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Abstract

Purpose: Genomic and transcriptomic alterations during metastasis are considered to affect 

clinical outcome of colorectal cancers (CRCs), but detailed clinical implications of metastatic 

alterations are not fully uncovered. We aimed to investigate the effect of metastatic evolution on in 
vivo treatment outcome, and identify genomic and transcriptomic alterations associated with drug 

responsiveness.

Experimental Design: We developed and analyzed patient-derived xenograft (PDX) models 

from 35 CRC patients including five patients with multiple organ metastases (MOMs). We 

performed whole-exome, DNA methylation and RNA sequencing for patient and PDX tumors. 

With samples from patients with MOMs, we conducted phylogenetic and subclonal analysis and in 
vivo drug efficacy test on the corresponding PDX models.

Results: Phylogenetic analysis using mutation, expression and DNA methylation data in patients 

with MOMs showed that mutational alterations were closely connected with transcriptomic and 

epigenomic changes during the tumor evolution. Subclonal analysis revealed that initial primary 

tumors with larger number of subclones exhibited more dynamic changes in subclonal architecture 

according to metastasis, and loco-regional and distant metastases occurred in a parallel or 

independent fashion. The PDX models from MOMs demonstrated therapeutic heterogeneity for 

targeted treatment, due to subclonal acquisition of additional mutations or transcriptomic 

activation of bypass signaling pathway during tumor evolution.

Conclusions: This study demonstrated in vivo therapeutic heterogeneity of CRCs using PDX 

models, and suggests that acquired subclonal alterations in mutations or gene expression profiles 

during tumor metastatic processes can be associated with the development of drug resistance and 

therapeutic heterogeneity of CRCs.

Keywords

colorectal cancer; metastasis; tumor evolution; patient-derived xenograft; therapeutic 
heterogeneity

Introduction

Tumor metastasis is a major cause of cancer-related deaths, and, to date, appropriate 

treatment modalities are very limited in most types of cancers (1,2). To develop the 

strategies for preventing or targeting tumor metastasis, understanding the nature and biology 

of tumor metastasis is inevitable. Genomic instable nature of cancer cells can result in 

genetic diversity of cells within a given tumor (intra-tumoral heterogeneity (ITH)) (3), and 

genetic and epigenetic alterations during metastasis process has been suggested to contribute 

to tumor progression, treatment resistance and survival outcome (4–7). Recent advances of 

high-throughput genomic analysis technology provided landscape of genomic alterations 

specific to metastasized tumors (8), and comparative studies between primary and matched 

metastasized tumors have described the evolutionary characteristics of metastatic tumors (9–
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11). However, detailed clinical implications of genetic and epigenetic alterations during 

metastasis remain limited for most cancer types.

Patient-derived xenografts (PDXs) are cancer models that are established by the transfer of 

patient tumor tissues into immunodeficient mice. PDXs retain several key characteristics of 

patients’ tumors including histology, genomic alterations and transcriptomic signatures (12–

14). Previous studies have also suggested that PDX models exhibit drug responsiveness 

comparable to that of the primary tumors in the patients (15–17), and overcome many 

limitations of conventional in vitro cell line models and cell line xenograft models (13,18). 

Most critically, PDX tumors have the capacity to retain the ITH of the original patient 

tumors and therefore can be applied to the study of clonal selection and tumor evolution 

(13,19).

Colorectal cancer (CRC) is the third most prevalent cancer and the fourth common cause of 

cancer-related death worldwide (20), and a cancer type reported to exhibit significant ITH 

(21,22). In this study, we examined the clonal dynamics and tumor evolution of CRC during 

metastasis by analyzing the genome, transcriptome and epigenome of patient and PDX 

tumors from CRC patients with multiple organ metastases (MOMs), and experimentally 

demonstrated that acquired genomic and transcriptomic heterogeneities during tumor 

evolution can be associated with the heterogeneity of drug responsiveness.

Materials and Methods

CRC patient sample collection and generation of PDX models

CRC tissue samples from primary and metastasis sites and blood samples were obtained 

from individuals who underwent colectomies at Gil Medical Center from 2014 to 2015. All 

samples were obtained with informed consent at the Gil Medical Center, and the study was 

approved by the institutional review board in accordance with the Declaration of Helsinki. 

For PDX models, surgically resected tissues were minced into pieces approximately ~2 mm 

in size and injected subcutaneously in the flanks of 6-week-old NOD/SCID/IL-2γ-receptor 

null (NSG) female mice (The Jackson laboratory). When a tumor volume reached > 

700~1000 mm3, the mouse was sacrificed and tumor tissues were extracted and 

cryopreserved in liquid nitrogen and stored at −80 °C for generating future PDX passages. 

Mice were cared for according to institutional guidelines of the Institutional Animal Care 

and Use Committee (IACUC) of Seoul National University (No. 14–0016-C0A0).

Exome sequencing processing and variant calling

DNA reads were aligned to the merged references for human GRCh19 and mouse mm10 

genome versions using BWA-MEM (23). Sorting and marking duplicate reads were 

performed using Picard tools. Additional processing was conducted to remove mouse 

sequences using an in-house bioinformatics pipeline, followed by the IndelRealignment, 

BaseQualityScoreRecalibration, PrintReads commands as Best Practices recommendations 

of the Genome Analysis Tool Kit (GATK) (24).

After processing the BAM files, Mutect (25) and IndelGenotyper were employed for somatic 

mutation calling, followed by ANNOVAR for functional annotations. Variants with at least 8 
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read depths, or 4 alternate allele depths and a minimum genotype quality of 20 were 

maintained. For somatic indels, a strand bias Phred-scale P-value of greater than 20, by 

Fisher’s exact test, was discarded. Common variants found in dbSNP142 were also removed. 

Finally, exonic and splicing variants were selected based on the RefSeq database and having 

population frequencies lower than 0.01, based on The Exome Aggregation Consortium, 

1000 Genomes Project and NHLBI ESP6500.

The pairwise distance of SNPs were calculated based on 4,784 rare non-silent somatic 

mutations in tumor tissues from the patient #21. The maximum composite likelihood 

substitution model, which is an accurate alignment-free estimator of the number of 

substitutions per site based on the lengths of exact matches between pairs of sequences, were 

applied using MEGA (version 7.0) program (26).

Copy number alteration analysis using WES data

Copy-number alterations (CNAs) were identified in WES data based on the RPKM (Read 

Per Kilobase per Million mapped reads) value of exonic regions from CONIFER (27). The 

logarithm of germline blood and sample data were used for further CNA analysis. Somatic 

CNAs were segmented and called with the Bioconductor package ‘DNAcopy’.

To identify CNAs emerging during the generation of PDXs, we compared copy number 

profiles between patient and derived PDX tumors. First, a comparative value was obtained 

for each probe region by subtracting the log2-transformed copy number value of patient 

tumor from that of PDX tumor. The circular binary segmentation analysis was then applied 

to relative copy number data with the ‘DNAcopy’ R package. If |segment value| > 0.3 and 

size > 5 Mb, segment calls were retained. Second, segment calls from relative data and each 

sample were summarized to gene-level calls. A discordant CNA call between the patient and 

PDX tumor was considered an actual PDX-specific CNA, and “false” discordant CNA calls, 

which is called in both samples but showed a high relative value because of the high purity 

of the PDX tumor, were eliminated. The number of discordant CNA calls was divided by the 

total number of genes (excluding genes with a neutral copy number call in both datasets).

Calculation of heterogeneity score and analysis of clonal architecture

The subclonal genomic structure of the patient and PDX tumors was inferred using mutant 

allele fractions and copy number data from WES. Based on the Bayesian clustering method, 

SciClone (28) and PyClone (29) estimated the clonal population structure of each sample. In 

particular, PyClone was used for the estimation of cellular prevalence of each cluster of each 

sample with respect to normal cell contamination and copy number changes. PyClone was 

run for 10,000 iterations with a burn in period of 1,000 iterations using a beta binomial 

parameter of 1,000. We plotted clusters with at least 5 mutations and selected the 

representative genes for each cluster if mutated genes were included in our cancer gene list 

or showed high mutation frequencies in cBioPortal CRC studies (http://www.cbioportal.org). 

Of the primary patient-PDX tumor pairs, the number of input mutations in two patients 

(Patient #1 and 2) was too small or large to obtain the results in PyClone analysis.
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RNA-seq data processing and expression analysis

RNA-seq reads from each WTS experiments were aligned to the same reference as for WES 

using STAR aligner (30). The following procedures were performed as the Best Practices 

workflow for RNA-seq using GATK. Gene expression levels were quantified using 

deduplicated bam files by FPKM (fragments per kilobase of exon per million mapped reads) 

using HTSeq-count (31) based on the Homo sapiens GRCh37 Ensemble v65. FPKM values 

were normalized and log transformed with edgeR. We also used pairwise average-linkage 

clustering for Pearson distance measurement of common clustering patterns. The DESeq2 

algorithm (32) was used to detect metastatic tumor-specific gene expression patterns when 

compared to the primary tumor of each patient.

Methyl-capture sequencing

Methyl-capture sequencing was performed using the SureSelectXT Human Methyl-Seq 

Target Enrichment System, which utilized a capture-then-bisulfite-convert approach, as 

directed by the manufacturer. Genomic DNA (3 μg) of PDX tumors was sheared to a median 

fragment size of 150–200 bp using a Corvaris E210. Libraries were generated and 

hybridized using SureSelectXT Methyl-Seq Kit (Agilent). Bisulfite conversion was 

performed using EZ DNA Methylation Gold Kit (Zymo Research). The enriched and 

bisulfite-converted libraries were indexed by PCR amplification as directed in the protocol 

and purified using AMPure XP beads (Beckman Coulter). After the quality and quantity of 

the library sample was assessed by Qubits dsDNA HS Assay Kit (Thermo Fisher Scientific) 

and the Bioanalyzer DNA 1000 Kit (Agilent), the libraries were sequenced with HiSeq 

instruments.

The raw sequence data were trimmed for potential adapter sequences using trimgalore and 

aligned to combined reference using Bismark program with bowtie1. Deduplication and 

extraction of methylation was also performed with Bismark. Since the capture-then-bisulfite-

convert approach captures the top strand of the DNA, only reads that aligned to the original 

top strand were considered for calling cytosine methylation. Only CpGs with at least 7X 

coverage were kept for comparisons. The methylation ratio was the number of methylated 

Cs divided by the total of methylated and unmethylated Cs. Average methylation level of 

each CpG island and CpG shores were calculated annotated against RefSeq gene database. 

For 13,199 genes, expression of each gene was correlated with multiple methylation probes 

per gene and the region that is most anticorrelated with expression data was selected for a 

given gene.

Phylogenetic analysis using sequencing data

Phylogenetic trees were constructed separately using (i) point mutations, (ii) gene expression 

and (iii) methylation from each patient and corresponding PDX models with multiple 

metastatic tumors using the neighbor joining method of the MEGA7 program (26). Rare 

functional mutations were used for WES phylogeny tree analysis.

Generation of cancer-related gene list

The list of cancer-related genes used to select important mutations was based on a total of 

608 genes found in the Cancer Gene Census of The Sanger Institute (33), TARGET by The 
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Broad Institute and Vogelstein’s cancer genes (34). The TARGET database v3 was used to 

select for druggable gene targets.

Single sample gene set enrichment analysis projection on a collection of hallmark gene 
sets

An unsupervised gene enrichment method that calculates a separate enrichment score (ES) 

to gene set for each individual sample, independent of sample phenotype labeling, single 

sample gene set enrichment analysis (ssGSEA), was performed on expression and 

methylation data. We scored signatures of hallmark processes of the Molecular Signatures 

Database (MSigDB) through the ssGSEA Projection module of GenePattern, ES was 

obtained and further analyzed by transforming into a z-score by subtracting the mean of the 

ES’s assigned to all other gene-sets and by dividing the result to their standard deviation. A 

positive ES denotes a significant overlap of the signature gene set with groups of genes at 

the top of the ranked list, whereas a negative ES denotes a significant overlap of the 

signature gene set with groups of genes at the bottom of the ranked list.

Histological analysis and immunohistochemistry

After resection, tumor tissue samples were fixed in 10% neutral buffered formalin and 

embedded in paraffin. Hematoxylin-Eosin staining (H&E) was performed according to 

standard protocols. For immunohistochemistry, tumor tissue samples obtained from patients 

and PDX mice were stained using antibodies including CEA (Cell Marque), CK7 (Dako), 

CK20 (Dako), Ki-67 (Dako), E-cadherin (Zymed), Vimentin (Zymed), CD3 (Dako), and 

CD31 (Cell Marque). Formalin fixed and paraffin embedded tissue sections of tumor 

samples were immunohistochemically stained for expression of those antibodies using a 

BenchMArk ULTRA automatic immunostaining device (Ventana Medical Systems) with the 

OptiView DAB IHC Detection Kit (Ventana Medical Systems) according to the 

manufacturer’s instructions.

In vivo pharmacological studies

For PDX mice, drug treatments began after tumors reached approximately 200 mm3. For 

standard treatments, mice were randomly divided into two treatment groups, consisting of 5 

mice in each group: 1. vehicle only, 2. 5-FU (ApexBio, 50 mg/kg, weekly) + oxaliplatin 

(ApexBio, 5 mg/kg, weekly). For targeted treatments, mice were randomly divided into four 

treatment groups consisting of 5 mice in each group: 1. vehicle only, 2. lapatinib 

(ChemieTek, 30 mg/kg, twice a day), 3. trametinib (ApexBio, 2 mg/kg, daily), and 4. 

BYL719 (ChemieTek, 25 mg/kg, daily). The vehicle for 5-FU and oxaliplatin was 5% (w/v) 

glucose in water (Sigma). The vehicle for lapatinib was 0.5% (v/v) methylcellulose (Sigma) 

and 0.5% (v/v) Tween 80 (Sigma) in phosphate-buffered saline (PBS). The vehicle for 

trametinib was 0.5% (v/v) hydroxypropyl methylcellulose (HPMC, Sigma) and 0.2% (v/v) 

Tween 80 in PBS. The vehicle for BYL719 was 10% (v/v) ethanol (Merck), 30% (v/v) 

polyethylene glycol (Sigma) and 60% (v/v) Phosal 50 PG (Lipoid). 5-FU and oxaliplatin 

was administered via intraperitoneal injection while lapatinib, trametinib and BYL719 were 

all administered via oral injection for 21 – 26 days.
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Data availability

The data in this study have been submitted to the National Center for Biotechnology 

Information (NCBI) BioProject (http://www.ncbi.nlm.nih.gov/bioproject) under accession 

number PRJNA400542.

Results

Generation of genomically defined PDXs from CRC patients

We generated a PDX cohort of CRCs and analyzed the mutational profiles of the original 

tumors and the derived PDX models. We implanted a total of 95 tumor tissues from 42 CRC 

patients (detailed clinical information in Supplementary Table S1), and successfully 

established 72 serially-transplantable PDXs from 35 patients (Fig. 1A; Supplementary Table 

S2). Anatomical location of primary tumors, tumor stage, MSI status and organ sites of 

metastatic tumors were not associated with PDX engraftment rates (Supplementary Table 

S3).

Given that a genomically well-defined PDX cohort is a valuable tool for assessing drug 

efficacy and understanding drug resistance mechanisms, we analyzed the genomic profiles 

of the original patient and PDX tumors using whole exome sequencing (WES). We 

sequenced 76 of the original tumor samples from 29 patients (29 primary and 47 metastatic 

tumors; Fig. 1A; Supplementary Table S2), and 55 PDX samples from 24 patients (21 

primary and 34 metastatic tumors; Fig. 1A; Supplementary Table S2). The most frequently 

mutated cancer genes in our PDX tumors paralleled those seen in CRCs in The Cancer 

Genome Atlas (TCGA) database (35) (Fig. 1B); with the exception of an increased 

frequency of PIK3CA mutations in our PDX tumors. This suggests that overall, our CRC 

tumors and derived PDX models retain mutation profiles similar to that of other CRC 

cohorts. In addition, we performed RNA sequencing for 40 PDX samples from 10 patients 

(9 primary and 31 metastatic tumors) and DNA methyl-capture sequencing for 18 PDX 

samples from 3 patients with MOMs (3 primary and 15 metastatic tumors; Fig. 1A; 

Supplementary Table S2).

In mutational analysis, the allele frequencies (AFs) of mutations were correlated between 

these patient and PDX tumors (average Pearson correlation coefficient = 0.60), but AF 

usually increased in PDX tumors consistent with the notion that tumor cells are enriched in 

PDX samples (Fig. 1C; Supplementary Fig. S1A). Somatic copy number alterations 

(SCNAs) profiling using WES data showed that SCNAs were also generally correlated 

between patient tumors and corresponding PDX tumors (average Pearson correlation 

coefficient = 0.57) (Fig. 1C; Supplementary Fig. S1B). We also estimated the clonal 

architecture using PyClone (29) and found that each tumor had 2 to 6 major subclones, 

which were well conserved and enriched in PDX tumors (average changes in clonal 

prevalence: 0.286) (Fig. 1C; Supplementary Fig. S1C; Supplementary Table S4).

In histological analyses, the PDX tumors retained comparable histologic architecture of the 

primary patient tumors, and cancer cells exhibited similar expression patterns with respect to 

carcinoembryonic antigen (CEA), cytokeratin 7 (CK7), CK20, Ki-67 and E-cadherin 

staining (Fig. 1C; Supplementary Fig. S2). When evaluating the tumor microenvironment, 
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stromal vimentin expressions of the primary patient tumors were retained in half of the 

derived PDX tumors (Fig. 1C; Supplementary Fig. S2), and vessels of human origin (CD31 

positive cells) were replaced with mouse vessels (Fig. 1C; Supplementary Fig. S2). In 

addition, CD3+ lymphocytes were enriched in PDX tissues, suggesting that human 

lymphocytes are expanding in immunocompromised states of early PDX passages 

(Supplementary Fig. S2). Taken together, our observations showed that our PDX models 

retain genomic and histologic characteristics of the primary patient tumors, but lose some 

characteristics associated with tumor microenvironment.

Analysis of genomic alterations during tumor metastasis

In our CRC cohort, we have 5 patients with MOMs, and successfully generated PDX models 

from the primary tumors of these 5 patients as well as 25 of their metastases (patient #10, 

#14, #21, #34 and #35 in Supplementary Table S2). In data analysis from WES on the 

original patient samples and WES/RNA-seq/methyl-capture sequencing of the derived PDX 

samples (unfortunately the RNA quality from the patient samples precluded RNA-seq), 

phylogenetic analyses revealed branched evolution for the primary tumors and derived PDXs 

for all five patients (Fig. 2), consistent with the notion that the evolutionary processes were 

well conserved in the PDX models. Furthermore, the evolutionary processes, determined by 

somatic mutations, mRNA expressions and DNA methylation, exhibited similar patterns in 

the primary patient tumors and the derived PDX samples (Fig. 2), indicating that genomic 

changes during the cancer evolution process were closely connected with transcriptomic and 

epigenomic changes.

In tumors with MOMs, the somatic mutations were divided into three categories: truncal 

(mutations present in all tumor regions), branched (mutations present in at least two, but not 

all regions) and private mutations (mutations present in one region). In the 5 patients 

analyzed, the average rates of truncal, branched and private mutations were 30.5% (range 

16.1 – 39.1%), 16.3% (range 9.6 – 25.9%) and 53.2% (range 36.8 – 63.7%), respectively 

(Supplementary Table S5). Of the 608 cancer-related genes with known importance (the 

selection criteria are described in Materials and Methods), mutations in KRAS (3/5), 

PIK3CA (3/5), TP53 (2/5) and APC (2/5) were detected as truncal mutations in two or more 

patients (Fig. 2), suggesting that mutations of these genes play a critical role in tumor 

initiation and early development of CRCs.

Comparison of genetic changes between metastasis and PDX generation

PDX models provide unique tumor microenvironment different to human, raising the 

possibility that increased genomic instability occurs. To estimate the de novo genetic 

changes during PDX generation in mice, we compared the changes of mutations and copy 

number alterations during PDX generations with those during tumor evolution. In patient 

#21, primary tumor (T75) was metastasized to liver (T74, T79, T80, and T91) and regional 

lymph nodes (T81, T82, and T191), and we generated four different PDX models by 

engrafting T75 (Fig. 3A). Analysis of WES data showed that estimated differences between 

primary tumor and PDXs (range 0.07 – 0.12, mean: 0.09) were lower than those between 

primary and metastasized tumors, especially tumors metastasized to liver (range 0.20 – 0.23, 
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mean: 0.22; Fig. 3B and 3C). These data suggest that genetic alterations during the PDX 

generation were not significantly augmented compared to the metastasis within the patient.

Clonal architecture dynamics during tumor metastasis

Next, we analyzed the clonal architectures of the PDX tumors from 5 patients with MOMs, 

because clonal architecture of patient tumors was conserved in PDX tumors (Fig. 1C; 

Supplementary Fig. S1C). The SciClone analysis, modeling both clonal and subclonal 

mutation clusters (28), revealed that the mutations in the tumor samples from each 

individual could be organized into 2 to 8 clusters (Fig. 4). All metastasized tumors showed 

multiple subclones, and these subclones were usually found in primary tumors (Fig. 4), 

suggesting that metastasis occurs via polyclonal seeding, not a single cell. Patients having 

primary tumors with a small number of subclones (2 – 3 subclones; patient #10 and #35) 

showed little change in subclonal architecture during metastasis (Fig. 4). However, patients 

having primary tumors with a large number of subclones (5 – 7 subclone; patient #14, 21 

and 34) exhibited dynamic changes in subclonal architecture during metastasis (Fig. 4), and 

these changes were largely dependent on the organs where the cancer had metastasized (Fig. 

4). Tumors metastasized to lymph nodes showed similar subclonal architecture with primary 

tumors, but tumors metastasized to ovary or liver showed enrichment of specific subclones 

showing little ratios in primary tumors (Fig. 4). For example, C4 subclone in patient #14 was 

enriched in tumors metastasized to ovary, and C3 suclone in patient #21 and C4 subclone in 

patient #34 were significantly enriched in tumors metastasized to liver (Fig. 4), suggesting 

that loco-regional metastasis to lymph nodes and distant metastasis to liver or ovary 

probably occurs in a parallel or independent fashion and distant organs provide unique tumor 

microenvironment for distinct clonal selection.

Transcriptomic and epigenomic changes during tumor metastasis

We also analyzed the RNA-seq data of PDX tumors from patients with MOMs. Clustering 

analysis and principal component analysis (PCA) analysis showed that samples from the 

same patient were more adjacently clustered compared to metastases to the same organ 

(Supplementary Fig. S3). When we investigated enriched hallmark gene sets (36) among the 

metastasized tumors using single sample gene set enrichment analysis (ssGSEA), gene sets 

of ‘UV_response’, ‘DNA_repair’, ‘Apoptosis’, ‘Myc_targets’ and ‘Protein secretion’ were 

enriched in metastasized tumors in 4 or more patients (Fig. 5). Interestingly, gene sets of 

‘Epithelial_mesenchymal_transition’ and ‘Hypoxia’, which were known to promote 

metastasis (37,38), were depleted in metastasized tumors in 5 or more patients (Fig. 5). It is 

probable that metastasized tumors are exposed to more oxygen compared to primary tumor 

sites, but detailed investigation was needed in further studies.

We also performed ssGSEA using DNA methyl-capture sequencing data and investigated 

hallmark gene sets enriched in metastasized tumors. However, there is little gene set 

enriched or depleted in metastasized tumors of all tested 3 patients with MOMs (Fig. 5). The 

promoter methylation in gene set of ‘Cholesterol_homeostasis’ was enriched in metastasized 

tumors of all 3 patients, and the mRNA expression levels of this gene set were inversely 

correlated with methylation status (Fig. 5). Although cholesterol was reported to promote 
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metastasis (39), gene set of ‘Cholesterol_homeostasis’ was down-regulated in metastasized 

tumors, and detailed molecular mechanisms need to be investigated.

Tumor heterogeneity analysis of CRC patient with MSI-H status

Among the five patients with MOMs, we focused on one patient exhibiting the most 

divergent mutational profiles due to high levels of microsatellite instability (patient #21). 

This case showed prominent differences in mutation and expression profiles between two 

distinct groups of tumors; primary/LN group and liver-metastasized group (Fig. 4; 

Supplementary Fig. S4).

In subclone analysis, the C1 subclone was found in all tumors (Fig. 4), and possesses several 

truncal mutations including CTNNB1, ERBB3, NF1, BRCA2, SYK mutations (Fig. 4; 

Supplementary Fig. S4A). In addition, copy neutral loss of heterozygosity (cnLOH) in 

chromosome 3p, which contains CTNNB1 gene, were also found as truncal alterations 

(Supplementary Fig. S4B). The differences between primary/LN group and liver-

metastasized groups were predominantly based on the different prevalence of two subclones, 

C2 and C3 (Fig. 4). In the primary/LN group, the most enriched subclone was a C2 

subclone, which included mutations such as TSC2 and MSH6 mutations (Fig. 4; 

Supplementary Fig. S4A). Interestingly, convergent bi-allelic inactivation of TP53 gene was 

observed in metastatic tumors in LN group (Supplementary Fig. S5). On the other hand, the 

liver-metastasized group showed enrichment of the C3 subclone, which harbored the TP53 
R273C mutation (Fig. 4; Supplementary Fig. S4A). Comparison of copy number (CN) 

values for chromosome 7 (chr7) between the two groups showed that primary/LN group 

showed significant increase in CN alterations on chr7 (Supplementary Fig. S4B; P = 0.012). 

Notably, copy number changes for EGFR showed significant differences between the 

primary/LN group compared to the primary/liver group (P = 0.004), and the pathway-level 

expression analysis also showed that EGFR signaling in cancer was upregulated in the 

primary/LN group (Supplementary Fig. S4C). In addition, expression of genes in ‘Signaling 

by Wnt’ increased in primary/liver group (Supplementary Fig. S4C), which was compatible 

with decrease of promoter methylation in ‘Wnt_beta_catenin_signaling’ pathway 

(Supplementary Fig. S4D).

For the X201 samples (which were derived from recurrence in the liver after adjuvant 

chemotherapy with FOLFIRI and cetuximab), we identified a subclone that was not evident 

in the pre-chemotherapy samples (C6; Fig. 4). In these treatment-resistant subclones, 

potential driver mutations included mutations of EGFR S464L, was previously reported to 

be related to the cetuximab resistance (40).

Association of genomic and transcriptomic signatures with therapeutic heterogeneity as 
delineated by PDX models

Next, we investigated the responsiveness of targeted treatment based on genomic profiling in 

the PDX models from patient #21 (Supplementary Table S6). The ERBB3 G284R mutation 

was reported to activate the ERBB2 signaling pathway, which can be targeted by the ERBB2 

inhibitor, lapatinib (41). NF1 mutations result in activation of the Ras-MEK-ERK signaling 

pathway, which can be targeted by a MEK inhibitor, trametinib (42), and PIK3CA E545A 
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mutations, found in X80, can be targeted by PI3K inhibitors such as BYL719 (43,44) 

(Supplementary Table S6). When the normal growth curves of these PDX tumors were 

examined, the tumor with a PIK3CA E545A activation mutation (X80) showed the fastest 

growth (Supplementary Fig. S6).

The combination treatment of 5-florouricil and oxaliplatin (5-FU/Oxa), which is a standard 

non-targeted treatment for CRC, showed a significant tumor inhibitory effect in three out of 

the five samples tested (Fig. 6A; Supplementary Fig. S7A). Lapatinib treatment resulted in 

significant tumor inhibition in three samples (X75, X79, X80) (Fig. 6B; Supplementary Fig. 

S7B). However, one sample with ERBB2 L755S mutation (X91) was refractory to lapatinib 

treatment (Fig. 6B; Supplementary Fig. S7B), which was explained by the presence of the 

lapatinib-resistant mutation in ERBB2 gene (ERBB2 L755S; Supplementary Table S6) (45). 

We validated this mutation with droplet digital PCR (ddPCR), and found the ERBB2 L755S 

mutation to be a private mutation (i.e., found in only one sample; Supplementary Fig. S8). 

Trametinib treatments showed effective inhibition on tumor growth in four sample out of 5 

samples (Fig. 6C; Supplementary Fig. S7B). Unexpectedly, BYL719 was effective only in 

the primary tumor (Fig. 6D; Supplementary Fig. S7B), which was not anticipated by its 

PIK3CA mutation status.

To understand the factor(s) associated with BYL719 responsiveness, we compared genomic 

and transcriptomic differences between responsive and non-responsive tumors. In mutational 

profiling, mutations in TP53 (R273C and A159V) were detected only in metastatic tumors 

(Supplementary Table S6). However, overexpression of mutant TP53 did not appear to 

significantly contribute to resistance to BYL719, as compared to the wild-type 

(Supplementary Fig. S9). From expression profiling, the TGFβ signaling pathway was 

enriched in the metastatic tumors (Supplementary Fig. S10), and treatment of TGFβ1 

increased the IC50 for BYL719 (Fig. 6E), suggesting that activation of TGFβ signaling 

pathway is associated with resistance to BYL719. Taken together, in vivo experiments using 

our PDX models verified that subtle differences in the genome and transcriptome could 

largely affect the therapeutic responsiveness.

Discussion

During metastasis, genetic and epigenetic alterations are generated due to the genomic 

instability of cancer cells, and are dynamically reshaped via evolutionary process and 

adaptation to environmental changes. The tumor evolution process is generally delineated as 

a branched evolution model, based on phylogenetic reconstructive analyses (10,11,46–48). 

The branched evolution model emphasizes the importance of targeting truncal alterations. 

However, resistance for targeted drug may also occur due to subclonal alterations, at the 

level of gene mutations or gene expression as shown in our data (Fig. 6).

It has been ambiguous whether the subclonal alterations associated with drug resistance 

exist as minor subclones in the original tumor or emerge during the evolutionary process. 

The Big Bang model of tumor growth suggests that a single expansion produces diverse 

subclones where clonal and subclonal alterations can develop early in cancer growth (49). A 

study using a complex DNA barcode labelling system showed that, during the development 
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of drug resistance caused by ITH, the majority of resistant clones were part of pre-existing 

subpopulations (50). Our analysis of clonal architecture of metastatic tumors also 

demonstrated that most subclones in metastatic tumors were found in primary tumors (Fig. 

4), suggesting that genomic divergence during metastasis occurs usually by evolutionary 

reshaping of pre-existing subclones. However, our ddPCR results also supports the notion 

that some drug-resistant alterations could appear in the middle of evolutionary process from 

de novo alterations (Supplementary Fig. S8), and the branched or private alterations play 

critical roles in the development of drug resistance. In our study, one metastatic tumor with 

the ERBB2 L755S mutation showed the resistance to lapatinib, and transcriptional activation 

of the TGFβ signaling pathway increases the drug resistance to BYL719 (Fig. 6). Therefore, 

for the treatment of cancer patients with MOMs, genomic and transcriptomic heterogeneities 

should be considered for pertinent treatment, especially in CRC patients having primary 

tumors with a large number of subclones, because subclonal architecture changes 

dynamically in these patients.

Our analyses provide several applicable points for the targeted treatment of CRC patients 

with MOMs. Considering the heterogeneous nature of primary and metastatic tumors, 

targeting the truncal alterations would be the best way for the treatment of patients with 

MOMs, because all primary and metastatic tumors possess the truncal alterations. In our 

study, targeting NF1 mutations, which were truncal alterations, with trametinib reduced 

tumor growth in all tested samples (Fig. 6C). However, at the same time, the incidence of 

resistance due to subclonal alterations needs to be carefully examined. Because multiple 

biopsies are usually difficult to perform, one alternative way is to analyze the genomic 

profiles of circulating tumor cells or cell-free DNA, which represent the summation of 

genomic alterations from all cancer cells. Detection of resistance-related alterations in liquid 

biopsy can guide to treat the patients with other targeted drugs.

Detailed analysis of subclonal architecture of tumors from CRC patients with MOMs 

suggested some implications about mode of tumor metastasis. Several subclones were found 

simultaneously in primary and metastatic tumors (Fig. 4), which support polyclonal 

metastasis rather than metastasis via a single cell dissemination. And, initial number of 

subclones in primary tumors is associated with diversity in subclonal architecture according 

to metastasis, and primary tumors harboring more subclones showed more diverse subclonal 

architecture among metastatic tumors, probably due to higher chance of clonal selection in 

metastasized tumor microenvironment. In addition, loco-regional metastasis to lymph nodes 

and distant metastasis to liver or ovary exhibited distinctive subclonal architectures, 

suggesting that loco-regional and distant metastasis probably occurs in parallel or 

independent ways.

PDX models retain several characteristics of patient tumors and showed drug responsiveness 

compatible with the patient’s original tumors (15–17). Our comparison of the patient’s 

primary tumors with the derived PDX tumors indicated that the derived PDXs appear to 

maintain the characteristics of the patient original tumor on the basis of mutational profile 

and signatures, SCNAs, tumor clonal architectures and histology (Fig. 1). PDX models also 

retained the characteristics related with evolutionary processes in terms of somatic mutation, 

gene expression and DNA methylation (Fig. 2). In addition, genetic changes during PDX 
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generation were similar or lower than genetic changes during metastasis processes in 

patients (Fig. 3). However, PDX models showed some changes in its tumor 

microenvironment, such as a decrease in extracellular proteins and vessels of human origin 

(Supplementary Fig. S2), which was probably due to the replacement of these cells with 

mouse stromal cells. In addition, analysis of the mutation allele frequencies as well as clonal 

architecture in the PDX models exhibited an enrichment of cancer cells having driver 

mutations or drug responsiveness-associated mutations, compared to the patient samples. 

For example, the prevalence of PIK3CA mutations in our PDX cohort was higher than our 

patient cohort (Fig. 1B), which suggests that the subclones with PIK3CA mutations (pre-

exist or de novo) had growth advantages in the PDX environment (Supplementary Fig. S6). 

Therefore, PDX models show accordant prediction of drug responsiveness in patients by 

augmenting the portion of subclones with driver mutations or drug responsiveness-

determining mutations.

Our study demonstrated that development of genomic and transcriptomic alterations during 

the metastatic process plays critical roles in determining drug responsiveness, and, as a 

result, are highly associated with clinical outcome of patients. Furthermore, PDX models are 

valuable tools for studying the correlation between tumor evolution and therapeutic 

heterogeneity. More studies of tumor heterogeneity during metastasis with respect to 

therapeutic effectiveness would pave the ways for prediction and improvement of clinical 

outcome in CRC patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Colorectal cancers (CRCs) exhibit various genomic and transcriptomic changes during 

metastasis because of genomic instable nature of cancer cells. However, detailed clinical 

implications of metastasis-associated alterations have not been fully understood. Herein, 

we developed and analyzed patient-derived xenograft models from patients with multiple 

organ metastases. Phylogenetic analysis showed that mutational alterations were closely 

connected with transcriptomic and epigenomic changes during the tumors’ metastatic 

process. Primary tumors with heterogeneous subclonal architecture showed more 

dynamic subclonal changes during metastasis, and subclonal acquisition of additional 

mutations or transcriptomic activation of bypass signaling pathway were responsible for 

the development of treatment resistance. Especially, gain of ERBB2 L755S mutation and 

activation of TGFβ signaling pathway were associated with the resistance to an ERBB2 

inhibitor, lapatinib and a PI3K inhibitor, BYL719, respectively. Thus, therapeutic 

heterogeneity from genome and transcriptome dynamics during metastasis should be 

considered for the treatment of CRC patients with metastasis.
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Figure 1. 
Genomic characterization of PDX tumors of CRCs. A, Summary of sample composition for 

PDX generation, whole exome sequencing, RNA sequencing and DNA targeted methyl-

capture sequencing. B, Distribution of the mutation frequencies of the top 10 significantly-

mutated cancer genes from the TCGA cohort (n = 224; blue), primary tumors of our patient 

cohort (n = 29; green) and primary tumors of our PDX cohort (n = 18; pink). Left panel 

represents the frequency of mutations from three cohorts, calculated by considering only 

primary tumors. Right panel shows P-values of each gene estimated by the MutSig 

algorithm. C, Panels with individual examples for comparison between matched patient and 

PDX tumors. Left upper panel contains scatterplots of somatic mutation allele frequencies of 

matched samples, and left middle panel represents genomic distribution of somatic copy 
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number alterations (red region, amplification; blue region, deletion) in matched patient 

(outer circle) and PDX (inner circle) tumors. Right upper panel shows tumor clonal 

architecture of matched patient and PDX tumors, estimated by PyClone algorithm. Line 

widths indicate the number of mutations in each cluster (numbers in brackets next to each 

cluster). Lower panel is the representative microscopic images of immunohistological 

analysis in matched patient and PDX tumors (100X). Immunohistochemical staining were 

performed for carcinoembryonic antigen (CEA), cytokeratin 7 (CK7), CK20, Ki-67, and E-

cadherin.
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Figure 2. 
Branched evolutionary processes of tumors from CRC patients with multiple organ 

metastasis. Phylogenetic trees were reconstructed by neighbor-joining method using patient 

somatic mutations from patient whole exome sequencing analysis (left; Patient somatic 

mutation), PDX somatic mutations from PDX WES analysis (middle left; PDX somatic 

mutation), PDX mRNA expression from RNA-seq analysis (middle right; PDX mRNA 

expression), and PDX DNA methylation analysis (left; PDX DNA methylation). Colors of 

each line indicate the truncal mutations (gray), mutations found only in primary tumors 

(green), branched mutations (yellow) and private mutations (black). Representative genes 

with mutations in each evolutionary process are indicated next to the branch where the 

mutation occurred. Angles between branches were chosen only for convenience of display.
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Figure 3. 
Genomic distances compared to primary tumor in patient metastatic tumors and PDXs. A, 
Schematic presentation of analyzed tumors from patient #21 and primary tumor-derived 

PDXs. From primary tumor (T75), 4 tumors were metastasized to liver (T74, T79, T80 and 

T91), 3 tumors metastasized to regional lymph nodes (T81, T82 and T191), and 4 tumors 

were generated as PDXs. B, Estimates of evolutionary divergence in metastatic and PDX 

tumors revealed by maximum composite of somatic mutations. C, Somatic mutation 

distance estimates of patient metastatic tumors and PDXs compared to primary tumor.
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Figure 4. 
Clonal architecture and clonal dynamics of tumors of CRC patients with multiple organ 

metastasis by SciClone analysis. In each patient, cell cluster figures represent inferred 

composition of subclone clusters in primary and metastasized tumors, and fish plots 

represents inferred schematic of clonal evolution, showing percentage of cells belonging to 

each primary or metastasized tumor. Each color depicted each subclone cluster (C1 to C8). 

In patient #21, middle lower graph shows variant allele frequency of each subclone cluster in 

each primary or metastasis tumor.
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Figure 5. 
Metastasis-specific altered cancer hallmark gene sets from transcriptome and DNA 

methylation analysis in PDX tumors of CRC patients with multiple organ metastasis. 

Clustered heatmaps represent gene set activity scores calculated relative to primary tumors, 

which show a comparison of hallmark gene set activities between primary and metastasized 

tumors, from RNA sequencing (left panel) and DNA methylation sequencing (right panel). 

In expression analysis, red indicates that a hallmark is more active relative to primary tumor 

and blue indicates that a hallmark is less active. In methylation analysis, yellow indicates 

that a hallmark is more active relative to primary tumor and green indicates that a hallmark 

is less active.
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Figure 6. 
Therapeutic heterogeneity of tumors from one CRC patient with multiple organ metastasis. 

A-D, Relative tumor volume of the primary and metastasis PDX tumors at the endpoint of 

drug treatment. Relative tumor volume was calculated as fold changes based on the mean of 

the vehicle-treated (control) groups for each PDX tumor. Mice were treated with 5-FU (50 

mg/kg/week) + oxaliplatin (5 mg/kg/week) (5-FU/Oxa; A), lapatinib (30 mg/kg, twice a day; 

B), trametinib (2 mg/kg/day; C), and BYL719 (25 mg/kg/day; D). Asterisks indicate 

statistically significant differences (*, p < 0.05; **, p < 0.01; ***, p < 0.001) between 

control and drug-treated groups. E, TGFβ1 effect on sensitivity to a PI3K inhibitor, 

BYL719, in HEK293 cells. TGFβ1 (5 ng/ml) was treated 3 h before BYL719 treatment, and 

WST assays were used to examine the cytotoxic effect after 72 h treatment of BYL719 in 
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each concentration. IC50 values for BYL719 are given. Right graph shows the effect of 

TGFβ1 treatment on the expression of vimentin, which is a known TGFβ1-responsive gene.
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