of protein sequences, typically as a FASTA, XML or GFF 

file) that can be used to search proteomic data. There are secondary resources such as 

UniProtKB that may import and evaluate annotations from RefSeq and Ensembl, but it is 

important to note that UniProtKB does not import all available high-quality annotations. 

Moreover, whereas RefSeq groups genome annotations by release or by user submission, the 

provenance of protein assignments from other resources may be difficult to determine. For 

these reasons, retrieving species-specific proteomes from UniProtKB, RefSeq and Ensembl 

will yield different protein databases, often based on different genome assemblies, 

annotation pipelines, and curation. Since interpretations of proteomic data in non-model 

organisms are only as useful as the functional annotation of the proteome, a careful manual 

inspection of automated annotations may be required before proceeding with biological and 

functional experiments, as even RefSeq annotations may not be perfect due to issues with 

homology-based assignments, likely because orthologs in well-annotated species may not 

always exist77. When proteins of interest are unknown or hypothetical, manual single protein 

curation is required using tools like UniRule78. In insects, community and student-led 

annotation efforts have helped identify families of well-conserved genes and proteins79–81, 

but species-specific genes and genes under positive selection are more difficult to annotate 

and require detailed, tissue-specific proteomic investigation82–85. As more annotations come 

online, and with continued curation by the community, pipeline generated genome 

annotations will continue to improve.

There is a wealth of public genome assemblies, even multiple genomes from the same 

species, challenging the concept of a reference genome. In this pan-genome era, researchers 

are realizing that one individual cannot capture the genomic (and therefore proteomic) 

diversity of a population or species. In other words, more than a single human, aphid or 

African elephant reference genome may be required to describe the genome or proteome. 

Moreover, even with reference genomes there will be numerous annotation versions as gene 
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predictions improve, more evidence is acquired, assemblies are improved, or more genomes 

are completed. The reference human annotation is on its tenth release, and less obvious 

species like the cow are on their seventh release. For protein databases to evolve and 

effectively capitalize on pan-genomic data, a new framework will need to be developed.

Analyzing proteomic data from non-model organisms

Given the global resources devoted to genome annotation and how these data products are 

maintained and propagated throughout data hubs, when possible the greatest community 

benefits will come from applying resources to genome annotation (described above), as 

opposed to one-off transcriptomes. Yet there are still occasions where it is not possible due 

to resources, time, or simply availability of quality samples for genomic sequencing. If 

samples can be acquired with RNA stability in mind, it should be possible to generate 

predicted protein sequences using RNA sequencing (such as86; Figure 4A). In cases such as 

biofluids, choosing a relevant tissue to sequence may be difficult since protein provenance is 

unknown. For instance, due to its proximity to all organs the complete blood proteome is 

translated in many tissues, not the blood itself87. Another consideration is that when using 

short-read RNA sequencing, de novo assembly is required, which can be computationally 

costly and may not provide sequence coverage of protein isoforms or very large proteins 

(e.g., human titin isoform N2BA mRNA is over 100 000 residues in length). To overcome 

these issues, full-length RNA sequencing can be employed88, negating the need for 

transcriptome assembly since the direct transcript evidence can define the search space. As 

the capability and accessibility of full-length RNA sequencing improves, this could become 

a viable parallel approach to support mass spectrometry-based proteomics.

Proteomic analysis of a non-model organism in the absence of any additional nucleic acid 

sequencing is also possible (Figure 4B). Homology searching is when the database of a 

closely related species is used for conventional database searching. In this case, only tryptic 

peptides with complete homology will be identified. Depending on the clade this may work 

better than others (e.g., using the Weddell seal and Pacific walrus annotations to search 

California sea lion proteomic data provided valid conclusions89). Recently an approach was 

developed that can assist in selecting species by evaluating how well a homologous sequence 

database can explain an unknown proteome63. Other search approaches can involve using 

wide mass tolerances such that single amino acid variants (SAAVs) can be tolerated between 

the known and unknown species. This is accomplished by employing an open search with a 

wide mass tolerance, and searching using a closely related species with a tool like 

MSFragger90 or ANN-SoLo91. Similarly, utilizing a hybrid spectral library approach may 

work with closely related species92. Also, TagGraph93 should likewise be applicable with an 

unknown proteome by combining database and de novo searching to identify unknown post-

translational modifications (PTMs). Another approach is to take the remaining unmatched 

spectra from any of these approaches and perform de novo searching with tools such as 

Kaiko94, PEAKS95, or those packaged within DeNovoGUI96. Using de novo proteomic 

techniques in conjunction with database searching, or as a stand-alone search, is a viable 

alternative when database searching of shotgun proteomic data isn’t possible. Although the 

accuracy of de novo is still improving, recent and ongoing advancements continue to make 

de novo a valid approach. Finally, it is important to note that employing these search 
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approaches may be useful even in well studied organisms where we have complete 

confidence in the validity of sequence databases. Until we appreciate and account for the 

genetic diversity within a species, there will always remain the possibility that the reference 

sequence database is incomplete or inaccurate.

In the given suggestions, it is assumed that the source of the proteome is known. In some 

cases there may be a primary or secondary unidentified species. In the case of unknown 

disease agents, we can use proteomics where other methods fail due to antibody reactivity, 

RNA degradation or unknown PCR probes. This can present an enormous search space 

(such as the nearly 12 million proteins listed on UniProtKB for Fungi), but one that is not 

insurmountable given the numerous databases available, though high computational costs 

and significant false-discovery concerns exist. Conversely, we may be tasked with 

identifying non-model organisms within model systems. For instance, when studying the gut 

proteome there is the microbiome and host, but there are also remnants of ingested food. In 

an effort to correctly define search space and accurately identify mass spectra, we must 

account for numerous unknowns. In these cases, multiple search steps, greater reliance on 

known spectral libraries, or de novo is required.

Technical capabilities, hurdles, and future advancements

The discussion and solutions presented so far have focused on current approaches to define 

and evaluate the search space for shotgun proteomic analysis in non-model organisms, but 

there are other proteomic approaches worth mentioning. In contrast to digesting proteins 

prior to analysis, intact proteins can be analyzed using mass spectrometry by top-down 

proteomics97–99. Although top-down is not yet routinely used in non-model organisms, it 

would face similar hurdles as those in humans, but given accurate protein sequences top-

down non-model proteomics is possible. Protein arrays, composed of antibodies, lectins, or 

aptamers, are another possible approach to proteomics in non-model organisms. Though 

these arrays are typically geared towards human proteins, such as the SOMAscan, 

PETAL100, or Olink platforms, they may be used in other species with varying success when 

there is enough cross-reactivity between conserved epitopes101–102. It seems likely that 

arrays will be developed for animal-models if the market exists. There is a paucity of 

commercial antibodies against proteins from non-model organisms, therefore targeted mass 

spectrometry-based proteomics is a convenient alternative and a tremendously valuable tool 

to aid researchers interested in quantification of specific proteins in non-model 

organisms31, 103–104. Overall, it seems only a matter of time before other proteomic 

techniques become routine in non-model organism studies.

Once protein identifications have been made, data interpretation in non-model organisms 

presents its own unique challenges. A typical workflow will result in a list of differentially 

abundant proteins, or proteins that are drivers of some difference, and this list is used for 

downstream analysis. Depending on the source of the non-model organism sequence 

database, the protein identification may be meaningful (e.g., alpha-2 microglobulin) or it 

may simply be a generic locus or transcript ID which is unsuitable for biological 

interpretation. One possible first step is to convert the identifications to a known model-

species by using BLAST to assign protein sequences to their model-species equivalent (a 
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notable implementation is the PAW BLASTer105). When determining orthology, the 

conversion may still require manual inspection due to the high degree of homology between 

certain proteins (e.g., human alpha-2 microglobulin and pregnancy zone protein are 72% 

identical). Once the protein identifications have been converted to a model-species, a typical 

downstream analysis is gene set enrichment or pathways analysis. The underpinning biology 

and literature inform these lists, which means results from a non-model organism may be 

irrelevant or at least filled with caveats. Currently, the Molecular Signatures Database 

(MSigDB v7.0) includes five species (the vast majority being human and mouse), the 

Reactome pathway database and WebGestalt have 15 and 12 species, respectively, while the 

Plant Reactome has 97 plant species106 and the OmicsDB::Pathogens has 11 species107. But 

the further away, phylogenetically speaking, you move from the few well-studied model 

organisms, the less applicable the results may be. One alternative is to use co-expression or 

stabilized regression analysis108, which can utilize abundance patterns to identify novel 

pathways or gene sets. Although these approaches are far from perfect, they do allow 

conditional conclusions to be reached and generation of testable hypotheses.

Proteomics provides unique insights into biology

Given the hurdles described, an apparent question is why use proteomics to study non-model 

organisms. Studying biology at the molecular level is not mutually exclusive to nucleic acid 

sequencing techniques, but there are cases where proteomics provides more relevant and 

actionable insights as compared to gene or transcript studies. Since the abundance of the 

majority of proteins does not correlate with transcript or gene abundance109–115, proteomic 

analysis can provide a clearer understanding of the plasticity of phenotypes. Moreover, there 

are specific cases where proteomics can provide more relevant and actionable insights, such 

as biofluids (blood, urine, cerebrospinal fluid, insect hemolymph, etc.) where the mRNA in 

the fluid is not related to the proteome of the biofluid. Instead, the proteome of a biofluid is 

reflected by organs proximal to the fluid and any pathology causing flux between the fluid 

and organ(s). Also, it is important to note that genes do not change with age, but protein 

abundance, turnover, localization, modifications and interactions do change116–117. In other 

words, phenotypes may arise from unique combinations of protein interactions and protein 

abundance, which will not be captured from genomic information alone. In addition to 

examining protein abundance differences, proteomic analysis can capture measurements of 

functionally important endogenous peptides118–119, PTMs120 and proteoforms121. In the 

case of proteoforms especially, abundance is highly dynamic, such as histone H4 with over 

40 proteoforms that may vary over two orders of magnitude122. It is not to say that other 

techniques cannot answer these questions, but it is important to note where proteomics is 

uniquely capable.

The complexity of the proteome is further magnified when one considers that different 

proteoforms can interact to form functional protein complexes with unknown roles in 

cellular homeostasis and pathogensis (e.g., tumor suppressor protein PTEN123). Only 

proteomic methods can provide quantitative measurements of protein complex formation in 

cells at proteome-wide scales29, 124–132, improving our understanding of the evolutionary 

origins of protein interactions, protein co-localization, and functional protein interaction 

networks133. Genetic and proteomic diversity also extends to an organism’s microbiota134. 
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This proteomic diversity is critical to understanding biological phenotypes, including 

cancer135 and transmission of viruses134, 136. Metaproteomic techniques can also provide 

insights into host-symbiont functional compartmentalization of proteomes, predictions on 

resident microbiota in eukaryotic host tissues and knowledge on co-evolutionary 

mechanisms regulating symbiosis in non-model organisms is crucial to our understanding of 

eukaryotic biology137–139. It is evident that proteomics can provide an additional modality to 

improve nucleic acid based analyses, while also providing unique insight into the molecular 

landscape responsible for a given phenotype or pathology.

Future Outlook

There is great potential in applying proteomics in non-model organisms and the technical 

hurdles are not formidable. This is best exemplified by a recent large scale proteomic study 

that cataloged 340 000 proteins from 100 species140. In the future, proteomic studies of non-

model organisms will undoubtedly become more commonplace. As it becomes possible to 

define the molecular landscape in species across the tree of life, the next step is finding the 

non-model organism experts. But this doesn’t need to be for an exotic species in a distant 

land. In the shallow waters along the eastern seaboard is a euryhaline stingray that can 

achieve and maintain an extraordinarily high renal transtubular osmotic gradient141 and 

regenerate glomeruli142. Understanding the elasmobranch kidney could provide insight into 

chronic disease in humans. Exciting topics like this are all around us if we just look, explore 

and experiment. Proteomics researchers must work with biologists in these adjacent fields 

who can direct experimental design of naturally occurring phenotypes to empower 

comparative studies, and may be unaware of the power of proteomics or its accessibility via 

cores and collaborations. Empowering these scientists with advanced bioanalytical 

capabilities is a major goal of proteomics in non-model organisms. There is great potential 

to address pressing issues such as food supply security, help facilitate commerce, protect 

human and animal health, and use these techniques in biomimetics to help accelerate 

biomedical breakthroughs. The post-model organism era opens the door to new applications 

of maturing technology, hopefully leading to new fundamental biological truths unattainable 

using classic model organisms.
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Figure 1. General overview of proteomics in non-model organisms.
Some notable examples of non-model proteomics are shown (clockwise from top): naked 

mole-rat, bat, ginkgo, viruses, hibernating mammals, and diving mammals. I/R refers to 

ischemia reperfusion.
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Figure 2. Distribution of species with proteomic data sets (P), genome assemblies (G), and 
genome annotations (A) across phylogenetic clades.
This series of charts was created by cross-referencing taxon IDs of genome assemblies on 

Genbank and genome annotations on RefSeq (valid as of 12 March 2020) with published 

proteomic data sets on the Proteomics Identifications Database (PRIDE; as of 17 January 

2020) in order to emphasize clades lacking proteomic analysis, or clades that should be 

focused on for genomic sequencing and annotation. Specific to Eukaryotes, there are 

approximately 1308 species with published proteomic results, 6718 with available genomes 

and 595 species with complete genomic annotations. Note that these charts do not show the 

total number of species per clade (e.g., 950 000 named insect species65), or the number of 

proteomic data sets per species (e.g., 68 % of the 12 660 PRIDE data sets are human and 

mouse). For this cataloging, we focused only on genome and annotation resources at NCBI 

and acknowledge that for non-animal non-flowering plants, there are other more appropriate 

repositories such as the Joint Genome Institute. Terms in tables are accepted common or 

scientific NCBI designations, except in a few cases under ‘mammals’ (the full mammal table 

with taxon IDs is available in Supplemental Table S1), and that these numbers may not be 

exact due to self-reporting on PRIDE and matching taxon identifiers between sources (note 

that the two dinosaur proteomic data sets are from Brachylophosaurus canadensis and 

Tyrannosaurus rex).
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Figure 3. Distribution of mammals with proteomic data sets or genome annotations.
Using a time tree (http://www.timetree.org), which incorporates fossil evidence76, 

information regarding the 23 groups of mammals with proteomic data sets on the Proteomics 

Identifications Database (PRIDE; as of 17 January 2020), genome assemblies on Genbank 

and genome annotations on RefSeq (valid as of 12 March 2020) was plotted. This is per taxa 

and does not include the number of proteomic data sets, genome assemblies or genome 

annotations within taxa. The order, from top to bottom is: even-toed ungulates, carnivores, 

pangolins, odd-toed ungulates, bats, insectivores, rodents, rabbits and hares, primates, flying 

lemurs, tree shrews, anteaters and sloths, armadillos, elephants, manatees and dugongs, 

elephant shrews, golden moles, tenrecs, aardvarks, herbivorous marsupials, carnivorous 

marsupials, possums, egg-laying mammals.
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Figure 4. Different approaches to analyzing proteomic data without an annotated genome.
A. Using nucleic acid sequencing to generate an annotated genome or transcriptome. These 

can be used to analyze shotgun proteomic data. B. Searching shotgun proteomic data 

without prior/relevant nucleic acid sequencing. The software listed is not exhaustive and 

there are many suitable alternatives.
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