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Abstract

The cellular and synaptic architecture of the rodent hippocampus has been described in thousands 

of peer-reviewed publications. However, no human- or machine-readable public catalog of 

synaptic electrophysiology data exists for this or any other neural system. Harnessing state of the 

art information technology, we have developed a cloud-based toolset for identifying empirical 

evidence from the scientific literature pertaining to synaptic electrophysiology, for extracting the 

experimental data of interest, and for linking each entry to relevant text or figure excerpts. Mining 

more than 1,200 published journal articles, we have identified eight different signal modalities 

quantified by 68 different methods to measure synaptic amplitude, kinetics, and plasticity in 

hippocampal neurons. We have designed a data structure that both reflects these variabilities and 

maintains the existing relations among experimental modalities. Moreover, we mapped every 

annotated experiment to identified “synapse types,” i.e. specific pairs of presynaptic and 

postsynaptic neuron types. To this aim, we leveraged Hippocampome.org, an open-access 

knowledge base of morphologically, electrophysiologically, and molecularly characterized neuron 

types in the rodent hippocampal formation. Specifically, we have implemented a computational 

pipeline to systematically translate neuron type properties into formal queries in order to find all 

compatible synapse types. With this system, we have collected nearly 40,000 synaptic data entities 

covering 88% of the 3,120 potential connections in Hippocampome.org. Correcting membrane 

potentials with respect to liquid junction potentials significantly reduced the difference between 

theoretical and experimental reversal potentials, thereby enabling the accurate conversion of all 

synaptic amplitudes to conductance. This dataset allows for large-scale hypothesis testing of the 

general rules governing synaptic signals. To illustrate these applications, we confirmed several 

expected correlations between synaptic measurements and their covariates while suggesting 

previously unreported ones. We release all data open source at Hippocampome.org in order to 

further research across disciplines.
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Introduction

Synaptic communication is essential for understanding the genesis, dynamics, and function 

of neuronal ensembles. The electrophysiology of synapses is often characterized in terms of 

signal amplitude, kinetics (delay and duration or rise and decay time), and short- or long-

term plasticity. Each of these characteristics depends on the combined properties of the pre- 

and post-synaptic neurons and varies widely across and within neural systems. The rodent 

hippocampus has long served as a discovery sandbox for synaptic biophysics (Buzsaki, 

1984; Freund & Buzsaki, 1996; Nicoll, 2017; Pelkey et al., 2017). Both excitatory and 

inhibitory synapses in the hippocampal formation exhibit tremendous diversity in a number 

of mechanisms including synchronous or asynchronous release (Daw, Tricoire, Erdelyi, 

Szabo, & McBain, 2009; Szabo, Holderith, Gulyas, Freund, & Hajos, 2010; Szabo, Papp, 

Mate, Szabo, & Hajos, 2014), failure rate (Losonczy, Biro, & Nusser, 2004; Maccaferri, 

Roberts, Szucs, Cottingham, & Somogyi, 2000), and potentiation or depression (Alle, Jonas, 

& Geiger, 2001; Jappy, Valiullina, Draguhn, & Rozov, 2016).

Despite the rich publication history in this field, no systematic data mining study has so far 

catalogued the properties of these synapses. Thus, a consistent synaptic inventory of 

different electrophysiological variants has yet to be made available online for the rodent 

hippocampus or any other neural circuit. Quantitative information about synapses is valuable 

for experimental scientists to ensure proper replicability of results, to identify knowledge 

gaps, and to enable congruent comparison of data. Detailed knowledge of synaptic 

properties allows computational neuroscientists to constrain and validate increasingly 

predictive simulations (Markram et al., 2015). A systematic and consistent knowledge base 

may also produce new discovery opportunities for data scientists in the spirit of ongoing 

large-scale, collaborative, and multinational efforts such as the BRAIN initiative and the 

Human Brain Project (Kandel, Markram, Matthews, Yuste, & Koch, 2013). Moreover, in 

light of recent progress in biologically inspired artificial intelligence (Ullman, 2019) and the 

design of neuromorphic chips empowered with artificial synapses (Wan, 2018; L. Q. Zhu, 

Wan, Guo, Shi, & Wan, 2014), both the scientific community and different industries have a 

growing interest in synaptic data to fuel data-driven modeling endeavors and the incubation 

of new technologies.

The Hippocampome.org project effectively organized a vast amount of information on the 

rodent hippocampal microcircuit at the cell type level (Wheeler et al., 2015). This 

knowledge base identifies 122 neuron types across the dentate gyrus, areas CA3, CA2, CA1, 

subiculum, and entorhinal cortex based on their main neurotransmitter released (glutamate 

or GABA), the laminar distribution of axons and dendrites, and converging molecular and 

electrophysiological evidence. This framework conveniently extends to the notion of 

“synapse type,” defined as a directional potential connection in a unique pair of presynaptic 

and postsynaptic neuron types (Rees et al., 2016). Based on available evidence regarding 

neuronal morphology and known targeting specificities (Rees, Moradi, & Ascoli, 2017), we 

estimate the existence of at least 3,120 potential connections in the hippocampal formation 

(Hippocampome.org/connectivity). For how many of these synapse types are any 
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experimental measurements available concerning at a minimum signal strength, time course, 

and plasticity?

Conducting a methodical data mining study for synaptic electrophysiology constitutes a 

formidable challenge. On the one hand, inconsistent terminology of neuron names and 

properties (Hamilton et al., 2017) renders fully automated text-mining approaches 

unreliable. On the other, purely manual data extraction and annotation from the scientific 

literature are excruciatingly labor intensive, time consuming, and error prone, because of the 

difficulties of unambiguously determining cell type based on morphological features and of 

detecting synaptic signal in published figures. In particular, most electrophysiological 

studies adopt their own custom definition of neuron types, often based on pragmatic 

requirements or limitations of the experimental design. Therefore, neuron groups from each 

research report can be typically mapped onto multiple distinct Hippocampome.org types. 

Furthermore, the definitions of data modalities and of measured values are also often 

inconsistent in peer-reviewed publications.

In order to tackle the above challenges we have recently devised a systematic workflow 

combining state-of-the-art information technology with carefully vetted domain expertise 

(Moradi & Ascoli, 2019). We split each relevant scientific article into several unique 

experiments delimiting finite sets of synapse types. We then translate the morphology, 

molecular markers, membrane electrophysiology, and firing patterns of the possible pre- and 

post-synaptic neurons into machine-readable queries. We have built a search engine to 

translate each query into a dynamic list of potential connections. In parallel, the synaptic 

electrophysiology data, either in the body or the figures of each paper, are semi-

automatically annotated, extracted, digitized, and linked to proper references and 

comprehensive metadata using a custom-designed cloud-based data mining toolset.

Here we present quantitative synaptic electrophysiology results using the above described 

data processing pipeline. Specifically, with this work we publicly release over 8,000 pieces 

of annotated experimental evidence from more than 1,200 journal articles, accounting for 

nearly 90% of synapse types in the rodent hippocampal formation. We demonstrate the 

richness of these data by reconciling the observed and theoretical reversal potential values 

for the main excitatory and inhibitory ionotropic receptors (AMPA and GABAA) after 

correction for liquid junction potential, by quantifying known interactions between recorded 

synaptic parameters and common experimental covariates, and by reporting several novel 

correlations for unitary GABAergic currents.

Methods

Inclusion criteria and literature search methodology

The scope of this work concerns the monosynaptic electrophysiology of non-cultured, 

healthy, adult or young adult (>P12) rodent hippocampal formation: dentate gyrus, CA3, 

CA2, CA1, subiculum, and entorhinal cortex. The data sources included all peer-reviewed 

original articles containing direct experimental evidence pertaining to synaptic signals (i.e., 

excluding reviews and book chapters). The relevant corpus was collated in three steps. We 

started by mining the 476 papers already included in the bibliography of Hippocampome.org 
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v1.3 that met these criteria. Next, we searched all references of and citations to those papers 

through 2018. We assessed each new article for the presence of measurements of synaptic 

signals accompanied by relevant information to identify the corresponding neuron types, 

including morphology, molecular expression, and intrinsic electrophysiology. We annotated 

every article with pertinent content, lack thereof or the reason for exclusion. Lastly, we 

performed literature searches specifically targeted at all potential connections still devoid of 

synaptic information. We also set a PubMed alert for the query ‘interneuron AND 

(hippocampus OR CA1 OR CA2 OR CA3 OR “dentate gyrus” OR subiculum OR 

“entorhinal cortex”) AND (IPSP OR IPSC OR EPSP OR EPSC)’ to maintain the knowledge 

base updated with forthcoming publications.

Data mining procedures

We have implemented a set of cloud-based tools to assist with the critical aspects of data 

mining. We used Google Apps Script cloud computing framework to develop the backend 

and CSS, HTML5, and JavaScript to design the frontend. To encourage collaboration and 

data reusage, we freely release with this study all mined data, tools, source codes, and users’ 

manuals via Hippocampome.org/synaptome.

Text analysis.—The central elements of interest in each relevant article are the reported 

synaptic signals in the form of either recorded traces or quantitative measurements of 

amplitude, kinetics, and plasticity. Besides synaptic signals, we also identified in every 

article any figure or text excerpt corresponding to three distinct types of additional content: 

properties that may define neuron types, experimental metadata, and other useful 

information. Pertinent neuron type properties include anatomy (e.g. somatic location and 

laminar distribution of axons), molecular biomarkers (e.g. expression of parvalbumin and 

lack of somatostatin), membrane electrophysiology (e.g. input resistance and time constant), 

and firing patterns (e.g. rapidly adapting or persistent bursting). Each of these characteristics 

may refer to, and are separately annotated for, presynaptic or postsynaptic neurons. Metadata 

consists of any covariates that may change the properties of synaptic signals, such as animal 

age and strain, drugs, solutions, temperature, and recording conditions and settings. Other 

useful information includes, among many others, numerical ratios of different neuron types, 

evidence of synaptic specificity, and connection probabilities.

Informatics tools.—In order to make the systematic extraction of the above details less 

errorprone, time-consuming, and labor-intensive, we have custom designed a dedicated 

graphical user interface (“Review” function at Hippocampome.org/synaptome). This tool is 

ergonomically optimized to assist in metadata annotation and automatically highlights 

potential areas of interest in the text excerpts. An accompanying “Text Cleaner” tool 

prepares the excerpts for editing and labeling by autonomously standardizing and correcting 

all frequent formatting inconsistencies (special characters, Greek letters, symbols, etc.). The 

“data extraction” tool dynamically presents to the user a series of fillable forms with fields 

relevant to the identified measurement methods after pre-compiling any suitable entry with 

information already recognized in the text annotation phase. Lastly, a “Check Query” tool 

maps each experiment to its appropriate subset of Hippocampome.org potential connections 

(Hippocampome.org/connectivity). This is achieved by translating the neuron type 
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properties of each experiment into a custom machine-readable query (Hippocampome.org/

query) and by calling via web API a PHP search engine to match those properties to the 

corresponding potential connections.

Data quantification

In order to assess quantitatively the amount of the knowledge base diverse content, we adopt 

and extend the terminology utilized by Hippocampome.org (Wheeler et al., 2015). For the 

purpose of this study, a piece of evidence (PoE) is a numerical or categorical data entity that 

describes a synaptic signal. While categorical data are typically extracted directly from 

papers, numerical data can also be obtained by quantifying digitized synaptic traces. Any 

independent measurement or observation generally constitutes a distinct PoE. For example, 

two recordings of the same neuron pair at different extracellular calcium concentrations will 

produce two PoEs. All numerical or categorical data entities that describe experimental 

conditions and covariates rather than synaptic signals are considered metadata (Table 1). 

Numerical data are typically expressed as combinations of central tendency (mean or 

median) and variance (standard error, standard deviation or interquartile range) or else a 

range (lower and upper limits), plus a sample size. In other words, a single numerical PoE or 

covariate may consist of up to five values to describe a sample distribution, plus eventual 

text comments.

A piece of knowledge (PoK) is a conceptualized value or range of values for a specific 

synaptic property of a given synapse type: in other words, a parameter describing amplitude, 

kinetics, or plasticity for a unique pair or presynaptic and postsynaptic neurons that is 

supported by at least one PoE. For a particular neuron pair, different signal modalities and/or 

different measurements of the same specific synaptic property (e.g. 10–90% and 20–80% 

rise times) contribute to one and the same PoK (in this case, rise time for that synapse type). 

However, if the same PoE can be mapped onto six synapse types (e.g. any combination of 

two presynaptic neuron types and three postsynaptic neuron types), it will produce six PoKs.

Data normalization and analysis

We implemented a reversal potential (Erev) and recording pipette liquid junction potential 

calculator in JavaScript running on the Google Cloud.

Reversal potential calculation.—The code first calculates the intracellular ionic 

concentrations from the pipette solution content based on recording method. For whole-cell 

and outside-out modalities, the intracellular concentrations are set to be equal to the pipette 

concentrations. For cell-attached experiments, in contrast, the following standard textbook 

(Hille, 2001) ionic concentrations are assumed (in mM): [Na+]i=10, [K+]i =140, [Cl−]i =4, 

[Ca2+]i=10−4, [Mg2+]i=0.8, and [HCO3
−]i=12. For sharp-electrode recordings, we 

empirically assume 1% ion exchange relative to the concentration difference at the start of 

the experiment,

X i = X i, 0 + 0.01 × X pipette − X i, 0
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where X is the ion, [X]pipette is the ionic concentration in the pipette, and [X]I,0 is the 

intracellular concentration before cell impalement. The same 1% ionic exchange also 

applied to the perforated-patch method, but only for permeable monovalent cations 

(Finkelstein & Andersen, 1981). Next, the algorithm corrects the concentrations by 

considering the effect of weak acids like HEPES and polyvalent chelating agents like EGTA 

that do not fully ionize in solution, and converts all resulting values to ionic activities 

(Davies, 1938). Finally, the calculator derives the reversal potential from ionic activities 

solving numerically the Goldman-Hodgkin-Katz current equation for channels permeable to 

ions with any number of valences (Hille, 2001). Since ionic valences for synaptic channels 

in the scope of this study are limited to +1, −1, or +2, we employed Lewis’ voltage equation 

(Lewis, 1979) for efficient initialization of the numerical solver (Loisel, 2012).

For the relative ionic permeability parameters in the Goldman-Hodgkin-Katz equation, we 

used available experimentally estimates for AMPA, NMDA, GABAA and GABAB channels 

(Farrant & Kaila, 2007; Jatzke, Watanabe, & Wollmuth, 2002; Traynelis et al., 2010). The 

GABAA channel is considered permeable to Cl−, HCO3
−, Br−, and F−, as well as to 

gluconate if explicitly noted. For GABAB, we included both K+ and Na+ with an empirically 

determined ratio PNa/PK=0.02, compatible with earlier research (Hille, 1973; Sah, Gibb, & 

Gage, 1988). Calciumimpermeable AMPA channel were presumed to be permeable to Na+, 

K+, and Cs+. Calciumpermeable AMPA and NMDA channels included the same ionic 

species plus Ca2+. The relative calcium permeability of AMPA depends on membrane 

potential, increasing from 0.6 at −60 mV to 0.92 at −20 mV (Jatzke et al., 2002) and we 

assumed a linear function.

Junction potential calculation.—The junction potential (Vj) is observed at the tip of the 

recording electrode, where ion exchange occurs between the pipette solution and the bath or 

the intracellular solutions. Faster moving ions leave behind slower ions that may have 

opposite charge. These ionic mobility differences lead to an electric field at the interface, or 

junction, between the two liquids. The generalized Henderson equation derives Vj from 

ionic activities and experimentally determined ion mobilities (Barry, 1994; Barry & Lynch, 

1991; Marino, Misuri, & Brogioli, 2014; Morf, 2012). We correct Vj between the 

extracellular and pipette solutions for all recording methods, except for the sharp-electrode, 

for which we additionally correct for the difference of Vj between the pipette and 

intracellular solutions. The calculator automatically chooses the appropriate Vj sign for 

current- or voltage-clamp recordings. If an article reports the experimental Vj measurement, 

we use the value, but choose the sign based on the calculated Vj.

Statistics and illustrations.—For correlation analysis and figure plotting we used 

publicly available R packages including R Markdown, Tidyverse, ggpubr, Venneuler, and 

UpSetR (Baumer, Cetinkaya-Rundel, Bray, Loi, & Horton, 2014; Lex, Gehlenborg, Strobelt, 

Vuillemot, & Pfister, 2014; Wickham, 2016, 2017; Wilkinson & Urbanek, 2011). We used 

Pearson and Spearman coefficients as measures of linear and nonlinear correlations, 

respectively. We assessed statistical differences with Wilcoxon non-parametric test and 

considered results significant when P < 0.05 after “False Discovery Rate” multiple-testing 

correction (Benjamini & Hochberg, 1995).
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Results

Mapping Experiments to Synapse Types

Any unique combination of potentially connected presynaptic and postsynaptic neuron types 

produces a specific synapse type. Consider as an example a simple case of inhibitory 

convergence on the principal cells of the dentate gyrus (Fig. 1). This minimalist circuit 

consists of three different neuron types: granule as postsynaptic cell and two GABAergic 

interneurons as presynaptic cells, for instance hilar commissural pathway associated 

(HICAP) and basket neurons. The potential connection between HICAP (a dendritic-

targeting, non-fast-spiking interneuron type) and granule cells is produced by the co-

localization of the pre-synaptic axon and postsynaptic dendrites in the inner molecular layer 

(Fig. 1A). Similarly, the synapse type between (perisomatic-targeting, fast-spiking) basket 

and granule cells is consistent with the spatial overlap of the presynaptic axon with the 

postsynaptic soma and proximal dendrites in the granular layer. Even though individual 

synaptic traces might not represent the population averages, the signals recorded from these 

two pairs display evidently distinct amplitudes and kinetics (Fig. 1B). Conversely, granule 

cells also elicit diversified synaptic responses in different postsynaptic interneuron types 

(Toth, Suares, Lawrence, Philips-Tansey, & McBain, 2000).

The magnitude of the problem begins to become apparent when considering that the 122 

known neuron types in the rodent hippocampal formation generate as many as 3,120 distinct 

synapse types (Fig. 1C). This intrinsic circuit complexity is cumulated with another 

challenge: the uncertain identification of synapse types in available experimental reports. 

The above example clearly pinpoints individual presynaptic as well as postsynaptic neuron 

types and therefore unique synapse types, but this is hardly typical. More often studies do 

not report the reconstructed morphologies of the stimulated or recorded neurons, but instead 

simply describe the common properties of different neuron types. If multiple neuron types 

share these properties, mapping the reported data to a single synapse type becomes 

impossible. Even the most accurate paired-recording experiments, in which all cell types are 

adequately reconstructed, may suffer from result pooling. Nonetheless, it is usually possible 

to map a given experimental description to a limited set of synapse types.

Different data entities from the same publication may map to distinct sets of synapse types. 

The same study illustrated above, for example, also grouped many stimulated neuron types 

with diverse morphologies based on their spiking frequencies and soma location. Thus, our 

data mining process parses each paper into separate sections or “experiment” based on the 

common sets of identifiable neuron types (Fig. 2). For instance, a change in the stimulation 

region of the slice produces a distinct mapping, but a change in the extracellular calcium 

concentration does not. As described in the Methods, the properties of presynaptic and 

postsynaptic neurons are then mapped onto a specific group of synapse types. We consider a 

mapping as “proper” only if the corresponding experiment matches a single synapse type. 

For all other “fuzzy” mappings that involve multiple synapse types, we assign high and low 

confidence to the more and less likely neuron type pair(s), respectively. This determination 

relies on cell-type ratios, connection selectivity, or explicit assumptions of the original 

authors. In the experiment reported in Fig. 2, for instance, the HICAP-granule mapping is 
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high-confidence due to the largest reported HICAP ratio among possible presynaptic types. 

Note that, although this work defines synapse types based on potential rather than 

established contacts, proper mappings are especially valuable because they also demonstrate 

the existence of (i.e. they “validate”) the corresponding connection.

Dense Coverage of Synaptic Knowledge

Starting from 1,203 publications, we have extracted, annotated, and mapped the properties 

of 2,746 synapse types, or 88% of the 3,120 potential connections in the rodent hippocampal 

formation (Fig. 3). This proportion is remarkably stable across all major sub-regions of the 

hippocampal formation: 85.3% in dentate gyrus, 84.6% in CA3, 92.7% in CA1, 87.0% in 

entorhinal cortex, and 86.9% for projection synapses between sub-regions. Despite the 

richness of the hippocampus literature, only a minority (10.9%) of synapse types had at least 

one proper (n=71) or high-confidence fuzzy (n=229) mapping. Again, this proportion was 

essentially constant across CA3 (11.5%), CA1 (10.8%), and sub-region projections (10.9%), 

but was higher in dentate gyrus (17.7%) and lower in entorhinal cortex (5.6%). Out of over 

3,000 potential connections, available experimental evidence can firmly validate merely 194 

synapse types (Fig. 3A, grid pattern), including 123 based on electron microscopy (69 high-

confidence fuzzy, 52 low-confidence fuzzy, 2 with no synaptic electrophysiology). Most 

synapse types with proper mapping also had high-confidence fuzzy mappings, and low-

confidence fuzzy evidence was available for all of the high-confidence or properly-mapped 

types (Fig. 3B). The available data allow the determination of the amplitude and kinetics of 

most synapse types; plasticity information is available for slightly more than half of the 

cases, while other measurements, such as transmission failure and quantal release, for less 

than one third (Fig. 3C).

The extracted signals encompass four mechanism of synaptic activation: (i) “unitary,” 

resulting from the stimulation of an individual presynaptic neuron, as in paired-recordings; 

(ii) “evoked,” resulting from the stimulation of a population of presynaptic neurons, as in 

extracellular electro-, photo-or chemo-stimulation; (iii) “spontaneous,” reflecting 

background synaptic activity in the absence of stimulations controlled by the experimenter; 

and (iv) “miniature,” corresponding to unprompted neurotransmitter release while blocking 

action potentials. The choice of stimulation method greatly impacts mapping resolution: half 

of paired recordings but only 24% of all experiments are mapped to just one or two synapse 

types; due to the higher mapping degeneracy of evoked stimulation and (especially) 

spontaneous or miniature activity, the overall median number of synapse types per 

experiment is eight (Fig. 3D).

Recording Modalities, Measurement Methods, and User Access

Postsynaptic signals are recorded as either potentials in current-clamp or currents in voltage-

clamp, yielding eight different combinations with the four above-described stimulation 

methods (Fig. 4A). The most common modality is evoked current, but different modalities 

are often related in the same experiments, for instance when an investigator tests different 

stimulation methods and recording modes while clamping a postsynaptic neuron. Preserving 

the link between these data is particularly useful to integrate disparate data sources into a 

consistent analysis framework. The most common relation is between evoked currents and 
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potentials (Fig. 4B), but a substantial number (>30) of experiments also offers valuable 

relations among three data modalities.

Besides the data modality distinction, the measurement methods and definitions to quantify 

the main properties of synaptic signals constitute another major source of data diversity 

compounding two distinct challenges. On the one hand, researchers characterize distinct 

aspects of amplitude, kinetics, and plasticity with complementary measures that are 

inherently incomparable. On the other, the terminology used to describe these measurements 

in scientific reports is itself ambiguous. As a result, even a relatively clear concept as 

“amplitude” may become difficult to relate between two studies of the same synapse type, 

because, when averaging signal traces, some researchers include all events, while others 

omit transmission failures. Some, but not all, reports refer to the latter case as “synaptic 

potency;” we adopt this nomenclature in the knowledge base to minimize confusion, but we 

always pay special attention to the correct identification of different measures by the 

reported definitions rather than the chosen name.

The situation is substantially more complex when extracting data pertaining to other 

synaptic features. Kinetics, for instance, can be characterized in terms of latency, rise, and 

decay time. Rise time can be reported as an exponential constant or as the temporal interval 

elapsed from 20% to 80% of the amplitude value among several other possibilities. Often 

rise and decay are combined as when reporting half-height signal width. With respect to 

plasticity, even if solely focusing on short-term dynamics and foregoing long-term changes, 

different experimental protocols may induce facilitation or depression and changes can refer 

to signal slope or amplitude, just to mention two of the many dimensions to consider. Since 

the terminology is here, too, inconsistent across studies, we have adopted the naming 

convention used by most studies, but employed prefixes and suffixes to differentiate 

conflicting names. Overall, besides synonymy, we have identified 68 actually distinct 

synaptic property measures (Fig. 5).

Altogether, we have extracted 39,522 data entities: 8,486 (21%) constituting PoEs and 

31,036 (79%) metadata (Table 2). Although paired recordings constituted approximately one 

quarter of mined experiments, they generated nearly 45% of the quantifiable synaptic 

evidence. Considering the diversity of stimulation protocols, recording modalities, and 

measurement types, the synaptic data are distributed across 619 columns in the master table 

of the knowledge base. The entire data collection is publicly released at Hippocampome.org/

synaptome (Fig. 6). Users can search or sort synapse types based on the properties of pre- 

and post-synaptic neuron types. Each synapse type is linked to a list of experiment IDs. By 

following the experiment IDs on the “Evidence” tab, the user can access experiment 

summaries, annotated excerpts, and digitized traces. The same experiment IDs on the 

“Synaptic Data” tab provide access to the corresponding extracted values for amplitude, 

kinetics, plasticity, and other available properties.

Data Integration and Usage Examples

The multiple sources and diverse settings of mined data make data normalization a necessity 

for meaningful comparisons. The junction potential Vj, for instance, adds a systematic error 

that is usually not considered when reporting synaptic signal values. We have corrected all 
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synaptic measurements based on the ionic composition of the interfacing solutions using our 

liquid-junction potential calculator, which is uniquely custom-designed to properly handle 

all recording methods and modes. Even after Vj correction, synaptic amplitude strongly 

depends on failure rate as well as on the difference between membrane and reversal 

potentials. To account for failure rate, we convert amplitude to potency by dividing the 

reported value by the success probability. Because electrophysiological studies are 

performed at widely different membrane potentials, data must be further normalized to 

conductance using Ohm’s law. This conversion, however, also requires a suitable Erev value, 

which is not always measured or reported. The broad ranges of solution compositions used 

experimentally impose substantial differences in reversal potential. Thus, we calculate Erev 

from the ionic composition of the bath and pipette solutions, recording method, and 

temperature.

With this normalization process in place, we used the subset of experimentally measured 

Erev data to test the hypothesis that correcting for liquid junction potential would reduce the 

difference between experimental and theoretical reversal potentials. Remarkably, the Vj 

correction improved the agreement between calculated and measured Erev for the vast 

majority of experiments (Fig. 7). Specifically, the average mismatch became statistically nil 

for both excitatory and inhibitory synapses in whole cell recordings as well as for GABAA 

synapses recorded with sharp electrodes. For the limited sample of sharp-recorded AMPA 

synapses, the correction was neutral, possibly due to a larger margin of non-systematic error 

in this modality.

Integrating reported synaptic data for thousands of synapse types provides a unique meta-

analysis opportunity to confirm earlier observations and foster new discoveries. To this aim, 

we measured the correlation between specific properties of unitary GABAergic currents and 

different covariates (Table 3). In accordance with previous hippocampal studies, increasing 

the temperature reduces synaptic latency, decay kinetics, and paired-pulse ratio, making 

synapses faster, shorter, and more prone to show short-term depression than to short-term 

facilitation. Moreover, rising intracellular chloride concentration increases synaptic 

conductance and adding extracellular calcium or removing extracellular magnesium abates 

the synaptic failure rate. However, other previously suggested interactions did not reach 

statistical significance, such as the effects of holding potential or intracellular chloride 

concentration on decay time.

We have also identified several relations that, to the best of our knowledge, had not been 

proposed before in the hippocampus literature. In particular, the paired-pulse ratio increases 

with postsynaptic membrane depolarization, but decreases with the extracellular 

concentration ratio between calcium and magnesium. Furthermore, synapses with higher 

failure rate tend to have smaller synaptic conductance potency. Last but not least, we 

checked whether faster GABAergic synapses also tend to be stronger and vice versa. The 

available data from unitary response indeed support a negative correlation between 

conductance potency and temporal decay (Fig. 8). Splitting the signals by decay time 

constant median accordingly results in a significant group difference in synaptic strength. 

Both the linear dependence and the effect size are more demarcated at physiological 

temperature than at room temperature.
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Discussion

Synapses play a crucial role in neural computation. Constraining large-scale biologically 

realistic simulations of brain circuits require detailed estimations of quantitative synaptic 

electrophysiology parameters (Bezaire, Raikov, Burk, Vyas, & Soltesz, 2016; Markram et 

al., 2015). Brain-wide catalogs of synaptic information may allow for data mining and 

systematic hypothesis testing. A recent high-throuput genetic imaging study in the mouse, 

for instance, ascribed a high degree of synaptic diversity to the hippocampal formation, 

possibly associated with its specific cognitive functions (F. Zhu et al., 2018). However, 

efforts in this direction have so far largely focused on molecular features (O’Rourke, Weiler, 

Micheva, & Smith, 2012; Paul et al., 2017; Zhang et al., 2007). The electrophysiological 

knowledge base of synapse types we have introduced and released with this report is the first 

of its kind for the rodent hippocampus or, to the best of our knowledge, any other neural 

system. Mining the data of more than 1,200 papers, we have extracted synaptic measures 

(amplitude and kinetics almost always, but also plasticity or other characteristics in most 

cases) or traces for 88% of synapse types, with substantially uniform coverage within and 

across the main sub-regions: dentate gyrus, CA3, CA1, and entorhinal cortex. Based on our 

comprehensive and methodical literature coverage, we surmise that the remaining synapse 

types have not yet been experimentally investigated and more research is therefore needed to 

ascertain their properties.

Continuing and extending the Hippocampome.org standard, we have associated all mined 

information to publication excerpts at the data-entity level. Therefore, anyone can 

immediately inspect the experimental context online and critically verify synapse type 

assignments, extracted data, and any corresponding assumptions or interpretations. We hope 

that such high level of transparency and provenance tracking will encourage constructive 

user feedback, allowing refinements and improvements in future releases. Importantly, this 

public resource also integrates experimental data produced with different methods, linking 

them together at the synapse-type level. Explicitly annotating experimental settings, 

recording modalities and covariates greatly facilitates the review of earlier works at single 

neuron-type detail, a feature no current search engine or automated text-mining approach 

provide. In addition, since we distinguish specific measurement types on the basis of their 

reported definitions (as opposed to adopted terminology), all data we group under one 

column of the accompanying database are guaranteed to be uniform, ensuring meaningful 

comparability across studies.

This opens the prospect of complete data normalization to enable quantitative data analysis 

by accounting for the effect of different covariates like temperature and other experimental 

metadata (Tebaykin et al., 2018). In theory, computational modeling should allow one to 

reduce the (at least) 68 distinct measures the hippocampal literature offers to quantify the 

eight possible recording and stimulation combinations into a handful of phenomenological 

parameters: one for amplitude, one for kinetics, and two or three for short-term plasticity 

(Tsodyks & Markram, 1997). As a start, we have calculated the reversal potential and 

corrected the systematic liquid junction error for all experiments. In the future, the 

correlations we have identified among specific synaptic measures and different covariates 

may also become useful for data normalization.
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The majority of synaptic signals are recorded in slices. Extrapolating these in vitro 

manipulations to in vivo brain function is especially challenging because severed neuronal 

processes during sectioning alter connection probability and neuronal reconstruction 

integrity. For instance, one half of CA1 stratum oriens or stratum pyramidale neurons are 

partially axotomized in typical electrophysiological preparations, which affects 

morphological identification (Halasy, Buhl, Lorinczi, Tamas, & Somogyi, 1996; Kogo et al., 

2004) and synaptic activity (Gulyas et al., 2010) differentially in longitudinal and transverse 

slices (Couey et al., 2013; Surmeli et al., 2015; Xiong, Metheny, Johnson, & Cohen, 2017). 

Homeostatic mechanisms also change synaptic strength after slicing in order to compensate 

for axonal loss (Dumas et al., 2018; Kirov, Sorra, & Harris, 1999), implying that the time 

elapsed since slice preparation (which is hardly ever reported in peer-reviewed publications) 

may be a key determinant of synaptic amplitude.

The choice of experimental method may even mask physiologically important synaptic 

properties. For instance, Cajal-Retzius cells’ unique cytosolic chemistry makes GABAergic 

input excitatory in these neuron types (Marchionni et al., 2010). Whole-cell recording not 

only changes intracellular ionic concentrations immediately after establishment, but also 

washes the signaling molecules responsible for synaptic plasticity (Bauer & LeDoux, 2004; 

Kato, Clifford, & Zorumski, 1993; Lamsa, Heeroma, & Kullmann, 2005; Maccaferri & 

McBain, 1996), an effect likely depending on cell size and synaptic distance from soma. 

Moreover, common use of gluconate in the pipette solution may change membrane 

electrophysiology, firing pattern, and even synaptic potentials in recorded neurons (Bullis, 

Jones, & Poolos, 2007; Fatima-Shad & Barry, 1993; Velumian, Zhang, Pennefather, & 

Carlen, 1997). Comprehensive data normalization and meaningful computer simulations will 

require a careful accounting of these effects.

In order to place this knowledge base content in appropriate circuit context, it is humbling to 

recognize the relatively low mapping resolution relayed through traditional literature 

reporting, with about 50% of experiments assigned to eight or more synapse types. Part of 

this degeneracy may be attributed to the existence of multiple morphological variants for 

certain neuron types; for example, while the canonical form of CA1 oriens/lacunosum-

moleculare interneurons is characterized by an axonal tree ascending to lacunosum-

moleculare, certain sub-types also branch off in radiatum or collateralize in oriens (Wheeler 

et al., 2015). Depending on the available experimental details, in many cases the ambiguity 

in neuron type identification is more consequential, as when equating all parvalbumin-

expressing neurons to fast-spiking basket cells. To address these issues, our neuroinformatics 

pipeline translates all experiments in each study into machine-readable search queries, in 

order to find all corresponding potential connections automatically and in an unbiased way. 

Given the continuous evolution of modern technology (and of the very notion of neuron 

types in the neuroscience community), it is predictable that new cell types will be found and 

agreed upon, thus refining our understanding of hippocampal circuitry. Likewise, ongoing 

connectomics research will progressively validate and refute an increasing number of 

potential connections. Yet, the experimental information already reported in the scientific 

literature is not affected by these future changes and thus the resulting machine-readable 

queries will remain valid. Simply updating the neuron type definitions in 

Moradi and Ascoli Page 12

Hippocampus. Author manuscript; available in PMC 2021 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hippocampome.org will yield a revised mapping and, with additional neuron type properties 

identified, improved mapping resolution.

In the current experimental landscape, classic paired recordings produce the best mapping 

resolution and thus remains the most useful method to study synapses. In this method, both 

presynaptic and postsynaptic neuron types can be morphologically reconstructed while 

simultaneously measuring their molecular expression, membrane biophysics, and firing 

patterns. Furthermore, all eight different synaptic modalities are potentially recordable from 

the same neuron pair in one experimental setting. Although paired recordings can validate 

potential connections, it remains challenging to firmly refute potential connections 

electrophysiologically. Even with a large enough sample size to avoid sampling bias, most 

stimulation protocols may be unsuitable to rule out synaptic connectivity. For instance, the 

low initial release probability of certain hippocampal synapses requires 10 to 20 stimuli to 

trigger a detectable signal (Szabadics & Soltesz, 2009). An ideal experiment needs an 

adequate number of presynaptic stimuli at different frequencies. Optimizing the stimulation 

paradigm may be useful to conduct the maximum number of informative synaptic 

experiments in a short time neuron remain viable.

Increasing the number of electrodes, the connectivity of examinable neuronal pairs grows 

quadratically (Perin & Markram, 2013). For instance, octuple whole-cell recording enables 

the parallel investigation of up to 56 (8×7) neuron pairs, while examining evoked and 

background synaptic activity, morphology, electrophysiology, and biochemistry of eight 

neurons (Jiang et al., 2015). Automated robotic patch clamp can further augment the data 

yield (Bruggemann, Stoelzle, George, Behrends, & Fertig, 2006; Kodandaramaiah, Franzesi, 

Chow, Boyden, & Forest, 2012; Lepple-Wienhues, Ferlinz, Seeger, & Schafer, 2003; 

Vasilyev, Merrill, Iwanow, Dunlop, & Bowlby, 2006). Combining optogenetically-enabled 

photostimulation (Kim, Adhikari, & Deisseroth, 2017) or single-neuron genetic profiling by 

patch-seq (Cadwell et al., 2016) may eventually enable the compilation of a whole-brain, 

high-resolution functional and multimodal map of brain synapses.

Although effective for statistical analysis and widespread in reporting practice, data pooling 

lowers the mapping resolution of experiments (as illustrated in Fig. 2). To alleviate this 

problem and increase the impact of studies, we recommend the release of experimental data, 

at least in the form of supplemental tables, thus allowing meta-analysis and data re-usage. 

Each synaptic measure should be linked to the morphology, biomarkers, electrophysiology, 

and firing patterns of the corresponding neuron pair. Researchers can also use our 

framework to organize their data, which optimizes the mapping, usage, and visibility of their 

data and prevents the information loss inherent in within-study data pooling.

In contrast, collating datasets across laboratories, experimental techniques, geographical 

locations, publication years, and animal subjects may be a powerful approach for 

discovering general trends, anomalous results or interesting covariates. For example, our 

meta-analysis revealed several new correlations that would have been impossible to detect 

from a single source and a uniform set of metadata. These findings are valuable and robust 

because of both larger sample size and data source diversity, allowing the discovery of truly 

invariant synaptic properties. Moreover, having collected and organized all available 
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electrophysiology data concerning hippocampal synapses will facilitate the construction of 

better computational models of this important neural system while helping researchers find 

gaps in scientific knowledge and compare new data with existing ones. We also hope this 

public resource will encourage multidisciplinary approaches to complex multimodal 

neurobiological data interpretation.
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Figure 1. From neuron types to synapse types.
(A) Red, the axons of the dentate gyrus (DG) basket neuron type innervate SG (stratum 

granulare), and those of the HICAP type invade SMi (stratum moleculare - inner). Blue and 

green, the dendrites of both neuron types span all four DG layers. The local axons of granule 

cells innervate the hilus (H) while its dendrites span SMi and SMo (stratum moleculare - 

outer). HICAP axons and granule dendrites are co-located, as are the basket axons and the 

granule perisomatic region; therefore, these neurons give rise to two distinct inhibitory 

synapse types. Morphologies rendered with neuTube (Feng, Zhao, & Kim, 2015) using data 

from the Bausch and Lien archives (Bausch, He, Petrova, Wang, & McNamara, 2006; Liu, 

Cheng, & Lien, 2014) of NeuroMorpho.Org (Ascoli, Donohue, & Halavi, 2007). (B) The 

presynaptic spikes (upper traces) generate postsynaptic signals (lower traces) digitized and 

plotted from pair recording (Liu et al., 2014), from which we identified “Fast- Spiking” as 

DG basket and “Non-Fast-Spiking” as DG HICAP (IN: interneuron). (C) The 122 known 

neuron types in the rodent hippocampal formation (presynaptic: rows; postsynaptic: 

columns) form 3,120 synapse types. The heat map (SUB: subiculum; EC: entorhinal cortex) 

represents the number of distinct layers in which excitatory and inhibitory axons co-localize 

with relevant postsynaptic elements. For instance, the inhibitory synapse types in (A) have 
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only one co-location each (in SMi and SG, respectively), corresponding to a −1 value in the 

directional connectivity matrix.
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Figure 2. Literature mining and knowledge extraction.
For every experiment, we provide (i) a summary; (ii) connectivity ratios, cell-types counts, 

and any other relevant notes; (iii) bath and pipette solutions; (iv) recorded modalities and 

pertinent data such as postsynaptic potential (Vm), liquid junction correction (Vj), and 

measured or calculated reversal potentials (Erev), each tagged with a reference ID; (v) 

needed assumptions for neuron identification; (vi) a machine-readable query; and (vii) 

mapped synapse types and related confidences (blue border: high confidence; others: low 

confidence), along with identifiers for the publication (PMID), experiment (eID), and 

extracted data IDs (dIDs). The data in this example is from (Liu et al., 2014).
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Figure 3. Mapping summary.
(A) Integrated knowledge mapping (clockwise from top): “proper” (blue), “high-confidence 

fuzzy” (green), and “low-confidence fuzzy” (purple). Grid patterns indicate validated (as 

opposed to potential) connections. (B) An individual synapse type may be linked to multiple 

experiments with variable mapping confidence. (C) Amplitude and kinetics are the most 

prevalently reported synaptic electrophysiology properties. (D) Mapping degeneracy by 

stimulation method: unitary signals (mostly paired recording), evoked (extracellular) and 

spontaneous. Filled circles represent all methods together.
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Figure 4. Data modalities.
(A) Synaptic signals can be generated in eight different modalities depending on stimulation 

methods (e, u, s, and m) and response type (C or P). (B) The most prevalent modality among 

all extracted data (upper chart) is eC and the most prevalent combination of multiple 

modalities in the same experiment (right chart) is between eC and eP.
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Figure 5. Measurement methods diversity.
Synaptic conductance is the most prevalent measure for amplitude, single-exponential decay 

time constant (τ_Decay) for kinetics, paired-pulse ratio of 2nd synaptic signal to the 1st (2/1 

Amplitude Ratio) for plasticity, and failure rate of the 1st signal for other features.
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Figure 6. Data access.
The described knowledge base of synaptic electrophysiology is freely available online. (A) 
Synapse types are searchable by the properties of the presynaptic and postsynaptic neuron 

types. (B) They are linked to experiment IDs categorized by mapping confidence. (C) The 

details and summaries of any experiment (for example, experiment with eID 331) can be 

reviewed while checking excerpts as evidence and (D) the extracted data is directly 

accessible. This example is from (Struber, Jonas, & Bartos, 2015).
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Figure 7. Correcting the liquid junction potential reduces the measured synaptic reversal 
potential error.
After correcting the experimentally measured synaptic reversal potential (E) for liquid 

junction potential (Vj), the difference between Etheoretical and Eexperimental becomes close to 

zero on average. All data needed to calculate a pair (each grey line) come from one 

experiment with different solutions and temperature, which lead to different Vj and E.
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Figure 8. Faster GABAergic synapses are stronger.
(A) GABAergic unitary synaptic potency significantly correlates with decay, both at 

temperatures ≥31°C or <31°C. (B) The conductance of slower synapses (decay time constant 

above median) is significantly smaller than that of faster ones. Each data point is the average 

or single result of a separate experiment.
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Table 1:

Metadata list.

Type Metadata Examples

Synapse

Synaptic Response Glutamatergic, GABAergic, Mixed

Slow component In addition to fast component, Discoverable but were absent

Calcium-Permeable AMPA High-Density, Low-Density, No, Untested

Erev

Fast component: 0.07±0.6 mV (n=3) with [CI−]i=149 mM

Slow component: −87.39 mV calculated by Hippocampome.org

Other Background Synaptic Frequency: 32.7 Hz, Q10: 2.1

M.
Membrane Potentials RMP: [>−65.87] mV, Vh: 25.87 mV, Vss: −66.2 mV, lss: 0.2 nA

Membrane Properties Input Resistance: 449.2 MΩ, Time Constant: 47.8 ms, Capacitance: 110 pF

Stat
Measures Mean ± SEM (n=100)

Trace Statistics Averaged (5 traces), Single

Stimulation

Method Electrostimulation (DC), Electrostimulation (AC), Photostimulation, GABA Puff

Photostimulation Region: CA1:SLM non-focal, Wave-length: 470 nm

Electrostimulation
Region: CA1:SR, Strength: [200 to 400] nA, Frequency: 100 Hz repeated 5 times

Distance with recorded neuron: [700 to 900] μm

Electrode Resistance: [80 to 175] MΩ, Type: Bipolar, Tip Diameter: 20 μm

Tissue

Biodiversity Species: Mice, Strain: Gad2-PASM

Animal Size Postnatal Age: P18–24, Weight: [600 to 900] g, Sex: Male

Slicing Region: Hippocampal Dorsal/Rostral, Orientation: Coronal, Thickness: 250 μm

Rec.

Method Patch: Whole-cell, [Monoamines]i Preservation: No, Section: Soma & Dendrites

Resistances Pipette: [3 to 5] MΩ, Seal: [>1000] MΩ, Series: [8 to 35] MΩ with 70% compensation

Junction Potential 10 mV K-gluconate solution, 20 mV Cs-methylsulfonate solution

Solutions

Bath (mM) 125 NaCI, 2.5 KCI, 25 NaHCO3, 1.25 NaH2PO4, 2 Na-pyruvate, 2 CaCI2, 1 MgCI2

Pipette (mM)
135 K-gluconate, 5 KCI, 0.1 Na-EGTA, 10 HEPES, 2 NaCI, 5 Mg-ATP, 0.4 Na2GTP, 10 Na2-
phosphocreatine

Osmolarity and Acidity pH: Bath 7.4, Pipette 7.2, Osmolarity: Bath 297 mOsm, Pipette [280 to 290] mOsm

Temperature [30 to 32] °C

Drugs GABA or Glutamate: Picrotoxin (100 μM), CGP52432 (1 μM), DL-AP5 (50 μM), Anesthesia 
Pentobarbital (140 mg/kg IP), Other: Atropine (10 μM), TTX (1 μM)

Abbreviations: M., membrane, Erev, reversal potential, RMP, resting membrane potential, Vh, holding potential, Vss steady state membrane 

potential resulting from constant current injection (Iss).
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Table 2:

Pieces of evidence.

Amplitude Kinetics Plasticity Other Total

Parameter Latency Rise time Decay time ST-P LT-P Failure rates Quantal

PoE 2,474 (29%) 365 (4%) 437 (5%) 1,719 (20%) 2,686 
(32%)

332 (4%) 312 (4%) 114 (1%) 8,439 
(100%)
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Table 3:

Covariates significantly correlate with unitary GABAergic postsynaptic currents properties

Parameters Spearman p n Reference

Temperature vs τDecay −0.53 2e-05 71 (Guzman, Schlogl, Frotscher, & Jonas, 2016)

Temperature vs PPR −0.35 0.02 61

Temperature vs Latency℗ −0.65 7e-08 65

Vh vs Conductance Amplitude℗ −0.26 0.03 107 New

Vh VS τDecay 0.26 >0.05 71 (Otis & Mody, 1992)

Vh vs PPR 0.37 0.01 61 New

Failure vs Conductance Potency℗ −0.50 2e-05 79 New

Failure vs Conductance Amplitude℗ −0.65 2e-09 79 New

[CI−]i vs Conductance Potency 0.26 0.04 93 (Nasrallah, Piskorowski, & Chevaleyre, 2015; Zhao, Choi, Obrietan, & 
Dudek, 2007)

[CI−], vs Conductance Amplitude℗ 0.32 0.004 107

[CI−]i vs τDecay −0.23 >0.05 71 (Houston, Bright, Sivilotti, Beato, & Smart, 2009)

[Ca2+]o/[Mg2+]o vs Failure −0.28 0.04 79 (Kraushaar & Jonas, 2000)

[Ca2+]o/[Mg2+]o vs PPR℗ −0.49 3e-04 61 New

τDecay is single-exponential decay time constant in g · exp(—Δt/τDecay) model, Vh is holding potential and PPR is 2nd/1st paired-pulse 

amplitude ratio. Spearman method detects linear or nonlinear correlations, while correlations proved to be linear with Pearson method are marked 
with ℗. P-values are adjusted for multiple comparisons (Benjamini & Hochberg, 1995). Significance level is <0.05.
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