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Abstract

Purpose: To assess acute ischemic stroke (AIS) severity, infarct is segmented using computed
tomography perfusion (CTP) software, such as RAPID, Sphere, and Vitrea, relying on contra-
lateral hemisphere thresholds. Since this approach is potentially patient dependent, we inves-
tigated whether convolutional neural networks (CNNs) could achieve better performances
without the need for contralateral hemisphere thresholds.

Approach: CTP and diffusion-weighted imaging (DWI) data were retrospectively collected for
63 AIS patients. Cerebral blood flow (CBF), cerebral blood volume (CBV), time-to-peak, mean-
transit-time (MTT), and delay time maps were generated using Vitrea CTP software. U-net
shaped CNNs were developed, trained, and tested for 26 different input CTP parameter combi-
nations. Infarct labels were segmented from DWI volumes registered with CTP volumes. Infarct
volumes were reconstructed from two-dimensional CTP infarct segmentations. To remove erro-
neous segmentations, conditional random field (CRF) postprocessing was applied and compared
with prior results. Spatial and volumetric infarct agreement was assessed between DWI and CTP
(CNNs and commercial software) using median infarct difference, median absolute error, dice
coefficient, positive predictive value.

Results: The most accurate combination of parameters for CNN segmenting infarct using CRF
postprocessing was CBF, CBV, and MTT (4.83 mL, 10.14 mL, 0.66, 0.73). Commercial soft-
ware results are: RAPID = (2.25 mL, 21.48 mL, 0.63, 0.70), Sphere = (7.57 mL, 17.74 mL, 0.64,
0.70), Vitrea = (6.79 mL, 15.28 mL, 0.63, 0.72).

Conclusions:Use of CNNs with multiple input perfusion parameters has shown to be accurate in
segmenting infarcts and has the ability to improve clinical workflow by eliminating the need for
contralateral hemisphere comparisons.
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1 Introduction

Across the United States, it is approximated that 7 million individuals reported having a stroke
with the prevalence for stroke being 2.5%.1 Eighty-seven percent of these strokes are categorized
as ischemic strokes.2 An ischemic stroke occurs when a blood vessel supplying the brain with
oxygenated blood is blocked.3 This blockage can be the result of a clot (embolus) in the vessel or
a stenosis (narrowing) of the vessel.4 Depending on the location of an embolus in a patient’s
neurovasculature, the blockage of blood can be known as a large or small vessel occlusion. Large
vessel occlusions occur in the internal carotid artery, basilar artery, and main branches of the
posterior, anterior, and middle cerebral arteries (i.e., M1 branch of the middle cerebral artery).5

Small vessel occlusions, as their name suggests, typically occur in the smaller branches of the
posterior, anterior, and middle cerebral arteries (i.e., M3 or M4 branches of the middle cerebral
artery).6 Although small vessel occlusions can result in the formation of infarctions, or perma-
nently dead cerebral tissue, large vessel occlusions are typically much more severe as they result
in a more rapid formation of large infarct territories.7

The main treatment methods currently put in place for large vessel occlusion ischemic stroke
patients are intravenous thrombolysis and mechanical thrombectomy. Intravenous thrombolysis
results in a chemical reaction with the embolus so that it breaks down within the vessel restoring
blood flow.8,9 This method can only be used if symptom onset is <4.5 h however.10 Mechanical
thrombectomy involves the use of a catheter and stent retriever to remove the blood clot through
endovascular means. This is done by feeding the catheter through the femoral or radial artery,
through the embolus, expanding the retriever, and then pulling the clot out of the vessel.8,9

In order to diagnose the presence of a large vessel occlusion and determine if a thrombectomy
can be conducted, three different types of medical imaging can be utilized. One type of imaging
used to diagnose infarct tissue is known as computed tomography perfusion (CTP). CTP
involves the injection of contrast media into the neurovasculature of a patient while multiple
CT scans are taken to capture the progression of contrast as it flows through the vessels of the
brain. These scans showing contrast progression can be used to generate what are known as time
density curves (TDCs) which show the image intensity in a specific voxel over a given period of
time (Fig. 1). From these TDCs, multiple perfusion parameters can be extracted to aid in the
diagnosis of infarct tissue. Cerebral blood flow (CBF), cerebral blood volume (CBV), time-to-
peak (TTP), mean-transit-time (MTT), and delay time are the five parameters typically extracted
from TDCs. TTP is the time it takes to reach peak contrast enhancement on the TDC, while MTT
is the average time blood travels through the capillaries and is the full width at half maximum of
the TDC. Delay time is the time for contrast to arrive to tissue, which is the time the TDC inten-
sity moves above 0. CBV is the volume of blood per unit of brain tissue and is calculated as the
area under the TDC. CBF represents the volume of blood traveling through the capillaries per
unit of time and is calculated as CBV divided by MTT. Contralateral hemisphere comparisons
are subsequently conducted from the generated perfusion parameters and thresholds across
hemispheres are set to identify infarct tissue.11–13 Figure 2 shows the five perfusion maps for
the aforementioned parameters.

Commercially available CTP software include RAPID (iSchemaView, Menlo Park,
California), Sphere (Olea Medical, La Ciotat, France), and Vitrea (Vital Images, Minnetonka,

Fig. 1 A TDC and how the perfusion parameters are extracted from the curve. TTP is the time to
reach peak contrast enhancement, MTT is the full width at half maximum, delay time is the time at
which contrast intensity goes above 0, CBV is the area under the curve, and CBF is CBV divided
by MTT.11
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Minnesota). Within each of these software, different perfusion parameters and contralateral hemi-
sphere thresholds are used to identify infarct tissue. RAPID uses relative CBF < 30% and time
until the impulse residue function reaches itsmaxðTmaxÞ > 6 s while Sphere uses relative CBF <
25% and TTP > 5 s compared with the contralateral hemisphere to identify infarct. Vitrea,
however, uses relative CBV < 38%, TTP > 5.3 s, and relative MTT < 55% compared with the
contralateral hemisphere to identify infarct. Although these thresholds have been shown to be
successful in segmenting ischemic tissue in previous studies, they do not account for baseline
hemodynamics of stroke patients.14,15 Some patients may have naturally low flow in one hemi-
sphere but have perfectly functioning brain tissue that these software will label as infarcts. Some
patients may also have naturally low blood flow throughout their brain, which will not meet con-
tralateral hemisphere comparison thresholds designed to isolate infarcts. Furthermore, some com-
mercial software, such as RAPID, require infarct analysis to be conducted offsite leading to large
windows of time before infarct estimation results are received. In order to improve the performance
of the aforementioned approach, a data-driven approach may be combined with generated CTP
parameters maps.

Convolutional neural networks (CNNs) may provide the ability to remove contralateral hemi-
sphere thresholding and supply more accurate infarct segmentations. CNNs are commonly uti-
lized in medical imaging to segment various structures using convolutions to detect patterns and
features within an image.16 Although a CNN can be thought of as a black-box in certain
instances, it is still capable of detecting more features in an image than manual analysis.
While segmenting regions from an image, the CNN determines which image features are most
important and weights them more for classification purposes. A previous study has been con-
ducted showing a CNN is capable of segmenting infarcts, but these results are not compared with
clinically available CTP software. In addition, this previous study does not include multiple
perfusion parameters in segmenting infarct tissue.17 Utilization of multiple parameters is essen-
tial as it can be seen from the various commercially available CTP software that one perfusion
parameter alone cannot segment infarcts with the best possible accuracy.

In this study, we propose the use of a data-driven model, in this case a CNN, with multiple
input perfusion maps to automatically segment infarct tissue in ischemic stroke patients. Every
combination of perfusion parameters was tested providing 26 different combinations. Three-
dimensional (3D) infarct volumes were compared between the CNN segmentations and 48-h
follow-up diffusion-weighted imaging (DWI). In addition, spatial accuracy of the infarct seg-
mentations was conducted and compared with DWI. The results from this CNN were also com-
pared with infarct segmentation results from RAPID, Sphere, and Vitrea. The results from this

Fig. 2 The five perfusion parameters generated using CTP. This specific patient has an M2middle
cerebral artery occlusion, which is indicated by the decrease in CBV and flow along with an
increase in TTP, MTT, and delay time in the right hemisphere of the brain.
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study could provide an improvement in clinical work flow for segmentation of infarct tissue in
ischemic stroke patients, along with the ability to remove the need for contralateral hemisphere
thresholding.

2 Methods

2.1 Patient Inclusion

For this retrospective study, institutional review board approval was obtained and informed con-
sent was waived. Inclusion criteria involved acute ischemic stroke (AIS) patients who presented
with emergent large vessel occlusion at our comprehensive stroke center between March 2019
and January 2020. Patients were required to have undergone baseline CTP imaging upon stroke
center arrival and follow-up DWI within 48 h following admission. 63 patients were included in
total and were a combination of endovascular intervention and conservative treatment patients.

Within this study, endovascular intervention patients all underwent successful mechanical
thrombectomy, obtaining a reperfusion status [thrombolysis in cerebral infarction (TICI)] of
2b, 2c, or 3. TICI 2b indicates there is filling of greater than 50% of the distal neurovascular
branches, 2c indicates there is complete filling of the distal neurovascular branches but with a
slight delay, and 3 indicates complete filling of all distal branches.8 Figure 3 demonstrates a
successful reperfusion from TICI 0 to TICI 3. Successful reperfusion was required to ensure
all penumbra, or salvageable tissue, was salvaged leaving only infarcts for the follow-up
DWI. Conservative treatment patients did not undergo mechanical thrombectomy or have intra-
venous thrombolysis due to being outside the 4.5-h time window. In addition, conservative treat-
ment patients presented with initial large infarcted area and little penumbra and time since stroke
symptom onset was greater than 48 h. This extended time since symptom onset indicates all
penumbra had already converted to infarct on initial CTP imaging, meaning it should be the
same volume as on DWI.18,19

2.2 CTP Data Analysis

CTP data were collected using 2 Aquilion ONE CT scanners (Canon Medical Systems
Corporation, Otawara, Japan) using the Neuro ONE protocol. This protocol involves the acquis-
ition of 19 scan volumes of an ischemic stroke patient’s brain as contrast progresses through the

Fig. 3 A digital subtraction angiography image for a patient who achieved successful reperfusion
of TICI 3 following a middle cerebral artery occlusion. (a) TICI 0, prior to thrombectomy, which is
evident based on no filling of the M1 segment. The red arrow indicates the location of the clot and
where filling is halted. Note the complete filling of all distal vessels, which demonstrated a com-
plete reperfusion status in (b).
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vasculature. Each scan volume contained 320 slices with a thickness of 0.5 mm, along with an in-
plane resolution of 0.42 mm. An automated injector was utilized to inject 50 mL of Omnipaque
350 at a rate of 5 mL∕s. A tube voltage of 80 kVp, CT dose indices ranging from 15.3 to
44.3 mGy, and dose length products ranging from 244.5 to 709.8 mGy·cm were utilized as scan
parameters. All 19 scans were acquired within 49.3 s and reconstructed volumes were available
for CTP processing within 5 min from the start of the scan.

Following volume reconstruction, each patient’s CTP scans were analyzed by RAPID,
Sphere, and Vitrea CTP software. Each software relied on their respective perfusion parameters
and contralateral hemisphere comparison thresholds to identify infarct tissue; RAPID: relative
CBF < 30%, and Tmax > 6 s; Sphere: relative CBF < 25% and TTP > 5 s, Vitrea: relative
CBV < 38%, TTP > 5.3 s, and relative MTT < 55%.14,15 Figure 4 shows segmented infarcts
for these three commercially available software. Following the quantification and segmentation
of infarcts from each software, the segmented volumes were exported as Digital Imaging and
Communications in Medicine (DICOM) files to compare infarct spatial overlap with follow-
up DWI.

Of the three CTP software utilized, Vitrea allowed for the export of the raw data for generated
perfusion maps. Therefore, CBF, CBV, TTP, MTT, and delay time perfusion maps were exported
from Vitrea to be used as data input for the CNN.

2.3 DWI Data Analysis

Two other medical imaging methods used to diagnose infarct tissue are fluid-attenuation inver-
sion recovery (FLAIR) magnetic resonance imaging (MRI) and DWI. These two methods
involve the isolation of infarct tissue as hyperintense regions (Fig. 5) based on the transverse
relaxation of the net magnetization and random Brownian motion of molecules, respectively.20,21

Although these two imaging methods are commonly used as the gold standards for infarct cal-
culation, they are both typically conducted as follow-up imaging since the acquisition time of
CTP is much shorter.22,23 This shorter acquisition time for CTP is beneficial over FLAIR and
DWI since it prevents more infarct from forming while imaging is occurring.

DWI data were collected using a Vantage Titan 1.5 Tesla MRI unit (Canon Medical Systems
Corporation, Otawara, Japan) using the IsoDWI protocol. The IsoDWI protocol includes a dif-
fusion b-value of 1000, an echo time of 100 ms, and a repetition time of 8700 ms. The resulting

Fig. 4 The estimations of infarct and penumbra for RAPID, Sphere, and Vitrea CTP software com-
pared with DWI. For RAPID, infarct, and penumbra are represented as pink and green regions,
respectively. For Sphere and Vitrea, red and yellow regions indicate infarct and penumbra, respec-
tively. Note the spatial agreement seen between the estimated ischemic regions with follow-up
imaging.
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DWI volumes have a slice thickness of 5 mm and an in-plane resolution of 0.81 mm. For this
study, DWI imaging was utilized for ground truth infarct labels as it is the most common method
utilized for final infarct volume estimation. To create ground truth infarct labels, a previously
published method was utilized, which segmented infarct as voxels with a 162% increase in
image intensity compared with the contralateral hemisphere in the DWI volume.24 An endovas-
cular fellow with over 5 years of experience reviewed the DWI infarct segmentations and man-
ually corrected any erroneous segmentations that could have occurred. One potential source of
erroneous segmentation is due to T2 shine, which corresponds to hyperintensified regions on
DWI that do not correspond to restricted diffusion, but rather high T2 signal from a long T2
decay time in normal tissue. Figure 6 represents a slice from a DWI, the segmented infarct as a
binary image, and the corresponding CTP slices from each perfusion parameter.

Fig. 6 (a),(b) the CBF and MTT perfusion maps for a conservative treatment patient with a com-
plete occlusion of the middle and posterior cerebral arteries. (c) Follow-up DWI with hyperinten-
sified regions indicating infarct. Segmented infarct is indicated as a binary image in (d) with 1s
indicating infarct and 0s indicating background and healthy tissue.

Fig. 5 The estimations of infarct and penumbra for RAPID, Sphere, and Vitrea CTP software com-
pared with DWI. For RAPID, infarct and penumbra are represented as pink and green regions,
respectively. For Sphere and Vitrea, red and yellow regions indicate infarct and penumbra, respec-
tively. Note the spatial agreement seen between the estimated ischemic regions with follow-up
imaging.
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2.4 CTP and DWI Volume Registration

CTP and DWI 3D volumes were registered using an intensity and geometric-based MATLAB®

technique, which has been used in previously conducted studies.13,25–27 An affine transformation
was utilized along with linear interpolation, a one-plus-one evolutionary optimizer, and multi-
modal Mattes method similarity metric. The multimodal Mattes similarity metric was designed
to register volumes from different imaging modalities by calculating the joint probability dis-
tribution for voxels sampled in each image to properly map voxels across both volumes.28 For the
one-plus-one evolutionary optimizer, an initial search radius of 0.004, a minimum search radius
of 1.5 · 10−6, a search radius growth factor of 1.05, and a maximum number of 250 iterations
were utilized to register the volumes. The specific transformation utilized to register the CTP and
DWI images was stored and used to register the segmented DWI infarct to the CTP volume for
spatial overlap assessment. Accuracy assessment of this registration method was conducted by
manually segmenting the ventricles from both the CTP and DWI volumes and determining the
degree of spatial overlap of the two. Dice coefficient calculation was used to assess the degree of
ventricle overlap and Fig. 7 shows the degree of ventricle overlap between registered CTP and
DWI volumes.

2.5 CNN Infarct Segmentation

The 3D CTP parameter (CBF, CBV, TTP, MTT, and delay time) volumes that were exported
from Vitrea were made up of 320 slices and were 512 pixels by 512 pixels. Each volume was
separated into 320 two-dimensional (2D) images resulting in 20,160 images for each parameter
for the 63 patients included in the study. DWI volumes were additionally separated into 2D
images to be used as ground truth labels. Any CTP images determined not to contain infarct
based on their corresponding DWI image were removed from the dataset. This resulted in a total
of 8352 images being included for each CTP parameter. Preprocessing was conducted on all
8352 images by dividing the intensity values of each image by the maximum intensity value
in that particular image. This was conducted as a normalization technique. In addition, each
image was resized to 64 pixels by 64 pixels to aid in computational efficiency, and it has been
shown that smaller networks tend to converge easier and take less data to do so.29 To resize each
image, bilinear interpolation was utilized along with anti-aliasing for downscaling. Furthermore,
the original intensity value range was preserved from the original to the downscaled image. This
resizing was conducted using the scikit-image library in Python.

The CNN created for this study was developed using Keras, Google’s (Google LLC, Menlo
Park, California) python machine learning framework and a Tensorflow backend. In order to
accept multiple input CTP maps to train the network, our model used a multiple channel input
where each CTP map was loaded into a different color channel. This resulted in the network
having a minimum of two color channels and a maximum of five color channels depending on

Fig. 7 (a) DWI and (b) CTP following image registration of the two volumes. The degree of ven-
tricle overlap is indicated in (c) with white, green, and pink regions indicating overlapping, CTP,
and DWI infarct, respectively.
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the number of perfusion parameter maps used for training. The architecture of our CNN was a
modified U-net, which was utilized for 2D image segmentation. The model consisted of two
contraction processes, one middle process, and two expansion processes. Each of the contraction
processes contained two convolutional layers, two batch normalizations, one max pooling layer,
and one dropout layer of 30%. The middle process contained convolutional two layers and two
batch normalizations. Each expansion process contained one upsampling convolutional layer,
one skip connection, one dropout layer of 30%, three convolutional layers, and three batch nor-
malizations. Segmentation was then carried out by the final layer, which contained one convolu-
tional layer and a sigmoid activation function. Figure 8 shows the complete architecture of the

Fig. 8 The network architecture for the CNN that utilized in this study. The architecture is based on
a modified U-net with the input images section representing the CTP maps that are input into the
network. The output prediction in this figure represents the output binary image, which segments
infarct from the different combinations of input perfusion maps.
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CNN model. Verification that two contraction/expansion processes was the optimal number was
conducted through an inverse ablation study by comparing network performance metrics across
two, three, and four expansion/contraction processes using one combination of perfusion
parameters.

For utilization of our CNN, a training:testing:validation percentage split of 60:30:10 was
used to prevent overfitting of the model. The split was conducted on the number of patients
included in the study as opposed to the total number of images so infarct volumes could be
reconstructed for each patient later on. This split allocated 38 patients to the training set, 19
patients to the testing set, and 6 patients to the validations set. This resulted in ∼5038 images
being allocated to the training set, 2519 images being allocated to the testing set, and 795 images
being allocated to the validation set for each CTP parameter. The aforementioned allocation
numbers are based on each patient having 133 slices of infarct on average. Training of the model
was conducted using every possible combination of multiple CTP maps, resulting in 26 different
combinations as input to the network. For training the CNN parameters utilized included: an
Adadelta optimizer, which automatically adjusts the learning rate during training, a batch size
of 32, binary cross entropy dice loss, and early stopping of training if the loss did not improve
over 10 epochs to prevent overfitting. The weights 10 epochs prior to the final epoch were saved
and utilized for testing as these weights would have the highest segmentation metrics and the
lowest amount of overfitting if any were to occur. Variability of the CNN was tested using Monte
Carlo cross validation by training and testing the network 20 times for each combination of
perfusion parameters. This cross-validation technique randomly allocates patients to the training,
testing, and validation cohorts each time. Cases allocated to the testing set were manually
checked to ensure all included patients were tested on at least once. Monte Carlo cross validation
was chosen over k-fold cross validation as k-fold suggests a k value of 10, which would allocate
only six patients to the testing set. Although the bias between Monte Carlo and k-fold cross
validation would be the same since each patient is included in the testing set at least once, the
variability would increase for k-fold since it has fewer cases in the testing set compared to Monte
Carlo cross validation.30 Each training and testing of the CNN was conducted using an NVIDIA
(Nvidia Corporation, Santa Clara, California) P2000 graphical processing unit.

Following network training, testing of the network was conducted on slices from 19 patients,
∼2519 images containing infarct. All predictions (infarct/noninfarct) were made using a thresh-
old of 0.5 from the prediction probabilities. 3D infarct volumes were reconstructed for each
patient from the 2D prediction images. Postprocessing was conducted on the reconstruction vol-
umes to remove small erroneous regions of infarct that were segmented in the contralateral hemi-
sphere and at the base of the perfusion maps. This postprocessing method isolated all infarct
lesions within the reconstructed volume and determined the size of each. All infarct volumes
except for the largest lesion were then removed as they were likely errors in segmentation.
Figure 9 shows the removal of small erroneous infarct segmentations by isolating the largest
infarct lesion in the volume.

Fig. 9 Reconstructed predicted infarct volumes from the CNN utilized in this study. Green regions
indicate predicted infarct, blue indicates DWI infarct, and maroon indicates overlapping infarct.
Note the removal of the small erroneously segmented infarct from the original image following
postprocessing.
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2.6 Conditional Random Field Postprocessing

Conditional random field (CRF) postprocessing was additionally utilized and compared with the
infarct volume segmentation results without using this method. This was done mainly to remove
false-positive infarct predicted regions. CRFs are a common graphical model used to improve
segmentation predictions. This postprocessing typically provides finer segmentations and spatial
consistency as standard CNN convolutional filters and max pooling layers produce coarse out-
puts. The major benefit of CRF postprocessing is it assigns similar labels to pixels with similar
spatial location and intensity values.31 This allows for more uniform and defined boundaries of
the segmented portion of the image.

To implement CRF postprocessing, unary and pairwise terms were generated for each of our
2D prediction images to calculate the energy of configuration [Eq. (1)]. Unary terms represent
the inverse likelihood a pixel takes a specific label [first summation of Eq. (1)]. Pairwise terms
represent the cost of assigning a specific label to multiple pixels simultaneously [second sum-
mation of Eq. (1)]. This indicates the pairwise term takes into consideration that pixels with
similar location and intensity will likely have the same classification. The energy of configu-
ration term is then used to model a CRF using a Gibbs distribution [Eq. (2)] where X corresponds
to the pixels in the image and I corresponds to the specific image.31 A total of five inference steps
were utilized for this postprocessing technique. Following CRF postprocessing, 2D slices were
again used to reconstruct 3D infarct volumes and the largest infarct lesion was isolated from the
volume through postprocessing

EQ-TARGET;temp:intralink-;e001;116;489EðxÞ ¼
X

i

φuðxiÞ þ
X

i<j

φpðxixjÞ; (1)

EQ-TARGET;temp:intralink-;e002;116;435PðX ¼ xjIÞ ¼ 1

ZðIÞ e
−EðxjIÞ: (2)

2.7 Statistical Analysis

Summary statistics for quantitative variables (i.e., age) and frequency distributions for categori-
cal variables (i.e., sex) were calculated for patient demographics. For volume comparisons
between each tested combination of CTP parameters and DWI, along with RAPID, Sphere, and
Vitrea software, median infarct volumes and median absolute error were calculated. Repeated
measures analysis of variance (ANOVA) analysis was used to determine if there was any differ-
ence between the predicted infarct volumes from the CNN with the commercially available CTP
software. A statistical significance level of 0.05 was utilized for all testing. Spatial infarct agree-
ment was assessed using Dice coefficient and positive predictive value (PPV) calculations. Dice
coefficients were calculated as two times the number of positive predicted infarct voxels from
CTP divided by the summation of total infarct voxels in both the CTP and DWI volumes. PPV
was calculated as the number of true positive predicted infarct voxels from CTP divided by the
summation of true positive and false positive infarct voxels from CTP. In essence, PPV indicates
the percentage of the predicted CTP infarct lesion that lies within the DWI infarct lesion. Dice
coefficients, PPVs, median infarct difference between the ground truth and prediction, and
median absolute error were used to assess the optimal number of contraction/expansion proc-
esses. Weighted ranks were calculated for each perfusion parameter combination and commer-
cially available software by rating each metric (median infarct volume, median absolute error,
Dice coefficient, and PPV) from best to worst and averaging the ranks to see which combination
or software was the best. Each metric was assigned an equal weight of 1. All aforementioned
metrics were calculated prior to and after CRF postprocessing, and these results were addition-
ally compared to assess if implementation of CRFs can improve infarct segmentation.

3 Results

Table 1 indicates patient demographics for all 63 AIS patients included in the study. Of the 63
included patients, 39 were successful endovascular intervention patients and 24 were conservative
treatment patients. Time from onset of symptoms is indicated for all patients and for endovascular
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intervention patients since conservative treatment patients will have a longer time since onset of
symptoms than intervention patients. In addition, reperfusion status is solely indicated for the 39
endovascular intervention patients with the majority, 23/39, achieving a status of TICI 2b.

Table 2 indicates the median infarct difference between predicted infarct using the CBF,
CBV, TTP, and delay time perfusion parameters and ground truth DWI for multiple

Table 1 Ischemic stroke patient characteristics.

Characteristic Mean Standard deviation Median Interquartile range

Age (years) 67.5 13.9 68.0 58.5 to 77.5

National Institute of Health Stroke
Scale score

16.5 7.2 16.0 11.5 to 22.0

Time from onset of symptoms to
initial stroke imaging (minutes)

508.4 755.0 186.0 90.5 to 686.0

Reperfusion patients

Time from onset of symptoms to
initial stroke imaging (minutes)

396.6 657.0 154.0 80.0 to 335.5

Time from onset of symptoms to
recanalization (minutes)

485.6 654.1 241.0 147.5 to 446.5

Time from initial stroke imaging to
recanalization (minutes)

89.0 86.4 63.0 56.5 to 82.5

Percentage Fraction

Sex (male) 46.0 29/63

Middle cerebral artery occlusion 71.4 45/63

Posterior cerebral artery occlusion 4.8 3/63

Anterior cerebral artery occlusion 1.6 1/63

Internal carotid artery occlusion 22.2 14/63

TICI 2b 59.0 23/39

TICI 2c 25.6 10/39

TICI 3 15.4 6/39

Characteristics of all 63 ischemic stroke patients included within the study. Continuous quantitative variables,
such as time since onset of symptoms, are displayed as summary statistics (mean, standard deviation, median,
and interquartile range). Discrete variables, such as sex, are displayed as the fraction and percentage of
patients with that characteristic.

Table 2 Performance metrics across various expansion/contraction processes.

Number of
contraction/expansion
processes

Median infarct
difference (mL)

Median absolute
error (mL)

Dice
coefficient PPV

2 −0.08� 5.24 14.83 0.66� 0.01 0.70� 0.03

3 3.56� 7.04 15.02 0.66� 0.01 0.70� 0.03

4 4.46� 6.33 14.64 0.65� 0.01 0.69� 0.03

Mean infarct difference, median absolute error, Dice coefficient, and PPVs for multiple number of contraction/
expansion processes when using the CBF, CBV, TTP, and delay time perfusion parameters as input. 95%
confidence intervals were calculated over 20 iterations of Monte Carlo cross validation.
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contraction/expansion processes. In addition, median absolute error, Dice coefficients, and PPVs
for each number of contraction/expansion processes are indicated in the table. All results are
indicated as 95% confidence intervals.

Figure 10 represents the mean model accuracy, model Dice coefficient, and model loss over
all epochs for all 20 iterations of Monte Carlo cross validation using the CBF and MTT param-
eters’ maps as input. The aforementioned metrics are shown for both the training and validation
sets, which are represented as blue and orange curves, respectively. Ninety-five percent confi-
dence intervals for the training and validation curves are indicated with green and gray shading,
respectively. The dashed line in each plot indicates which epoch weights were utilized for testing
as the final 10 epochs showed no loss improvement. Within the figure, loss is indicated as binary
cross entropy dice loss. All plots for each perfusion parameter combination showed a similar
pattern of exponential decay for the loss metric and logarithmic growth for the accuracy and Dice
metrics.

Figure 11 indicates an example of an infarct segmentation from 2D CTP slices using the
developed CNN. Training of the CNN took 10 h on average and each infarct prediction took
0.003 s. The top two images represent the input CTP parameter maps used for infarct prediction,
which are CBF and MTT in this example. The bottom left image shows the ground truth infarct
label, which has been segmented for DWI. The bottom right image in the figure shows the pre-
dicted region of infarct in gray along with an overlap of the ground truth infarct outlined in red.
The outline of ground truth infarct is also outlined in red on both input CTP maps used for the
prediction, CBF and MTT. These images were resized as 256 pixels by 256 pixels for visuali-
zation purposes. For this specific example, the Dice coefficient between the infarct label and
prediction is 0.86.

Figure 12 indicates an example of a failed infarct segmentation, with a Dice coefficient of
0.61, through overestimating the number of infarct regions. The top two images again indicated
the CTP parameters input into the network to predict the region of infarct (bottom right) prior to
watershed being utilized. Ground truth infarct regions are again outlined in red on the prediction
image, which predicts the majority of the posterior infarct correctly, but has erroneously seg-
mented infarct around the ventricle regions.

Using the 2D segmentations seen in the previous figure, median final infarct volumes were
calculated when using each combination of perfusion parameters and are indicated in Fig. 13. In
addition, median infarct volumes from RAPID, Sphere, and Vitrea are shown in Fig. 13 for
comparison with the predictions from this study’s CNN. Error bars indicate 95% confidence
levels, the green bar indicates the median infarct volume for DWI, and the dashed line allows
for comparison of each parameter combination and software with the DWI infarct ground truth
infarct. ANOVA analysis indicated no significant difference between any of the predicted infarct
volumes with DWI.

Figure 14 indicates the median absolute error values for each tested combination of CTP
parameters along with the median absolute error values for RAPID, Sphere, and Vitrea when
predicting infarct. In the figure, the majority of median absolute error values for the CNN are on

Fig. 10 The mean change in accuracy, Dice coefficient, and binary cross entropy Dice loss over
each epoch over all 20 iterations of Monte Carlo cross validation for the training and validation
sets. Training and validation 95% confidence intervals are indicated with green and gray shading,
respectively. This example uses the CBF and MTT perfusion maps as the network input and all
parameters showed similar trends in the plots.
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par or better than the commercially available software indicating similar performance through
low variability in results.

Within Fig. 15, average Dice coefficient values are represented for various CTP infarct esti-
mation methods with DWI infarct. Error bars represent 95% confidence levels. It can be seen that
the majority of Dice coefficient values are higher for the CNN infarct predictions compared with
commercial software, but ANOVA analysis indicates they are not different to a significant
degree.

Figure 16 represents the average PPVs for each combination of perfusion parameters and
commercially available software with DWI infarct. Error bars are represented as 95% confidence
levels and commercially available software indicate lower variability in PPV results. ANOVA
analysis again indicates no statistical difference between each perfusion parameter combination
and commercially available software indicating our CNN’s performance is on par with current
diagnosis methods.

Table 3 indicates the overall values of median infarct difference between DWI and CTP,
median absolute error, Dice coefficient, and PPV for RAPID, Sphere, Vitrea, and all tested per-
fusion map combinations using our CNN. In addition, ranks for performance of each CTP esti-
mation method are indicated in parentheses with 1 indicating the most efficient and 29 indicating
the least efficient. Aweighted average rank for each infarct estimation method is indicated in the
right most column with all four metrics receiving equal weight in the final calculation. A lower

Fig. 11 Input CBF and MTT network input maps as the upper images. The lower left image is the
segmented infarct from DWI and the lower right images indicated the network infarct prediction.
Ground truth infarct is outlined in red in the prediction in input images.
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value in the right most column indicates a more effective infarct assessment method with 6.5
being the best. This most effective method corresponds to our CNN when using the CBF, CBV,
TTP, and delay time maps as our inputs.

An infarct prediction when using CRF postprocessing is indicated in Fig. 17 and has the same
input maps (CBF and MTT) as in Fig. 12. Following postprocessing, it is shown in the bottom
right image that the infarct prediction from the CNN more accurately matches with the ground
truth from DWI with a Dice coefficient of 0.80. The prediction no longer contains erroneous
infarct segmentation around the ventricles compared with when postprocessing was not utilized.
Since CRFs utilize intensity and spatial location to improve segmentation, the MTT map spe-
cifically indicates why the ventricles are no longer segmented as infarct due to their low param-
eter values compared with where infarct is actually located.

Figure 18 shows a comparison of median infarct volumes from the DWI, the original CNN
perfusion combination predictions, and CNN predictions following CRF postprocessing. The
green and blue bars again represent DWI and original CNN infarct predictions, respectively.
Meanwhile, the maroon bars indicate the CNN infarct prediction volumes following CRF post-
processing. The dashed line allows for comparison with the ground truth DWI infarct volume
and error bars indicate 95% confidence levels. Note the decrease in estimated volume for all
median infarct volumes when using CRF postprocessing.

Fig. 12 The network input (a) computed tomographymaps and ground truth infarct and (b) network
predicted infarct. Note the overestimation of infarct in the network prediction image which incor-
rectly identifies the ventricles as regions of infarction.
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Median absolute error values for original CNN infarct predictions and postprocessing CRF
predictions are indicated in Fig. 19. Original prediction median absolute errors are indicated in
blue while CRF predictions are indicated in maroon. No clear pattern is indicated regarding an
increase or decrease median absolute errors when using CRF postprocessing.

Fig. 13 The median infarct volumes calculated from each combination of CTP parameters from
the developed CNN. The infarct volumes measured from DWI (green) and commercially available
perfusion software: Vitrea (red), RAPID (pink), and Sphere (yellow). The dashed line is for com-
parison of each volume with ground truth infarct volumes.

Fig. 14 The median absolute error values for each tested perfusion parameter combination using
our multiple input CNN. Vitrea, RAPID, and Sphere are also represented for comparison of our
network with commercially available CTP software.
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Figure 20 indicates Dice coefficients following CRF postprocessing. Error bars indicate 95%
confidence levels. The majority of the Dice coefficient values are equal to or slightly higher when
using CRF postprocessing, but not to a significant level as indicated by ANOVA testing.

PPVs when utilizing postprocessing compared with just a CNN to segment infarct is indi-
cated in Fig. 21. Note that all PPV values are higher when using CRF postprocessing. Ninety-
five perfect confidence levels are indicated as error bars within the figure. An increase in PPV

Fig. 15 Dice coefficients between segmented infarct from the developed CNN using multiple per-
fusion map combinations with DWI infarct. Dice coefficients are additionally included between
ground truth infarct volumes with Vitrea, RAPID, and Sphere CTP software.

Fig. 16 Positive predictive values between diffusion weighted imaging infarct and predicted infarct
from our CNN when trained on multiple CTP parameters. Vitrea, RAPID, and Sphere are also
compared with ground truth infarct volumes and their respective PPVs are indicated.
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Table 3 Weighted rank calculation for CTP parameter combinations.

CTP parameters

Median infarct
difference,
mL (rank)

Median
absolute error,

mL (rank)

Dice
coefficient
(Rank)

PPV
(rank)

Weighted
rank

CBF, CBV, TTP, MTT, delay 3.93 (15) 17.99 (17) 0.67 (5) 0.72 (8) 11.25

CBF, CBV, TTP, MTT 0.33 (2) 15.77 (10) 0.65 (16) 0.70 (19) 11.75

CBF, TTP, MTT, delay 2.54 (11) 19.50 (21) 0.66 (10) 0.71 (14) 14

CBF, CBV, TTP, delay −0.08 (1) 14.84 (5) 0.66 (8) 0.71 (12) 6.5

CBF, CBV, MTT, Delay 5.14 (19) 16.43 (13) 0.67 (4) 0.72 (6) 10.5

CBV, TTP, MTT, delay 1.89 (8) 13.23 (3) 0.64 (19) 0.68 (23) 13.25

CBF, CBV, TTP 6.23 (20) 20.48 (24) 0.66 (12) 0.74 (2) 14.5

CBF, CBV, MTT −0.37 (3) 9.51 (1) 0.66 (11) 0.71 (13) 7

CBF, CBV, delay −2.55 (12) 28.78 (29) 0.66 (6) 0.71 (9) 14

CBF, TTP, MTT 2.03 (9) 15.89 (11) 0.66 (9) 0.71 (11) 10

CBF, TTP, delay 1.09 (5) 13.65 (4) 0.65 (15) 0.72 (3) 6.75

CBF, MTT, delay −11.96 (28) 19.09 (20) 0.67 (2) 0.69 (21) 17.75

CBV, TTP, MTT 1.10 (6) 18.20 (18) 0.64 (17) 0.70 (17) 14.5

CBV, TTP, delay 4.93 (18) 15.63 (8) 0.58 (27) 0.68 (25) 19.5

CBV, MTT, delay −1.18 (7) 20.38 (23) 0.63 (22) 0.69 (22) 18.5

TTP, MTT, delay −4.10 (17) 16.51 (14) 0.57 (29) 0.64 (27) 21.75

CBF, CBV 9.05 (25) 15.05 (6) 0.65 (14) 0.74 (1) 11.5

CBF, TTP 3.66 (13) 20.12 (22) 0.68 (1) 0.72 (5) 10.25

CBF, MTT 0.80 (4) 18.62 (19) 0.67 (3) 0.71 (10) 9

CBF, delay 3.96 (16) 15.68 (9) 0.66 (7) 0.71 (15) 11.75

CBV, TTP 10.62 (27) 16.00 (12) 0.60 (23) 0.70 (18) 20

CBV, MTT 7.60 (24) 11.48 (2) 0.65 (13) 0.72 (7) 11.5

CBV, delay 12.22 (29) 21.79 (26) 0.57 (28) 0.66 (26) 27.25

TTP, MTT 3.68 (14) 28.28 (28) 0.59 (26) 0.68 (24) 23

TTP, delay −7.58 (23) 16.84 (15) 0.60 (24) 0.63 (28) 22.5

MTT, delay −10.42 (26) 24.36 (27) 0.59 (25) 0.63 (29) 26.75

Vitrea 6.79 (21) 15.28 (7) 0.63 (20) 0.72 (4) 13

RAPID 2.26 (10) 21.48 (25) 0.63 (21) 0.70 (20) 19

Sphere 7.57 (22) 17.74 (16) 0.64 (18) 0.70 (16) 18

Median infarct difference, median absolute error, Dice coefficient, and PPVs for each combination of tested
CTP parameters and commercially available software. Ranks for each metric are indicated in parentheses and
weighted average ranks for overall performance are shown in the final column. Best results are in bold.
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values indicates more of the predicted CTP infarct lesion is located within the ground truth DWI
infarct lesion.

Table 4 shows median infarct differences, median absolute error, Dice coefficient, and PPVs
for all tested CTP parameter combinations following CRF postprocessing along with values for
RAPID, Sphere, and Vitrea. Ranks for performance of each infarct estimation method are indi-
cated in parentheses with 1 indicating the most accurate and 29 indicating the least accurate.
Weighted average ranks are indicated in the last column by averaging all of the ranks from the
four utilized metrics together. Lower overall weighted ranks indicate the combination of perfu-
sion parameters or software provides a more accurate estimation and spatial location of infarct
volumes. For this study, the CBF, CBV, and MTT parameters show the lowest weighted rank of
7.5 indicating they are the optimal combination for infarct assessment when using CRF post-
processing.

4 Discussion

In this study, an assessment of whether a CNN can be used with multiple input CTP parameters
to accurately segment and localize infarct tissue conducted. In addition, our results were com-
pared with commercially available RAPID, Sphere, and Vitrea CTP software. Since commer-
cially available software utilize contralateral hemisphere comparison thresholds to identify
infarct tissue, there have been many different studies conducted showing which are the optimal

Fig. 17 Network performance when using CBF and MTT maps with CRF postprocessing (bottom
right) compared with no postprocessing (bottom left). Note the strong agreement between the
ground truth infarct area (red outline) and predicted infarct without any erroneously segmented
infarct around the ventricles.
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thresholds in addition to which parameters should be used to identify infarct.14,15,32–34 However,
since the optimal thresholds utilized rely on the computational algorithm utilized to generate the
perfusion maps, optimal thresholds are not uniform across software.34 In addition, some patients
have been known to have naturally low flow conditions in one hemisphere of the brain compared
with the contralateral side. These baseline flow conditions could result in the misdiagnosis of

Fig. 18 Predicted infarct volumes from the developed network prior to and after using CRF post-
processing. Both methods are compared with final infarct volumes from DWI with the dashed line
allowing for the comparison across all tested parameter combinations.

Fig. 19 Median absolute error values for each perfusion parameter combination before and after
CRF postprocessing. No direct pattern is seen as error values both increase and decrease when
utilizing this postprocessing technique.
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infarct tissue when in fact the region of the brain with decreased perfusion has been functioning
properly for the individual’s entire life. To address some of these challenges, we investigated a
CNN data-driven approach where we used the golden standard for the infarct tissue imaging, DWI,
and CTP images, which are the first line of imaging for patients presenting with brain ischemia.

From the result in Table 2, it can be seen that the two contraction/expansion process was the
optimal number compared with three or four. This is evident since the median infarct difference

Fig. 20 Pre- and post-CRF processing Dice coefficients between DWI and perfusion parameter
combinations tested with our network. All combinations of parameters show an increase in Dice
coefficients when utilizing CRF postprocessing.

Fig. 21 PPV comparisons between pre- and post-CRF processing for all utilized perfusion param-
eter combinations. Note the pattern of all PPVs increasing following this postprocessing leading to
a greater percentage of the infarct lesion being in the final DWI infarct lesion.
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Table 4 Weighted rank calculation for CRF postprocessing CTP parameter combinations.

CTP parameters

Median infarct
difference,
mL (rank)

Median
absolute error,

mL (rank)

Dice
coefficient
(rank)

PPV
(rank)

Weighted
rank

CBF, CBV, TTP, MTT, delay 9.49 (21) 13.44 (7) 0.67 (5) 0.73 (8) 10.25

CBF, CBV, TTP, MTT 5.33 (9) 18.16 (20) 0.65 (16) 0.71 (19) 16

CBF, TTP, MTT, delay 8.31 (18) 17.99 (18) 0.66 (13) 0.73 (11) 15

CBF, CBV, TTP, delay 5.29 (8) 15.68 (12) 0.66 (8) 0.73 (7) 8.75

CBF, CBV, MTT, delay 10.55 (23) 16.41 (14) 0.66 (6) 0.74 (3) 11.5

CBV, TTP, MTT, delay 7.15 (13) 11.74 (4) 0.64 (18) 0.70 (23) 14.5

CBF, CBV, TTP 11.30 (24) 18.60 (21) 0.65 (15) 0.76 (1) 15.25

CBF, CBV, MTT 4.83 (7) 10.14 (1) 0.66 (9) 0.73 (13) 7.5

CBF, CBV, delay 3.48 (5) 24.74 (28) 0.67 (4) 0.73 (10) 11.75

CBF, TTP, MTT 8.14 (17) 14.76 (9) 0.66 (7) 0.73 (12) 11.25

CBF, TTP, delay 7.28 (14) 12.13 (6) 0.66 (11) 0.74 (4) 8.75

CBF, MTT, delay −2.94 (4) 16.63 (15) 0.68 (1) 0.72 (15) 8.75

CBV, TTP, MTT 8.10 (16) 20.71 (25) 0.64 (17) 0.72 (17) 18.75

CBV, TTP, delay 13.24 (26) 11.85 (5) 0.59 (27) 0.70 (22) 20

CBV, MTT, delay 4.78 (6) 19.14 (24) 0.63 (21) 0.72 (18) 17.25

TTP, MTT, delay 5.80 (10) 15.56 (11) 0.58 (28) 0.66 (27) 19

CBF, CBV 13.59 (27) 10.65 (2) 0.66 (12) 0.75 (2) 10.75

CBF, TTP 8.50(19) 18.76 22) 0.68 (2) 0.73 (6) 12.25

CBF, MTT 6.92 (12) 17.08 (16) 0.68 (3) 0.73 (9) 10

CBF, delay 9.46 (20) 16.31 (13) 0.66 (10) 0.72 (14) 14.25

CBV, TTP 18.21 (28) 19.12 (23) 0.60 (23) 0.71 (20) 23.5

CBV, MTT 12.80 (25) 11.13 (3) 0.65 (14) 0.74 (5) 11.75

CBV, delay 19.99 (29) 13.86 (8) 0.57 (29) 0.68 (26) 23

TTP, MTT 10.49 (22) 28.90 (29) 0.59 (26) 0.70 (24) 25.25

TTP, delay −0.49 (2) 18.07 (19) 0.60 (24) 0.65 (28) 18.25

MTT, delay 0.41 (1) 24.73 (27) 0.59 (25) 0.64 (29) 20.5

Vitrea 6.79 (11) 15.28 (10) 0.63 (20) 0.72 (16) 14.25

RAPID 2.26 (3) 21.48 (26) 0.63 (22) 0.70 (25) 19

Sphere 7.57 (15) 17.74 (17) 0.64 (19) 0.70 (21) 18

Median infarct difference, median absolute error, Dice coefficient, and PPVs for each combination of tested
CTP parameters following CRF postprocessing and commercially available software. Ranks for each metric
are indicated in parentheses and weighted average ranks for overall performance are shown in the final col-
umn. Best results are in bold.

Rava et al.: Investigation of convolutional neural networks using multiple computed tomography. . .

Journal of Medical Imaging 014505-21 Jan∕Feb 2021 • Vol. 8(1)



was closest to 0 mL for two processes while most other metrics were very similar. These metrics
being similar is likely due to all possible features already being extracted when using two proc-
esses meaning the additional of more processes has little impact on the network’s performance.
Since little difference is seen between most of the metrics, having a shallower U-net also allows
for improved computational efficiency.

Within Fig. 10, it can be seen that there is approximately a 0.08 difference in the calculated
Dice coefficient between the training and validation sets when utilizing the testing weights.
Although this difference may indicate slight overfitting by the network, the sample size of the
validation set may have also created the separation in these curves. Even though thousands of
images are used in the validation set, only six patients are included and each patient has their own
specific hemodynamics. In the event the network has not seen a patient with similar hemodynam-
ics, 1/6th of the results from the validation set will be impacted causing the performance in this
set to decrease. Therefore, a larger dataset could decrease the separation seen between the curves
in Fig. 10.

Results for using a CNN with multiple input maps indicate the following combinations of
perfusion parameters were the most accurate in assessing infarct based on the weighted ranks
in Table 3: (1) CBF, CBV, TTP, delay time, (2) CBF, TTP, delay time, (3) CBF, CBV, MTT.
Although the use of CBF, CBV, TTP, and delay time as the input is the most accurate based on
the ranks, this combination of parameters has been shown to overestimate the amount of infarct
present. This overestimation of infarct can be dangerous as it can potentially lead to patient
exclusion from endovascular reperfusion procedures, which could allow them to regain lost
neurological function. For this reason, many clinical software will underestimate the amount
of infarct present to give a patient the best change to be included in such procedures. It
should be noted that underestimation of infarct does also come with the risk of hemorrhage
in the form of reperfusion injury.32 Reperfusion injury occurs when regions of the brain have
been deprived from oxygen for an extended period of time and are then reintroduced to oxy-
genated blood. This reintroduction results in oxidative damage and severe inflammation of the
infarct region.35

This study demonstrated that utilization of a CNN with multiple perfusion parameter maps is
an improvement over single input maps as indicated in a previously conducted study.17 Inclusion
of multiple parameters aids in segmentation of infarct since the size of the infarct lesion has
typically grown between initial CTP imaging and follow-up DWI imaging. Due to this increase
in size from initial to follow-up imaging, a perfect Dice coefficient is impossible to achieve,
which explains why our Dice coefficient are in the 0.6 range. This growth is usually due to
the conversion of penumbra to infarct as the patient is waiting to be treated though thrombectomy
or because the thrombectomy was not a complete success (i.e., TICI 2b). Therefore, utilization of
the TTP parameter is seen in the most accurate combinations of parameters because TTP is
typically used to estimate penumbra volumes in commercially available software such as
Vitrea and Sphere.12,15 The network is likely able to estimate an original infarct volume from
CBF and CBV, which are used in clinically available RAPID, Sphere, and Vitrea to assess
infarct, and then increase of the size of the infarct lesion through inclusion of some penumbra
from the TTP parameter. MTT can be said to have the same effect as regions of increased MTT
indicate penumbra, which is likely why it is included in the third most accurate combination of
perfusion parameters.12,14

Further assessment of the CNN also shows there may be instances in which the network has
difficulties in differentiating between the ventricle region and infarct. This is evident in Fig. 12
by the segmentation of infarct over the front ventricles. This error in segmentation is likely due to
the decrease in CBF and CBV in that region, which is commonly associated with infarct regions.
In addition, parameters such as TTP will show an increase in time in both the ventricle and infarct
regions meaning the network is relying more on spatial position as opposed to intensity values to
prevent classification of the ventricles as infarct.12 One issue with the MTT parameter is that
infarct can be represented as severely increased or decreased regions of flow. Typically, MTT
will be very low in regions of infarct when the CT scan is not started at the proper time leading to
truncation of the TDC.36 This fluctuation in what intensities should represent infarct from the
MTT parameter may have negatively impacted the network’s ability to accurately assess infarct
around the ventricle while utilizing this perfusion parameter map.
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When comparing the segmentation of our network using multiple perfusion parameters with
commercially available software, it can be seen that over 1/3 of the CNN tests resulted in more
accurate infarct assessment than Vitrea when compared with DWI. In addition, ∼2∕3 of the CNN
tests performed better than RAPID and Sphere based on the weighted ranks. This improved
segmentation accuracy with our CNN compared to these software is likely influenced by our
CNN using more perfusion parameters to segment infarct. Note that Vitrea performed the best
compared with the other two commercially available software and it utilizes the most perfusion
parameters to identify infarct. Although the inclusion of more parameters can introduce the curse
of dimensionality, which can potentially hinder the accuracy of the model, the inclusion of more
parameters in this instance allows for a greater description of the patient’s hemodynamics, which
is essential in locating ischemic tissue.37 Furthermore, the CNN not using contralateral hemi-
sphere thresholds likely increases segmentation accuracy as the network is not only solely rely-
ing on the opposite hemisphere values but also regions surrounding the ischemic tissue to
identify infarct tissue. The ability of our network to predicted infarct location in <1 s additionally
shows an improvement over commercial software in regards to clinical workflow. Due to RAPID
sending raw CTP data offsite to be analyzed, it can take upwards of 15 min to receive infarct
predictions, which is drastically longer than our network.14

The results from utilizing postprocessing CRFs indicate the following parameters to be the
most accurate in assessing infarct tissue, with a three-way tie for second best: (1) CBF, CBV,
MTT, (2) CBF, TTP, delay time, (3) CBF, MTT, delay time, (4) CBF, CBV, TTP, delay time. Of
these optimal perfusion parameter combinations, all but CBF, MTT, and delay time were
included in the optimal combinations when not utilizing CRF postprocessing. For all four of
these combinations, it can be seen that the PPVs increase and Dice coefficients slightly increase
when utilizing CRF postprocessing, indicating CRF postprocessing is limited. In addition, after
CRF postprocessing, all infarct volume estimations decrease from the original CNN predictions.
This leads to CRF postprocessing only having two median infarct overestimation compared with
eight seen for the original network. This indicates fewer patients would be incorrectly deemed
thrombectomy ineligible using the CRF postprocessing method. In addition, the increase in Dice
coefficient, increase in PPV, and decrease in infarct volumes indicate the number of false positive
labeled infarct voxels has decreased. Although this may appear as though the CTP volume mea-
surements are less accurate because they may not be as close to the DWI infarct volume, the
segmentation of infarct is actually more accurate as the degree of spatial overlap between CTP
and DWI volumes has increased. Furthermore, CRF postprocessing provides a superior method
compared with the original CNN since there is less variability in the infarct segmentation. This is
evident by the median absolute error being less for 17 of the 26 possible perfusion parameter
combinations.

The previous statement of the spatial segmentation being more accurate after using CRF
postprocessing can be seen in Fig. 17. This figure shows the removal of false positive infarct
regions around or near the ventricles when using CRF postprocessing (bottom right image) com-
pared with no postprocessing (bottom left image). This removal of false positive regions likely
occurs since the CRF method takes into account spatial location and similar intensity values
when improving infarct segmentation. Since infarct cannot occur within the ventricles, the
CRF prevents infarct segmentation within those regions, further improving the network segmen-
tation and reducing the amount of variability seen compared with the original CNN. The removal
of these false positive regions additionally will increase the Dice coefficient and PPVs due to
more spatial overlap. Furthermore, the volume of infarct in this figure has decreased, which again
supports CRF postprocessing aiding in accurate segmentation of infarct tissue even though the
overall volume estimation may decrease leading to it being further from the ground truth DWI
value than the original CNN estimated infarct volume. Results from our CRF network output
were shown to two neurosurgeons at our comprehensive stroke center and were endorsed for use
in stroke patient evaluation.

The results from our top three CRF networks, with infarct underestimation, tend to align very
well with what is seen from commercially available RAPID, Vitrea, and Sphere. All three models
and commercial software underestimate infarct, which is the preference in a clinical setting to
enroll more patients in reperfusion procedures. In addition, it is seen that there is ∼5 mL differ-
ence between the highest and lowest infarct estimation from our top three models and the
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commercial software. However, when examining weighted ranks, 2/5, 2/3, and 4/5 of the tested
CRF models rank higher than Vitrea, Sphere, and RAPID, respectively. This is due to the lower
degree of spatial overlap seen using the commercially available software, which can likely be
attributed to the use of contralateral hemisphere comparisons that have shown erroneous infarct
segmentation in the past.14

When comparing the results of this network with previously conducted studies, it was found
that our network had superior performance metrics. Two previously conducted studies demon-
strated Dice coefficients of 0.52 and 0.56 with the former having a PPVof 0.59.38,39 These stud-
ies likely had lower performance metrics due to the use of 3D segmentation compared with the
2D segmentation and volume reconstruction used in this study. When utilizing 3D segmentation,
the network is faced with a more difficult task as the convolutional kernels are parsing through
more data, leading to the extraction of more features, which may or may not be beneficial for the
segmentation task. Furthermore, using 3D segmentation reduces the sample size of the dataset
compared with using the 2D slices from each volume. Compared with a third study, which sim-
ilarly used 2D segmentation to isolate infarct lesions, our network was superior in performance
compared with a Dice coefficient of 0.55 and a PPV of 0.58.40 This network, however, only
utilized one combination of CTP parameters (CBV, CBF, MTT, and Tmax) as opposed to testing
different combinations of these parameters. Had this study utilized all combinations of the avail-
able parameters, their results may have improved.

Limitations of this study include the use of only Vitrea CTP generated maps as input for the
utilized CNN. There are many other CTP software such as Sphere, RAPID, syngo.via (Siemens
Healthcare, Erlangen, Germany), and IntelliSpace Portal (Philips Corporation, Amsterdam,
Noord Holland, Netherlands), which all generate different perfusion maps based on the algo-
rithm utilized. Such algorithms consist of Bayesian, standard singular value decomposition, cir-
cular singular value decomposition, and oscillar singular value decomposition. Of the listed
algorithms, standard singular value decomposition is the only delay sensitive algorithm, while
oscillar singular value decomposition is semiadaptive and Bayesian is adaptive.34,41,42 These
parameters influence the final calculation of each perfusion map indicating our trained CNN
will only wok when testing Bayesian algorithm Vitrea maps. The use of only 63 patients within
the study is a further limitation. Although we utilized slices from each patient’s CTP volume to
increase the dataset, increasing the number of patients in the study would increase the general-
izability of the network as it would see a greater variability in cases overall. Another limitation to
this study is it was not investigated whether other CNN multiple input methods allowed for a
more accurate infarct segmentation. For our CNN, we only utilized multiple channels to input the
CTP data as opposed to essentially training separate networks on each parameter and concat-
enating the results prior to the final prediction layer. In addition, our study only focused on the
segmentation of infarct tissue and did not include segmentation of penumbral regions to
utilize defuse 3 criteria for identifying thrombectomy eligible patients. A future study should
be conducted to segment penumbral regions using CTP and assess the performance of this
method.

Further study limitations, which can be addressed but are beyond the purpose of this initial
report, include the use of a watershed method to isolate the largest infarct lesion from the pre-
dicted volume. Although this watershed method allows for the elimination of small, erroneously
segmented infarcts, it prevents the inclusion of multiple lesions in the volume in the event there
are two or more true infarct lesions. Therefore, in the event a bilateral infarction is present, the
postprocessing method would eliminate one of the bilateral lesions. A potential way to solve this
issue would be to include second lesions above the average size of a typical infarct lesion. An
additional limitation to the study is a clinical interobserver study was not conducted to determine
if the limited differences seen between each model would result in different clinical decisions
being made. A future prospective study should be conducted to determine how many patients
would be correctly deemed thrombectomy eligible for each model. An additional prospective
study should be conducted to determine how many of the patient treatments resulted in a good
clinical outcome when each model’s infarct prediction deemed a patient to be thrombectomy
eligible. A further limitation is the method for segmenting the infarct ground truth is mostly
automated, and labels were only reviewed by one individual, indicating they may not supply
as perfect a segmentation as manually segmenting infarcts from DWI. This could influence
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results of the study if the training labels are not a perfect representation of what the ground truth
infarct should be.

A nonperfect registration of the CTP and DWI volumes could have also limited the accuracy
of the results for this study. Since the overlap of ventricles between CTP and DWI volumes has a
Dice coefficient of 0.78� 0.02, this could have resulted in some of the ground truth infarct
regions not aligning with the specific regions they should when training the CNN with CTP
parameter maps. This is to be expected however since the slice thicknesses of DWI and
CTP images are 5 and 0.5 mm, respectively, indicating a high degree of interpolation for the
DWI images. This would then lead to training of the network not being as optimal as it could be,
which would decrease the accuracy of the results. A final limitation to this study is that all cases
used were from the same comprehensive stroke center and no outside cases were included from
other centers.

5 Conclusion

Utilization of CNNs with multiple input perfusion parameter maps has proven to be just as accu-
rate in segmenting infarct tissue compared with commercially available CTP software, such as
RAPID, Sphere, and Vitrea. The use of CNNs to segment infarcts allows for the elimination of
nonuniversal contralateral hemisphere comparison thresholds when using commercially avail-
able software. This is beneficial as this method accounts for both hemodynamic parameters and
spatial locations when determining infarct volumes. This could potentially improve the rate of
clinical workflow and allow for more accurate diagnosis of patients eligible for endovascular
intervention procedures.
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