Table 4.
Tree error rates under low fragmentation for the best placement-based method and two MSA-ML methods. We show FN rates (top) and FP rates (bottom). We show results for the three best performing methods: the best placement-based pipeline (UPP(R)-pplacer), the best MSA-ML method (UPP(R)-RAxML), and a standard MSA-ML method (PASTA-RAxML). Each condition has 75% full-length sequences and 25% fragmentary sequences (which have an average 50% length). The best results for each model condition (within 1%) are shown in boldface. The error rates are averaged over 20 replicates for the simulated datasets.
| Method | 1000M1 | 1000M2 | 1000M3 | 1000M4 | RNASim | RNASim2 | 16S.M | 23S.M |
|---|---|---|---|---|---|---|---|---|
| FN Rate: | ||||||||
| PASTA-RAXML | 0.246 | 0.181 | 0.095 | 0.061 | 0.186 | 0.163 | 0.135 | 0.137 |
| UPP(R)-RAXML | 0.157 | 0.128 | 0.094 | 0.061 | 0.185 | 0.163 | 0.112 | 0.143 |
| UPP(R)-pplacer | 0.215 | 0.183 | 0.150 | 0.112 | 0.243 | 0.215 | 0.192 | 0.244 |
| FP Rate: | ||||||||
| PASTA-RAXML | 0.248 | 0.185 | 0.100 | 0.083 | 0.186 | 0.163 | 0.595 | 0.473 |
| UPP(R)-RAXML | 0.160 | 0.132 | 0.099 | 0.083 | 0.185 | 0.163 | 0.584 | 0.476 |
| UPP(R)-pplacer | 0.179 | 0.146 | 0.111 | 0.091 | 0.208 | 0.178 | 0.604 | 0.517 |