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Abstract.—Relaxed random walk (RRW) models of trait evolution introduce branch-specific rate multipliers to modulate the
variance of a standard Brownian diffusion process along a phylogeny and more accurately model overdispersed biological
data. Increased taxonomic sampling challenges inference under RRWs as the number of unknown parameters grows with
the number of taxa. To solve this problem, we present a scalable method to efficiently fit RRWs and infer this branch-
specific variation in a Bayesian framework. We develop a Hamiltonian Monte Carlo (HMC) sampler to approximate the
high-dimensional, correlated posterior that exploits a closed-form evaluation of the gradient of the trait data log-likelihood
with respect to all branch-rate multipliers simultaneously. Our gradient calculation achieves computational complexity that
scales only linearly with the number of taxa under study. We compare the efficiency of our HMC sampler to the previously
standard univariable Metropolis–Hastings approach while studying the spatial emergence of the West Nile virus in North
America in the early 2000s. Our method achieves at least a 6-fold speed increase over the univariable approach. Additionally,
we demonstrate the scalability of our method by applying the RRW to study the correlation between five mammalian life
history traits in a phylogenetic tree with 3650 tips.[Bayesian inference; BEAST; Hamiltonian Monte Carlo; life history;
phylodynamics, relaxed random walk.]

Phylogenetic comparative methods are an indispensable
tool to study the evolution of biological traits across
taxa while controlling for their shared evolutionary
history that confounds the inference of trait correlation
(Felsenstein 1985). Modern comparative methods
usually entertain continuous, multivariate traits,
although extensions to mixed discrete and continuous
outcomes are readily available (Ives and Garland Jr
2009; Cybis et al. 2015). Approaches typically model trait
evolution as a Brownian diffusion or “random walk”
process that acts conditionally independently along the
branches of a known or random phylogeny. Specifically,
the observed or unobserved (latent) trait value of a
node in a phylogeny arises from a multivariate normal
distribution centered on the latent trait value of its
ancestral node with variance proportional to the units of
time between nodes. A strict Brownian diffusion model,
however, is unable to accommodate the overdispersion
in trait data that often emerges from real biological
processes (Schluter et al. 1997). One such example
arises when examining the dispersal rate of measurably
evolving viral pathogens (Biek et al. 2007). For example,
if birds serve as the viral host, migratory patterns may
induce inhomogeneous dispersal rates over time (Pybus
et al. 2012). In such cases, a strict Brownian diffusion
model fails to capture, and therefore can also fail to
predict, the spatial dynamics of an emerging epidemic.
Lemey et al. (2010) relax the strict Brownian diffusion
assumption by introducing branch-rate multipliers that
scale the variance of the Brownian diffusion process
along each branch of the phylogeny. This “relaxed
random walk” (RRW) model requires estimating 2N−2

correlated branch-rate multipliers, where N is the
number of taxa in the phylogeny. Lemey et al. (2010)
take a Bayesian approach to parameter estimation where
they infer the posterior distribution of the branch-rate
multipliers via Markov chain Monte Carlo (MCMC)
employing a simple univariable Metropolis–Hastings
(UMH) proposal distribution (Hastings 1970). Since the
rates remain correlated in the posterior, a random-scan
(Liu 2008) of UMH proposals inefficiently explores
branch-rate space. Specifically, univariable samplers
force accepted proposals to be very close together to
avoid a large number of rejection steps in the Markov
chain simulation. This results in high correlation
between MCMC samples from the posterior, making
point estimates of the branch-rate multipliers unreliable
and slow to converge. In our study of the West Nile
virus herein, the branch-rate multipliers are the slowest
parameters to achieve sufficient effective sample sizes
and therefore extend total run-time when jointly
inferring the phylogeny structure. Furthermore, in our
mammalian life history example, a UMH sampler fails
to provide reasonable posterior estimates of branch-rate
multipliers on a fixed phylogeny after 10 days of run-
time. Despite this present drawback, RRWs find many
impactful applications, for example, in phylodynamics
and phylogeography (Bedford et al. 2014; Faria et al.
2014).

To ameliorate the difficulties that high-dimensional
MCMC sampling presents, we propose adopting
a geometry-informed sampling approach using
Hamiltonian Monte Carlo (HMC). HMC equates
sampling from a probability distribution with
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simulating the trajectory of a puck sliding across
a frictionless surface warped by the shape of the
distribution (Neal 2011). To map from this statistical
problem to the physical one, we view the MCMC
samples of our branch-rate multipliers as the “position”
of the puck and, then, for each positional dimension
we introduce an associated momentum variable.
In this way, we extend a D-dimensional parameter
space to 2D-dimensional phase space and traverse the
2D phase space via differentiating the Hamiltonian
and using a numerical integration method to offer
proposal states for our MCMC chain. This numerical
integration may introduce small error, so we then
accept or reject proposals according to the traditional
Metropolis–Hastings algorithm (Hastings 1970) with
high acceptance rates. The major limitation to HMC is
calculating the gradient of the log-posterior with respect
to all position parameters simultaneously. Previous
approaches for calculating gradients on phylogenies
have employed “pruning”-type algorithms (Felsenstein
1981) that scale quadratically with the number of taxa
in the tree (Bryant et al. 2005). Likewise, numerical
approaches also scale quadratically.

In this article, we derive a method to calculate the
gradient with computational complexity that scales only
linearly with the number of taxa. We implement our
method in the BEAST software package (Suchard et al.
2018), a popular tool for the study and reconstruction of
rooted, time-measured phylogenies. We demonstrate the
speed and accuracy of our linear-order gradient HMC
versus previous best practices by examining the spread
of the West Nile virus across the Americas in the early
2000s. Finally, we use our technique to apply the RRW
model to study the sensitivity of correlation estimates to
model misspecification between mammalian adult body
mass, litter size, gestation length, weaning age, and litter
frequency across 3650 mammals, thereby demonstrating
the scalability of our HMC implementation on a
previously intractable problem.

MATERIALS AND METHODS

Model and Inference
Consider a known or random phylogeny F with N

sampled tip nodes and N−1 internal and root nodes,
each with an observed or latent continuous trait value
Yi ∈ R

P. To traverse the phylogeny F , let node pa(i) index
the parent of node i with branch length ti connecting the
two nodes. Then under the RRW model,

Yi ∼MVN
(

Ypa(i),tiV
(
�i

))
, (1)

where the P×P matrix-valued function V
(
�i

)
characterizes the branch-specific multivariate normal
(MVN) increment that defines the diffusion process. We
parameterize this function in terms of an unknown P×P
positive-definite matrix � that describes the covariation
between trait dimensions after controlling for shared
evolutionary history and an unknown branch-rate

multiplier �i. Typical choices include

V
(
�i

)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�i� rate-scalar parameterization,�i >0,
1
�i

� scale-mixture-of-normals
parameterization,�i >0,

e�i� unconstrained parameterization,
�i ∈R, and

� standard Brownian diffusion.

(2)

To complete the RRW model specification, we adopt a
prior density on the unobserved trait at the parentless
root node,

p(Y2N−1)=MVN
(
ν0,�

−1
0 �

)
(3)

with prior mean ν0 and sample size �0.
Letting φ= (�1,...,�2N−2) and the observed data Y=

(Y1,...,YN) at the tips, we are interested in learning about
the posterior

p(φ,�,s,F ,θ|Y,S)∝
p(Y|φ,�,F )p(S|F ,θ)︸ ︷︷ ︸

likelihood

p(φ|s)p(s)p(�)p(F ,θ)︸ ︷︷ ︸
priors

, (4)

where s is an unknown parameter characterizing our
prior on φ and θ represents parameters of a molecular
sequence substitution model for the evolution of aligned
molecular sequence data S. Note that we follow usual
convention (Cybis et al. 2015) and assume that Y and
S are conditionally independent given F . We follow
the example of Lemey et al. (2010) and place a log-
normal prior distribution on φ with mean 1 and standard
deviation s. We further assume an exponential prior on
s with mean 1

3 . In the examples that follow, we place
one of two priors on the covariance structure �. In our
first example, we study the West Nile virus and follow
the original modeling assumptions of Pybus et al. (2012).
We assign a Wishart conjugate prior with scale matrix IP
and P degrees of freedom to �−1. In our second example,
we study correlation between mammalian life history
traits and employ a more general “separation strategy”
whereby � is separated into a correlation matrix and
diagonal variance matrix (Barnard et al. 2000; Zhang
et al. 2006; Caetano and Harmon 2019). We specify
the eponymous “LKJ” prior (Lewandowski et al. 2009)
on the correlation matrix and assign the diagonal of
marginal variances a log-normal distribution with mean
0 and standard deviation of 4. The LKJ prior is uniform
over the space of positive-definite correlation matrices,
and this is favorable for our purpose of comparing
correlation estimates under contrasting models. Efficient
application of the LKJ prior in phylogenetics is well
described by Zhang et al. (2019).

We use MCMC integration to approximate this
posterior using a random-scan Metropolis-within-Gibbs
approach (Levine and Casella 2006; Liu 2008). One cycle
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of this scheme consists of sampling φ,�,s and then (F ,θ)
via

p(φ|�,s,F ,θ,Y,S)∝p(Y|φ,�,F )p(φ|s), (5a)

p(�|φ,s,F ,θ,Y,S)∝p(Y|φ,�,F )p(�), (5b)

p(s|φ,�,F ,θ,Y,S)∝p(φ|s)p(s), and (5c)

p(F ,θ|φ,�,s,Y,S)∝p(Y|φ,�,F )p(S|F ,θ)p(F ,θ),
(5d)

where update (5d) is unnecessary when F is
fixed, otherwise efficient sampling from the density
p(F ,θ|φ,�,s,Y,S) is well described elsewhere, see for
example Suchard et al. (2018). Updates (5b) and (5c) are
straightforward due to the conjugate priors chosen in our
model. We turn our focus to the remaining component of
our scheme, namely sampling from p(φ|�,s,F ,θ,Y,S).

Hamiltonian Monte Carlo
We wish to sample φ jointly to avoid potentially

high autocorrelation in the resulting MCMC chain. To
this end, we propose using HMC and begin with a
brief description of how HMC maps sampling from a
probability distribution to simulating a physical system.
In classical mechanics, the Hamiltonian is the sum of
the kinetic and potential energy in a closed system. To
build the connection, we introduce auxiliary momentum
variable ρ= (�1,...,�2N−2) and write our Hamiltonian,

H(φ,ρ)=−logp(φ|�,s,F ,θ,Y,S)︸ ︷︷ ︸
potential energy

+ 1
2
ρtMρ,︸ ︷︷ ︸

kinetic energy

(6)

where the mass matrix M weights our momentum
variables. The canonical distribution from statistical
mechanics relates the joint density of state variables φ
and ρ to the energy in a system via the relationship,

p(φ,ρ|�,s,F ,θ,Y,S)∝e−H(φ,ρ). (7)

Substituting our Hamiltonian into (7), we observe
that φ and ρ are independent and recognize the
marginal density of ρ to be MVN. To start the HMC
algorithm, we first sample ρ from this marginal density.
Then by differentiating H(φ,ρ), we generate Hamilton’s
equations of motion,

d�i
dt

=+∂H
∂�i

, and

d�i
dt

=− ∂H
∂�i

= ∂

∂�i
logp(φ|�,s,F ,θ,Y,S) for all i=1,...,2N−2.

(8)

We can use the resulting vector field in conjunction with
a variety of numerical integration techniques to propose
new states of φ for our MCMC chain. Consistent with
typical construction (Neal 2011), we use the leapfrog
method for numerical integration, where we follow the

5

4

1 32

Y1 Y2 Y3

Y4

Y5

φ1 φ2

φ3

φ4

FIGURE 1. Example tree with N =3 tips. Assume trait data Yi
are fully observed for i={1,2,3}. We write Y�4� and Y�4	 to denote the
observed data below and above node 4, respectively. Specifically, Y�4� =
{Y1,Y2} while Y�4	 ={Y3}. Partial likelihoods p(Y�4� |Y4)=p(Y1,Y2 |Y4)
and p(Y4 |Y�4	)=p(Y4 |Y3).

trajectory of ρ for a half-step before updating φ. For a
full discussion of HMC, see Neal (2011). Importantly,
Hamilton’s equations elicit a need to calculate the

gradient
(

∂
∂�1

,..., ∂
∂�2N−2

)t

logp(φ|�,s,F ,θ,Y,S) at each
chain step to traverse phase space and gradient
computation can be costly.

Gradient of Trait Data Log-likelihood
A practical HMC sampler demands efficient

calculation of ∇φ logp(φ|�,s,F ,θ,Y,S). Differentiating

the logarithm of (5a), we obtain

∂

∂�i
logp(φ|�,s,F ,Y,S)

= ∂

∂�i
logp(Y|φ,�,F )+ ∂

∂�i
logp(φ|s). (9)

Our log-normal prior choice for φ renders evaluating
the second term in Equation (9) trivial. Here, we
develop a general recursive algorithm for calculating
∇φ logp(Y|φ,�,F ). To facilitate this development,
consider splitting Y into two disjoint sets relative to
any node i in F . We define Y�i� as the observed data
descendant of node i and Y�i	 as the observed data
“above” (or not descendent of) node i. For clarity, see
Figure 1. In the following, we drop the dependence
of the log-likelihood on φ, �, and F for notational
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convenience. To begin,

∂

∂�i

[
logp(Y)

]
= ∂

∂�i

[
p(Y)

]/
p(Y)

= ∂

∂�i

[∫
p(Y�i� |Yi)p(Yi |Y�i	)p(Y�i	)dYi

]/
p(Y)

=
∫

∂

∂�i

[
p(Y�i� |Yi)p(Yi |Y�i	)p(Y�i	)

]
dYi

/
p(Y)

=
∫

p(Y�i� |Yi)
∂

∂�i

[
p(Yi |Y�i	)

]
p(Y�i	)dYi

/
p(Y). (10)

The last equality above follows from the fact that �i is
associated only with the branch above node i. Therefore,
when we condition on Yi, Y�i� is independent of �i.
Similarly, Y�i	 evolves independent of �i. To proceed
with the differential above, we use the fact that p(Yi |Y�i	)
follows a MVN distribution with as of yet undetermined
mean ni and precision Qi (see Section 6.1 for a detailed
derivation). We extract the middle term from Equation
(10) and find

∂

∂�i

[
p(Yi |Y�i	)

]
= 1

2

{(
Yi −ni

)tQi ti
∂

∂�i

[
V
(
�i

)]
Qi

(
Yi −ni

)
−tr

[
Qi ti

∂

∂�i

[
V
(
�i

)]]}
p(Yi |Y�i	), (11)

using the differential properties

dQi =−Qi

(
dQ−1

i

)
Qi and

d
∣∣∣Q−1

i

∣∣∣= ∣∣∣Q−1
i

∣∣∣tr[QidQ−1
i

]
,

(12)

found in, for example, Petersen and Pedersen (2012).
To simplify notation, we let function

F
(
Yi

)= 1
2

{(
Yi −ni

)t
ϒi

(
Yi −ni

)−tr[χi]
}
, (13)

where ϒi =Qi ti
∂

∂�i

[
V
(
�i

)]
Qi and χi =Qi ti

∂
∂�i

[
V
(
�i

)]
.

Substituting Equation (13) back into Equation (10), we
observe that

∂

∂�i

[
logp(Y)

]
=

∫
F
(
Yi

)
p(Y�i� |Yi)p(Yi |Y�i	)p(Y�i	)dYi

/
p(Y)

=
∫

F
(
Yi

)
p(Yi |Y)dYi

=E
[
F
(
Yi

) |Y
]
. (14)

When Yi is fully observed (typically i≤N), this
expectation collapses to the direct evaluation of
F
(
Yi

)
. When i=N+1,...,2N−2 or if Yi is partially

observed for i=1,...,N, we require p(Yi |Y). From
Bayes’ theorem, p(Yi |Y)∝p(Y�i� |Yi)p(Yi |Y�i	). Partial
likelihood p(Y�i� |Yi) is proportional to a MVN density
characterized by computable mean mi and precision
Pi (Pybus et al. 2012). Using this fact, p(Yi |Y) becomes
MVN with mean μi =Zi

(
Pimi +Qini

)
and variance Zi =

[Pi +Qi]−1 . When tip i is partially observed, we partition
Yi =

(
Yu

i , Yo
i
)t into its unobserved and observed entries.

Using properties of the conditional MVN, p(Yi |Y)
becomes degenerate with mean

μi =
[

nu
i −(

Qu
i
)−1Quo

i
(
Yo

i −no
i
)

Yo
i

]
(15)

and variance

Zi =
[(

Qu
i
)−1 0

0 0

]
. (16)

Finally, for both partially and completely unobserved
cases above,

E
[
F
(
Yi

) |Y
]= 1

2

{
tr[Ziϒi]+

(
μi −ni

)t
ϒi

(
μi −ni

)−tr[χi]
}
.

(17)
Equation (17) provides a recipe to compute
∇φ logp(Y|φ,�,F ) using the means and precisions
that characterize partial data likelihoods p(Yi |Y�i	) and
p(Y�i� |Yi).

Tree Traversals
We introduce post- and preorder tree traversals to

recursively calculate all partial data likelihood means
and precisions in computational complexity O(

N
)

that
scales linearly with N. To begin, let nodes i and j be
daughters of node k. Following Hassler et al. 2020, let
δk =diag(�k1,...�kP) for k =1,...,N be a diagonal matrix
with indicator elements �kp that take value 1 if Ykp is
observed and 0 if not. For the postorder traversal,

p(Y�i� |Yi)∝MVN
(
Yi; mi,Pi

)
, (18)

with postorder mean mi and precision Pi. For k =
1,...,2N−1 in postorder, we build the precision via

Pk =
{

∞×δk if k is a tip
(P∗

i +P∗
j ) otherwise, (19)

with the definition that ∞×0=0 and

P∗
i =

(
P−

i +tiδiV
(
�i

)
δi

)−
and P∗

j =
(

P−
j +tjδjV

(
�j

)
δj

)−
,

(20)
where the pseudo-inverse, defined and developed by
Bastide et al. 2018 and Hassler et al. 2020, is described
in Appendix (6.2). At the tips, we build the mean mk =
δk 
Yk, where 
 is the elementwise dot product, and for
the internal nodes, mk is a solution to

Pkmk = (P∗
i mi +P∗

j mj). (21)
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For a proof of these post-order updates, see Hassler et al.
(2020) (Supplementary Material available on Dryad at
http://dx.doi.org/10.5068/dryad.D1BM1R).

To compute p(Yi |Y�i	), we traverse the tree in preorder
fashion according to our generalized version of the
recursive algorithm proposed by Cybis et al. (2015). See
Section 6.1 for a derivation of our generalized preorder
update. For the preorder traversal,

p(Yi |Y�i	)=MVN
(
Yi; ni,Qi

)
. (22)

For i=2N−1,...,1 looking down the tree, we update our
preorder precision,

Qi =
⎧⎨
⎩

�0�
−1 if i is root(

(Q∗
i )−1 +tiV

(
�i

))−1
otherwise

(23)

at each node where

Q∗
i =P∗

j +Qk. (24)

We also keep track of the preorder mean at each node
via

ni =
{

ν0 if i is root
(Q∗

i )−1(P∗
j mj +Qknk

)
otherwise.

(25)

Both traversals visit each node exactly once and
perform a matrix inversion as their most costly operation,

providing an O
(

NP3
)

algorithm. However, as we

observe in Equation (2), generally V
(
�i

)=g
(
�i

)
�. In

this case, we can further reduce the computational

complexity to O
(

NP2
)

by factoring out �. Instead of

inverting V
(
�i

)
at each step, we only need to invert �

at most once per likelihood or gradient evaluation.

RESULTS

West Nile Virus
West Nile virus (WNV) is responsible for more than

1500 deaths and caused over 700,000 illnesses since first
reported in North America in 1999. The virus typically
spreads via mosquito bites; however, the primary host is
birds. First identified in New York City, WNV spread
to the Pacific coast by 2003 and reached south into
Argentina by 2005 (Petersen et al. 2013). We examine
whole aligned viral genomes (11,029 nt) and geographic
data on 104 cases of WNV collected between 1999 and
2007 (Pybus et al. 2012). In cases where only the year
of sampling is known, we set the sampling date to the
midpoint of that year. Previous authors have recorded
latitude and longitude geographic sampling information
by converting zip code locations using ZIPList5. For 27 of
the specimens, only the US or Mexican state of discovery
is known and so we have augmented sampling data with
the coordinates of the centroid of the state (Pybus et al.
2012).

Here, we study the simultaneous evolution and
dispersal of WNV as it spreads across North America,
following the modeling choices of Pybus et al. (2012).
We define geographic location as our trait of interest
Y within a RRW and infer rates φ using our new
HMC method. In two separate inference scenarios, we
compare the computational efficiency of our method to
the random-scan UMH approach employed by Pybus
et al. (2012). The UMH kernel proposes new branch-
rate multipliers individually by randomly scaling up or
down the current �i. Under the UMH, all dimensions of
φ share the same adaptable tuning constant that controls
the scaling range. Additionally, we compare our method
to a less naive univariable proposal that provides each
dimension of φ its own adaptable tuning constant. We
term this transition kernel multiple Metropolis–Hastings
(MMH).

To begin, we set up a RRW model with log-normal
prior on rates φ with mean =1 and standard deviation s
and use a general time-reversible (GTR) + � substitution
model with a log-normal relaxed molecular clock. We
use the UMH transition kernel to run a 250 million
state MCMC chain simulation to obtain posterior mean
estimates of � and s. In scenario (a), we use these
fixed model parameters and a topology drawn from
the posterior to strictly sample φ using HMC and
univariable transition kernels. Under this fixed analysis,
we run our HMC-based chain for 1 million states and
UMH/MMH-based chains for 150 million states. We use
effective sample size (ESS) of the posterior �i samples
for all i divided by computational runtime to evaluate
the performance of each MCMC approach and report
densities of ESS/second across all branches in Figure (2).
ESS/second is averaged across five runs each with
uniform (0–10) random initial branch-rate multipliers.
The median ESS/second across φ is 71.0, 0.18, and
0.13 for the HMC, MMH, and UMH transition kernels,
respectively. This demonstrates an over 394-fold speed
increase. Additionally, the minimum ESS/s is 4.77 with
HMC, 0.04 with MMH, and 0.05 with UMH, exhibiting
a 95-fold speed-up for the “least well” explored �i.

In scenario (b), we use a random starting tree and
jointly estimate all parameters (φ,�, s, F , and θ) of
the full posterior (4). Since branch-specific �i are no
longer identifiable when F is random, we compare
square jump distance across all φ between samples from
the posterior under both MCMC regimes to compare
efficiency. We run HMC chains for 22.5 million states
so that we are sampling from the posterior distribution
of all parameters, and we save the state of BEAST.
Subsequently, we run both HMC and UMH chains from
the same saved states and compute lag-7 square jump
distance to adjust for the relative weight of the transition
kernel in the full analysis. Since the UMH sampler
updates only one branch-rate multiplier at a time, we
compare square jump distance between samples of our
HMC chain with samples from the UMH chain that
are lagged (2N−2)× (i.e., 206×) farther apart. We run
each MCMC simulation until we obtain 5000 samples
from the posterior and report the average median across
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FIGURE 2. Comparing computational efficiency of Hamiltonian Monte Carlo (HMC) to univariable Metropolis–Hastings (UMH) and multiple
Metropolis–Hastings (MMH) transition kernels through effective sample size (ESS) per unit time in West Nile virus (WNV) phylogeography.

five separate runs. In this comparison, we find that the
average median square jump distances from five separate
runs is 1457 and 128.2 for the HMC and UMH chains,
respectively.

In Figure (3), we report the MCC tree, obtained
from applying HMC to the RRW model as described
in scenario (b), where substitution rate variation is
accounted for by the molecular clock model. The branch
with the highest posterior dispersal rate starts the WN02
lineage identified by Gray et al. (2010). The clade of
New York isolates sampled in 1999, however, maintains a
much slower dispersal rate. We obtain results under this
joint inference test by running an MCMC chain until we
observe ESS >200 for all parameters of interest, namely
the height of the tree, substitution model parameters,
the diffusion matrix �, prior standard deviation s and
90% of the dimensions of φ. We choose only 90%
because many dimensions of φ exhibit multi-modality
and therefore experience poor mixing when the tree is
random. Under the UMH transition kernel this analysis
takes approximately 45.8 h. Under HMC, this analysis
completes in 7.1 h, a 6.4-fold speed-up. We report average
times across five runs. The ESS-limiting parameters in
each case are the multi-modal branch-rate multipliers.

Mammalian Life History
Life history theory aims to explain how traits

such as adult body mass, litter size, and lifespan
evolve to optimize reproductive success (Stearns
2000). Life history theory finds important applications
in determining a species’ fecundity and predicting
extinction risk in response to changing environmental
stimuli (Fritz et al. 2009; Pacifici et al. 2017; de Silva
and Leimgruber 2019), but due to the sparseness of
much life history data, it is essential to understand
how traits covary to make meaningful predictions

(Santini et al. 2016). To determine which traits covary,
comparative mammalian life history studies posit a
‘fast-slow’ continuum, claiming small mammals are
typically “fast,” characterized by early maturation,
large litters, and shorter lifespans, while larger
mammals are typically “slow” and present contrasting
characteristics (Oli 2004; Millar and Zammuto 1983).
Under this framework, certain traits such as gestation
length, weaning age, and body mass are predicted
to be positively correlated, but reported estimates of
positive correlation from data may be artifacts of the
restrictive assumptions of strict Brownian diffusion
modeling. Here, we re-evaluate this claim by comparing
inferred trait correlation under the strict Brownian
diffusion model with estimates under the RRW of
trait evolution made tractable through O(

N
)

HMC
sampling.

Under the RRW, we infer correlation between five
life history traits from the PanTHERIA data set (Jones
et al. 2009), namely body mass, litter size, gestation
length, weaning age, and litter frequency across 3650
mammalian species related by the fixed supertree of Fritz
et al. (2009). To obtain this subset of the supertree, we
only consider taxa for which at least one of these five
traits is observed. We take the intersection of this set
of taxa with those in the fixed supertree of Fritz et al.
(2009) and prune all other observations from the tree. We
log-transform and standardize the trait measurements
and subsequently estimate posterior mean correlations
between each pair of traits under the RRW using an
HMC-based chain for 300,000 states. We model diffusion
using the rate-scalar parameterization of V

(
�i

)
noted

in equation (2). This modeling choice assumes that all
taxa share a common correlation structure across the
tree. To gauge the effect of a heterogeneous diffusion
process on the correlation between traits, we also make
inference using the strict Brownian diffusion model
where the φ are all identically 1. Here, we perform
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FIGURE 4. Posterior mean correlation between mammalian life
history traits under the RRW and strict Brownian diffusion model.
Shape of ellipse indicates strength and sign of correlation, while colors
indicate the posterior probability that the correlation is positive (red)
or negative (blue).

MCMC inference on the diffusion matrix � for 50,000
states. Under the RRW, we find the variance in body mass
is 1.17 with 95% high posterior density (HPD) interval
{1.02,1.33}, gestation length is 0.73 {0.62,0.83}, weaning
age is 2.94 {2.49,3.39}, litter frequency is 5.47 {4.62,6.40},
and litter size is 2.82 {2.47,3.17}. We report posterior
mean estimates of correlation between each pair of traits
under both the RRW and strict Brownian diffusion in
Figure (4). In most cases, the RRW reassuringly confirms
analysis under the more limited model. However, in
some cases our confidence in the sign of the correlation
differs between models and in one instance the sign
of the posterior mean correlation disagrees. Under the
RRW, we observe positive posterior mean correlation
of 0.017 between litter frequency and litter size with
posterior odds ratio 1.96 that the correlation is positive.
Under the strict Brownian diffusion model we observe
a negative posterior mean correlation of −0.015 with
posterior odds ratio 1.90 of being negative, indicating
slightly weaker belief in the correlation’s sign under the
strict model.

DISCUSSION

Previous MCMC techniques to investigate trait
evolution under the RRW model scale poorly with large
data sets. Specifically, the UMH transition kernel is
ineffective for sampling correlated, high-dimensional
parameter space. We provide a remedy by using an HMC
transition kernel to sample all branch-rate multipliers
simultaneously. To improve the speed of HMC, we derive
an algorithm for calculating the gradient of the trait data
log-likelihood. This gradient calculation achieves O(

N
)

computational speed, a vast improvement compared to
both numerical and pruning methods for calculating the
gradient that typically require O(N2).

We observe over 300-fold speed-up when comparing,
on a fixed phylogeny, our HMC transition kernel to both
MMH and UMH in the spread of the WNV across North
America in the early 2000s. Additionally, we note here

that HMC on the branch-rate multipliers also improves
sampling of hyperparameter s as suggested by Equation
(5c). HMC offers an over 6-fold speed increase in total
run-time when jointly estimating parameters of the RRW,
substitution model, and phylogeny. The resulting MCC
tree reveals that the largest dispersal rate precedes the
most recent common ancestor of the WN02 lineage.
Subsequently, the dispersal rates slow down through
the WN02 clade. This suggests that this clade developed
after some rapid geographic displacement. Interestingly,
the appearance of smaller branch-rate multipliers within
the WN02 lineage is consistent with the slowing speed of
sequence evolution as described in Snapinn et al. (2007).

As exhibited in Figure (2), ESS from posterior
sampling accumulates at variable speed across the
branches of the tree. To further improve the sampling of
our HMC algorithm, one might use an approximation
of the posterior covariance of φ for the mass matrix M to
appropriately weight momentum updates in the HMC
algorithm (Neal 2011). Possible approximations include
the Hessian of the log-posterior (a local approximation
of the curvature of branch-rate multiplier space) or the
sample variance across each dimension. An important
consideration in choosing an appropriate M is whether
one is studying under a fixed or random phylogeny
F . Since varying F in the posterior often creates
multimodal distributions of φ, local approximations
such as the Hessian may be of limited assistance in such
cases.

We show in our application to mammalian life history
that our computationally efficient HMC algorithm
imbues the RRW model with the ability to handle
large trees with thousands of taxa. By applying the
RRW model to this massive example, we confirm that
large mammals have “slower” life history characteristics,
exhibited by the positive correlation among body
mass, gestation length, and weaning age, while smaller
mammals scale in the opposite manner and tend to
have high litter frequency and size, see Figure (4). The
posterior mean correlation between litter frequency and
litter size changes sign under each model, but with
low posterior probability reflecting a lack of correlation
between these traits. Note that the diffusion variance
choices listed in Equation (2) all assume that the branch-
rate multipliers scale each trait equally. Future modeling
work could relax this assumption by letting each element
of the diffusion matrix be a function of the branch-
rate multipliers. Importantly, our method allows us to
obtain posterior estimates for the correlation matrix in
32 h while the previous UMH method fails to estimate
the correlation matrix and branch-rate multipliers with
greater than 200 ESS after 10 days.

In a time where biological data are more prolific
than ever, scalable approaches to complex models of
evolution such as the RRW prove increasingly useful
in a variety of applications. From spatial epidemiology
where determining the dispersal rate of an infectious
disease is crucial, to evolutionary ecology where
understanding life history can provide insight into
declining animal populations, the analysis of data is
becoming a bottleneck to the scientific process and
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the need for computationally faster approaches stands
evident. We hope that this work will serve to improve
the speed of such analyses. We make all BEAST
XML files used in this work publicly available at
http://github.com/suchard-group/RRW_at_scale.
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APPENDICES

Preorder Partial Likelihood
Here, we derive a generalized version of the preorder

recursive algorithm proposed by Cybis et al. (2015) to
compute p(Yi |Y�i	) for all i in O(

N
)
. We begin with the

law of total probability,

p(Yi |Y�i	)∝
∫

p(Yi |Yk)p(Y�j� |Yk)p(Yk |Y�k	) dYk (A1)

for node i with parent k and sibling j. Recalling that

p(Yi |Yk)=MVN
(
Yi; Yk,tiV

(
�i

))
, and

p(Y�j� |Yk)∝MVN
(

Yk; mj,(P
∗
j )−1

)
,

(A2)

we identify Equation (A1) as a recursive expression
whose solution has the form

p(Yi |Y�i	)=MVN
(
Yi; ni,Qi

)
, (A3)

with presently undetermined preorder mean ni and
preorder precision Qi.

We unravel these quantities by first identifying that
p(Y2N−1 |Y�2N−1	)=p(Y2N−1) and set n2N−1 =ν0 and
Q2N−1 =�0�

−1. Then proceeding in preorder fashion for
i=2N−2,...,1

Qi =
(

(Q∗
i )−1 +tiV

(
�i

))−1
where

Q∗
i =P∗

j +Qk, and

ni = (Q∗
i )−1(P∗

j mj +Qknk
)
. (A4)

Pseudo-inverse
The pseudo-inverse used in the post-order tree

traversal and defined by (Bastide et al. 2018) and (Hassler
et al. 2020) is an operation for inverting precision and
variance matrices with diagonal entries that take the
value ∞. To invert a diagonal precision matrix, Pi with
entries ∞ and 0, we define ∞− =0 and 0− =∞. To
invert the variance matrix

(
P−

i +tiδiV
(
�i

)
δi

)
, we invert

the block matrix of observed trait covariation and invert
the remaining diagonal elements using the convention
that ∞− =0.

REFERENCES

Barnard J., McCulloch R., and Meng X.-L. 2000. Modeling covariance
matrices in terms of standard deviations and correlations, with
application to shrinkage. Stat. Sin. 10:1281–1311.

Bastide, P., C. Ané, Robin S., and Mariadassou M. 2018. Inference of
adaptive shifts for multivariate correlated traits. Syst. Biol. 67:662–
680.

Bedford T., Suchard M.A., Lemey P., Dudas G., Gregory V., Hay A.J.,
McCauley J. W., Russell C.A., Smith D.J., and Rambaut A. 2014.
Integrating influenza antigenic dynamics with molecular evolution.
eLife 3:e01914.

Biek R., Henderson J.C., Waller L.A., Rupprecht C.E., and Real L.A.
2007. A high-resolution genetic signature of demographic and
spatial expansion in epizootic rabies virus. Proc. Natl. Acad. Sci.
USA, 104:7993–7998.

Bryant D., Galtier N., and Poursat M.-A. 2005. Likelihood calculation
in molecular phylogenetics. In: Gascuel O., editor. Mathematics of
evolution and phylogeny. Oxford: Oxford University Press. p. 33–62.

Caetano D.S., Harmon L.J. 2019. Estimating correlated rates of trait
evolution with uncertainty. Syst. Biol. 68:412–429.

Cybis G.B., Sinsheimer J.S., Bedford T., Mather A.E., Lemey P., and
Suchard M. A. 2015. Assessing phenotypic correlation through the
multivariate phylogenetic latent liability model. Ann. Appl. Stat.
9:969.

de Silva S. and Leimgruber P. 2019. Demographic tipping points
as early indicators of vulnerability for slow-breeding megafaunal
populations. Front. Ecol. Evol. 7:171.

Faria N.R., Rambaut A., Suchard M.A., Baele G., Bedford T., Ward
M.J., Tatem A.J., Sousa J.D., Arinaminpathy N., Pépin J., Posada
D., Peeters M., Pybus O.G., Lemey P. 2014. The early spread
and epidemic ignition of HIV-1 in human populations. Science
346:56–61.

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a
maximum likelihood approach. J. Mol. Evol. 17:368–376.

Felsenstein J. 1985. Phylogenies and the comparative method. Am. Nat.
125:1–15.

Fritz S.A., Bininda-Emonds O.R. and Purvis A. 2009. Geographical
variation in predictors of mammalian extinction risk: big is bad,
but only in the tropics. Ecol. Lett. 12:538–549.

Gray R., Veras N., Santos L., and Salemi M. 2010. Evolutionary
characterization of the West Nile virus complete genome. Mol.
Phylogenet. Evol. 56:195–200.

Hassler G., Tolkoff M.R., Allen W.L., Ho L.S.T., Lemey P., Suchard M.A.
Forthcoming 2020. Inferring phenotypic trait evolution on large
trees with many incomplete measurements. J. Am. Stat. Assoc.

Hastings W.K. 1970. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57:97–109.

Ives A.R., Garland T. Jr. 2009. Phylogenetic logistic regression for binary
dependent variables. Syst. Biol. 59:9–26.

Jones K.E., Bielby J., Cardillo M., Fritz S.A., O’Dell J., Orme C.D.L., Safi
K., Sechrest W., Boakes E.H., Carbone C., et al. 2009. PanTHERIA:
a species-level database of life history, ecology, and geography of
extant and recently extinct mammals. Ecology 90:2648–2648.

Lemey P., Rambaut A., Welch J.J., and Suchard M.A. 2010.
Phylogeography takes a relaxed random walk in continuous space
and time. Mol. Biol. Evol. 27:1877–1885.

http://github.com/suchard-group/RRW_at_scale
http://dx.doi.org/10.5068/dryad.D1BM1R


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[16:36 11/1/2021 Sysbio-OP-SYSB200057.tex] Page: 267 258–267

2021 FISHER ET AL.—RELAXED RANDOM WALKS AT SCALE 267

Levine R.A., Casella G. 2006. Optimizing random scan Gibbs samplers.
J. Multivar. Anal. 97:2071–2100.

Lewandowski D., Kurowicka D., and Joe H. 2009. Generating random
correlation matrices based on vines and extended onion method. J.
Multivar. Anal. 100:1989–2001.

Liu J.S. 2008. Monte Carlo strategies in scientific computing. New York:
Springer Science & Business Media (Springer Series in Statistics).

Millar J.S., Zammuto R.M. 1983. Life histories of mammals: an analysis
of life tables. Ecology 64:631–635.

Neal R.M. 2011. MCMC using Hamiltonian dynamics. In: Brooks S.,
Gelman A., Jones G.L., Meng X.-L., editors. Handbook of Markov
chain Monte Carlo, vol. 2. New York, NY, CRC Press.

Oli M.K. 2004. The fast–slow continuum and mammalian life-history
patterns: an empirical evaluation. Basic Appl. Ecol. 5:449–463.

Pacifici M., Visconti P., Butchart S.H., Watson J.E., Cassola F.M., and
Rondinini C. 2017. Species’ traits influenced their response to recent
climate change. Nat. Clim. Change 7:205.

Petersen K.B., Pedersen M.S. 2012. The matrix cookbook, vol. 7. Lyngby,
Denmark: Technical University of Denmark.

Petersen L.R., Brault A.C., and Nasci R.S. 2013. West Nile virus: review
of the literature. J. Am. Med. Assoc. 310:308–315.

Pybus O.G., Suchard M.A., Lemey P., Bernardin F.J., Rambaut A.,
Crawford F.W., Gray R.R., Arinaminpathy N., Stramer S.L., Busch
M.P., et al. 2012. Unifying the spatial epidemiology and molecular

evolution of emerging epidemics. Proc. Natl. Acad. Sci. USA
109:15066–15071.

Santini L., Cornulier T., Bullock J.M., Palmer S.C., White S.M.,
Hodgson, J.A., Bocedi G., and Travis J.M. 2016. A trait-based
approach for predicting species responses to environmental change
from sparse data: how well might terrestrial mammals track climate
change? Global Change Biol. 22:2415–2424.

Schluter D., Price T., Mooers A.Ø., and Ludwig D. 1997. Likelihood of
ancestor states in adaptive radiation. Evolution 51:1699–1711.

Snapinn K.W., Holmes E.C., Young D.S., Bernard K.A., Kramer L.D.,
and Ebel G.D. 2007. Declining growth rate of West Nile virus in
North America. J. Virol. 81:2531–2534.

Stearns S.C. 2000. Life history evolution: successes, limitations, and
prospects. Naturwissenschaften 87:476–486.

Suchard M.A., Lemey P., Baele G., Ayres D.L., Drummond A.J., and
Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data
integration using BEAST 1.10. Virus Evol. 4:vey016.

Zhang X., Boscardin W.J., and Belin T.R. 2006. Sampling correlation
matrices in Bayesian models with correlated latent variables. J.
Comput. Graph. Stat. 15:880–896.

Zhang Z., Nishimura A., Bastide P., Ji X., Payne R.P., Goulder P., Lemey
P., and Suchard M.A. Forthcoming 2019. Large-scale inference of
correlation among mixed-type biological traits with phylogenetic
multivariate probit models. Ann. Appl. Stat.


	Relaxed Random Walks at Scale

