Skip to main content
. 2020 Jul 21;70(2):268–282. doi: 10.1093/sysbio/syaa058

Table 4.

Tree error rates under low fragmentation for the best placement-based method and two MSA-ML methods. We show FN rates (top) and FP rates (bottom). We show results for the three best performing methods: the best placement-based pipeline (UPP(R)-pplacer), the best MSA-ML method (UPP(R)-RAxML), and a standard MSA-ML method (PASTA-RAxML). Each condition has 75% full-length sequences and 25% fragmentary sequences (which have an average 50% length). The best results for each model condition (within 1%) are shown in boldface. The error rates are averaged over 20 replicates for the simulated datasets.

Method 1000M1 1000M2 1000M3 1000M4 RNASim RNASim2 16S.M 23S.M
FN Rate:
PASTA-RAXML 0.246 0.181 0.095 0.061 0.186 0.163 0.135 0.137
UPP(R)-RAXML 0.157 0.128 0.094 0.061 0.185 0.163 0.112 0.143
UPP(R)-pplacer 0.215 0.183 0.150 0.112 0.243 0.215 0.192 0.244
FP Rate:
PASTA-RAXML 0.248 0.185 0.100 0.083 0.186 0.163 0.595 0.473
UPP(R)-RAXML 0.160 0.132 0.099 0.083 0.185 0.163 0.584 0.476
UPP(R)-pplacer 0.179 0.146 0.111 0.091 0.208 0.178 0.604 0.517