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Abstract

Computed tomography (CT) has been widely used for medical diagnosis, assessment, and therapy 

planning and guidance. In reality, CT images may be affected adversely in the presence of metallic 

objects, which could lead to severe metal artifacts and influence clinical diagnosis or dose 

calculation in radiation therapy. In this paper, we propose a generalizable framework for metal 

artifact reduction (MAR) by simultaneously leveraging the advantages of image domain and 

sinogram domain-based MAR techniques. We formulate our framework as a sinogram completion 

problem and train a neural network (SinoNet) to restore the metal-affected projections. To improve 

the continuity of the completed projections at the boundary of metal trace and thus alleviate new 

artifacts in the reconstructed CT images, we train another neural network (PriorNet) to generate a 

good prior image to guide sinogram learning, and further design a novel residual sinogram 

learning strategy to effectively utilize the prior image information for better sinogram completion. 

The two networks are jointly trained in an end-to-end fashion with a differentiable forward 

projection (FP) operation so that the prior image generation and deep sinogram completion 

procedures can benefit from each other. Finally, the artifact-reduced CT images are reconstructed 

using the filtered backward projection (FBP) from the completed sinogram. Extensive experiments 

on simulated and real artifacts data demonstrate that our method produces superior artifact-

reduced results while preserving the anatomical structures and outperforms other MAR methods.
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I. Introduction

COMPUTED tomography (CT) systems have become an important tool for medical 

diagnosis, assessment, and therapy planning and guidance. However, the metallic implants 

within the patients, e.g., dental fillings and hip prostheses, would lead to missing data in X-

ray projections and cause strong star-shape or streak artifacts to the reconstructed CT images 

[1]. Those metal artifacts not only present undesirable visual effects in CT images with 

influencing diagnosis but also make dose calculation problematic in radiation therapy [2], 
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[3]. With the increasing use of metallic implants, how to reduce metal artifacts has become 

an important problem in CT imaging [4].

Numerous metal artifact reduction (MAR) methods have been proposed in the past decades, 

while there is no standard solution in clinical practice [3], [5], [6]. Since the metal artifacts 

are structured and non-local in the reconstructed CT images, the previous metal artifact 

reduction approaches mainly addressed this problem in the X-ray projections (sinogram). 

The metal-affected regions in the sinogram domain were corrected by modeling the 

underlying physical effects of imaging [7]–[10]. For example, Park et al. [10] proposed a 

method to correct beam hardening artifacts caused by the presence of metal in 

polychromatic X-ray CT. However, with the presence of high-atom number metals, the metal 

trace regions in sinogram are often severely corrupted and the above methods are limited in 

achieving satisfactory results [11]. Therefore, the other MAR methods regarded the metal-

affected regions as the missing areas and filled them with estimated values [2], [12]. The 

early Linear interpolation (LI) approach [2] filled the missing regions by the linear 

interpolation of its neighboring unaffected data for each projection view. As interpolation 

cannot completely recover the metal trace information, the inconsistency between 

interpolated values and those unaffected values often results in strong new artifacts in the 

reconstructed images. To improve the sinogram interpolation quality, recent methods 

involved the forward projection of a prior image to complete the sinogram [13]–[17]. These 

methods first estimated prior images with various tissue information from the uncorrected 

image and then performed forward projection on the prior image to conduct sinogram 

completion. For example, Meyer et al. [15] improved the LI approach by generating a prior 

image with tissue processing and normalizing the projection with a forward projection of the 

prior image before interpolation. As the inaccurate prior images would lead to unfaithful 

structures in the reconstructed images, a key factor for prior-image-based approaches is to 

generate a good prior image to provide a more accurate surrogate for the missing data in the 

sinogram. Also, some researchers focused on designing new iterative reconstruction 

algorithms to reconstruct artifact-free images from the unaffected or corrected projections 

[18]–[21]. For example, Zhang et al. [21] proposed an iterative metal artifact reduction 

algorithm based on constrained optimization. However, these iterative reconstruction 

methods often suffer from heavy computation and require proper hand-crafted 

regularizations.

With the development of deep learning in medical image reconstruction and analysis [22]–

[25], recent progress of MAR has featured neural networks [4], [11], [26]. Park et al. [4] 

employed a U-Net [25] in the sinogram domain to deal with beam-hardening related artifacts 

in polychromatic CT. Gjesteby et al. [26] utilized deep learning to refine the result of 

NMAR [15] for achieving additional correction in critical image regions. Zhang et al. [11] 

proposed to generate a reduced-artifact prior image with CNN to help correct the metal-

corrupted regions in the sinogram. Although these methods show reasonable results on 

MAR, they are limited in handling with the remaining new artifacts in reconstructed CT 

images.

To improve the quality of the reconstructed CT images, inspired by the success of deep 

learning in solving ill-posed inverse problems in natural image processing [27]–[29], very 
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recent works formulated MAR as an image restoration problem and reduced the metal 

artifacts with image-to-image translation networks [26], [30]–[36]. Gjesteby [32] employed 

a deep neural network to reduce the new artifacts after the NMAR method with a perceptual 

loss. The RL-ARCNN [37] introduced deep residual learning to reduce metal artifacts in 

cervical CT images and Wang et al. [38] proposed to use the conditional generative 

adversarial network (cGAN) [39] to reduce metal artifacts in CT images. Very recently, Lin 

et al. [35] developed a dual-domain learning method to improve the image-restoration-based 

MAR results by involving sinogram enhancement as a procedure. These image-restoration-

based methods demonstrated good performance on their experimental datasets due to the 

powerful representation capability of deep neural networks. However, in our experiments, 

we find that these methods tend to degrade on other site data, as the training samples hardly 

cover the unseen artifacts patterns. Although DuDoNet [35] introduces the sinogram 

enhancement procedure to improve the network performance, it still directly adopts the 

image-domain-refinement output (CNN output) as the final reconstructed image. As there is 

no geometry (physical) constraints to regularize the neural networks, there would be some 

tiny anatomical structure changes in the output image (see Fig. 6 for an example), which 

limits the usage of image domain methods in real clinical scenarios.

In this work, we present a novel image and sinogram domain joint learning framework for 

generalizable metal artifact reduction. Different from the previous image-restoration-based 

solutions, we formulate the MAR as the deep-learning-based sinogram completion task and 

train a deep neural network, i.e., SinoNet, to restore the unreliable projections within the 

metal trace region. To ease the SinoNet learning and improve the completion quality, we 

simultaneously train another neural network, i.e., PriorNet, to generate a good prior image 

with less metal artifact and guide the SinoNet learning with the forward projection of the 

prior image; see a sinogram completion result in Fig. 1. Moreover, we design a novel 

residual sinogram learning strategy to fully utilize the prior sinogram guidance to improve 

the continuity of sinogram completion and thus alleviate the new artifacts in the 

reconstructed CT images. The final CT image is then reconstructed from the completed 

sinogram with the conventional FBP algorithm. Compared with the previous prior-image-

based MAR approaches, the whole framework is trained in an efficient end-to-end manner 

so that the prior image generation and deep sinogram completion procedures can be learned 

in a collaborative manner and benefit from each other. We extensively evaluate our 

framework on CT images with simulated and real metal artifacts, demonstrating that our 

method produces superior artifact-reduced results and outperforms other MAR methods.

Our main contributions are summarized as follows.

1. We present a novel image and sinogram domain joint learning framework for 

metal artifact reduction by simultaneously leveraging the advantages of image 

domain and sinogram domain-based MAR techniques. The proposed framework 

achieves superior performance on CT images with simulated and real metal 

artifacts.

2. We propose to train a deep prior image network to provide a good estimation of 

missing projections and thus enhance sinogram completion network learning. 

Yu et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The two networks are trained in an end-to-end manner and can benefit from each 

other.

3. We design a novel residual sinogram learning scheme to facilitate sinogram 

completion. The scheme is able to fully utilize prior image information and 

alleviate the new artifacts on the reconstructed CT image.

The remainders of this paper are organized as follows. We elaborate our framework in 

Section II. The experiments and results are presented in Section III. We further discuss the 

key issues of our method in Section IV and draw the conclusions in Section V.

II. Methodology

A. Overview

Fig. 2 depicts the overview of our proposed image and sinogram domain joint learning 

framework for metal artifact reduction in CT images. The whole framework integrates the 

image domain learning (prior image generation) and sinogram domain learning (sinogram 

completion). Given the original metal-corrupted sinogram Sma ∈ ℝH × W  and the metal trace 

mask Tr ∈ {0, 1}H×W, we first apply the linear interpolation [2] to produce an initial 

estimation for the projections within the metal trace region and acquire the LI corrected 

sinogram SLI for the following procedures. To ease the sinogram completion procedure, we 

train an image domain network, i.e., PriorNet, to produce a good prior image Xprior with less 

metal artifact and acquire the prior sinogram Sprior with the forward projection of the 

generated prior image Xprior to guide the sinogram domain learning. We simultaneously 

train another deep neural network, i.e., SinoNet, to restore the metal-affected projections to 

acquire the corrected sinogram Scorr by taking the LI corrected sinogram SLI, the prior 

sinogram Sprior, and the metal trace mask Tr as input. Particularly, we design a novel 

residual learning strategy and make the SinoNet refine the residual sinogram map between 

SLI and Sprior. The final metal-free CT image is then reconstructed from the corrected 

sinogram Scorr with the conventional FBP algorithm. The whole framework is trained in an 

end-to-end manner so that the prior image generation and sinogram completion procedures 

can benefit from each other.

B. Deep Prior Image Generation

In this step, we propose to generate a prior image with a deep neural network to facilitate the 

sinogram completion procedure, as the metal-free prior image would provide a good 

estimation for the missing projections in the original sinogram. A straightforward solution 

for this procedure is to take the original CT image with metal artifacts as input and train a 

neural network to generate the prior image with less metal artifact. However, when the metal 

objects are relatively large, the metal artifacts in the original CT image would be very strong 

and it is difficult for the neural network to reduce the metal artifacts. Therefore, besides the 

original CT image, we also involve the LI corrected image into the prior image generation 

procedure and employ a neural network, i.e., PriorNet, to refine the LI corrected image by 

residual learning. Specifically, we first reconstruct the original metal-corrupted CT image 

Xma and LI corrected image XLI from the original metal-affected sinogram Sma and the 
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linear interpolated sinogram SLI, respectively. Then the artifact-reduced prior image is 

represented as

Xprior = XLI + fP Xma, XLI , (1)

where fP denotes the prior image generation network and [a, b] represents the concatenation 

operation of image a and b.

The PriorNet is based on the U-Net [25] architecture, but we halve the channel number to 

reduce the total number of parameters. To optimize the network, we employ the L1 loss to 

minimize the difference between the network output and the ground truth CT image Xgt 

without metal artifacts

ℒprior = Xprior − Xgt 1 . (2)

We further acquire the prior sinogram Sprior by performing forward projection on the 

generated prior image Xprior

Sprior = P Xprior , (3)

where P denotes the forward projection operator. The prior sinogram Sprior is then used to 

guide the network to complete the missing projections in the sinogram domain.

C. Deep Sinogram Completion

With the guidance of prior sinogram Sprior, we train another neural network, i.e., SinoNet, to 

restore the projections within the metal trace region Tr in the sinogram domain. Specifically, 

the SinoNet takes the LI corrected sinogram SLI, the prior sinogram Sprior, and the metal 

trace Tr as input, and outputs the missing projections in metal trace region Tr by utilizing the 

contextual information of the sinogram. To improve the continuity of the completed 

projections at the boundary of the metal trace region, we design a residual sinogram learning 
strategy and make the SinoNet refine the residual sinogram between SLI and Sprior. 

Particularly, we calculate the residual sinogram map Sres, which can be treated as a smooth 

transition between the prior sinogram Sprior and the LI corrected sinogram SLI, and then we 

employ the SinoNet to refine the residual projections within the metal trace region Tr. The 

corrected sinogram Scorr′  can be written as:

Scorr′ = fS Sprior − SLI, Tr + SLI, (4)

where fS represents the sinogram completion network. As the network estimates the residual 

values instead of the absolute projection values, it can alleviate the discontinuity at the 

boundary of the metal trace [17]. Considering that the metals only affect projection data in 

metal trace region, we further composite the output of SinoNet and SLI with respect to Tr to 

get the final corrected result:

Scorr = Scorr′ ⊙ Tr + SLI ⊙ (1 − Tr)
= fS Sprior − SLI, Tr ⊙ Tr + SLI, (5)
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where ⊙ denotes element-wise multiplication.

To estimate the residual projections within the metal trace region, the network should be 

better aware of the metal trace information. However, the metal mask or metal trace regions 

are usually small and occupy a small portion of the whole sinogram, directly concatenating 

the residual sinogram map Sprior−SLI and Tr as network input would weaken the metal trace 

information due to the down-sampling operations of the network. Therefore, we employ the 

mask pyramid U-Net [40] to retain the metal trace information into each layer explicitly so 

that the network is able to extract more discriminative feature for restoring the missing 

information at metal trace region.

To optimize the SinoNet, we adopt the L1 loss to minimize the differences between the 

corrected sinogram and the ground truth sinogram Sgt without metals. However, as the 

composited sinogram Scorr has the identical values with the ground truth sinogram outside 

the metal trace region, directly minimizing the difference between Scorr and Sgt would 

provide supervision for the network output only within the metal trace region. As we 

mentioned above, the metal region occupies only a small portion of the whole sinogram. To 

improve the training efficiency, we also encourage the pre-composited sinogram Scorr′  to be 

close to the ground truth sinogram Sgt so that the loss function can also provide supervision 

for those network outputs outside of the metal trace region. The total objective of the deep 

sinogram completion can be represented as

ℒsino = Sgt − Scorr 1 + β Sgt − Scorr′ 1, (6)

where β is a hyper-parameter to control the trade-off between two difference items. we find 

that it is not sensitive to the network performance and we empirically set it as 0.1 in our 

experiments.

D. Overall Objective Function and Technical Details

The above L1 loss for SinoNet optimization only penalizes single projection value 

inconsistency in the sinogram domain, without considering the geometry-consistency of the 

completed values or penalizing the new artifacts in the reconstructed CT images. Therefore, 

we further design a filtered back-prorogation (FBP) loss to alleviate the new artifacts in the 

reconstructed CT image

ℒFBP = P−1 Scorr − Xgt ⊙ (1 − M) 1, (7)

where P−1 represents the FBP operator and M is the metal mask. Here we adopt the masked 

L1 loss to penalize the intensity difference only in the non-metal regions, as it is difficult to 

accurately reconstruct the original image at the metal position. Note that the FBP operation 

P−1 is differentiable, so that the gradient of ℒFBP  is able to back-propagate to SinoNet, 

encouraging it to generate geometry-consistent completion results. We jointly train the 

PriorNet and SinoNet in an end-to-end manner and the total objective function is
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ℒtotal = ℒprior + α1ℒsino + α2ℒFBP , (8)

where α1 and α2 are hyperparameters to balance the weight of different loss items. We 

empirically set them as 1.0 in our experiments.

Our whole framework takes original metal-affected sinogram and metal trace as input. In the 

training phase, we use the simulated data to train the whole framework so that we can 

acquire the metal trace mask Tr for the simulated training data by performing the forward 

projection on the simulated metal mask M. In the testing phase, given the metal-affected 

sinogram Sma, we can segment the metal mask M from the reconstructed metal-corrupted 

CT images Xma with simple thresholding method or other advanced metal segmentation 

algorithms, and then conduct the similar forward projection to get the metal trace mask Tr.

III. Experiments

A. Dataset and Simulation

We evaluated our method with simulated metal artifacts on CT images and real CT images 

with metal artifacts. For the simulation data, we randomly selected a subset of CT images 

from the recently released DeepLesion dataset [41] to synthesize metal artifacts. For the 

simulated metal masks, we employed the previous metal mask collection in [11], which 

contains 100 manually segmented metal implants with different shapes and sizes. 

Specifically, we randomly chose 1000 CT images and 90 metal masks to synthesize the 

training data. The remaining 10 metal masks were paired with an additional 200 CT images 

from 12 patients to generate 2000 combinations for network evaluation.

We followed the procedure in [11], [35] to simulate the metal-corrupted sinograms and CT 

images by inserting metallic implants into clean CT images, where beam hardening and 

Poisson noise are simulated. We employed a polychromatic X-ray source and assumed the 

incident X-ray has 2 × 107 photons. The partial volume effect was also considered during the 

simulation. A fan-beam geometry was adopted and we uniformly sampled 640 projection 

views between 0–360 degrees. Before the simulation, the CT images were resized to 

416×416, resulting in the sinogram with the size of 641×640.

B. Implementation Details

The framework was implemented in Python based on PyTorch [42] deep learning library. We 

trained the PriorNet and SinoNet in an end-to-end manner with differential forward 

projection (FP) and filtered backprojection (FBP) operations provided in ODL library1. In 

the network training, all the images had a size of 416 × 416 and the sinograms were with a 

size of 641 × 640. The Adam optimizer [43] was used to optimize the whole framework with 

the parameters (β1, β2) = (0.5, 0.999). We totally trained 400 epochs with a mini-batch size 

of 8 on one Nvidia 1080Ti GPU and the learning rate was set as 1e−4. In each training 

iteration, we randomly chose one CT image with synthesized metal artifacts from the pool of 

1https://github.com/odlgroup/odl
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90 different metal mask pairs and the different CT images were formed as one mini-batch 

data to be fed into the network for calculating the total objective function.

C. Experimental Results on DeepLesion Data

1) Quantitative comparisons with state-of-the-art methods: We compare our 

method with conventional interpolation-based methods: linear interpolation (LI) [2] and 

normalized metal artifact reduction (NMAR) [15], which are widely employed approaches 

in MAR. Also, we compare our method with the recent deep-learning-based methods 

CNNMAR [11], cGANMAR [38], and the state-of-the-art method DuDoNet [35]. The 

CNNMAR approach also adopts a CNN to generate a reduced-artifact prior image and then 

uses traditional interpolation to correct the metal-corrupted regions in the sinogram. Both 

cGANMAR and DuDoNet employ the image domain network to generate the final results, 

where cGANMAR directly uses an image-to-image translation network to reduce artifacts 

on original metal images while DuDoNet further incorporates sinogram enhancement to ease 

image domain learning. For CNNMAR, we used the public released code and model. We re-

implemented DuDoNet [35] and cGANMAR [38], since there is no public implementation.

Table I shows the quantitative comparison results of our method and other methods on the 

DeepLesion dataset. It is observed that the prior-image-based interpolation method NMAR 

outperforms LI approach on both root mean square error (RMSE) and structured similarity 

index (SSIM) metrics, as the prior image information improves the accuracy of interpolation 

for missing projection values. The deep-learning-based methods CNNMAR and cGANMAR 

achieves much lower RMSE and higher SSIM values than conventional MAR methods, 

showing the advantage of data-driven deep neural networks for metal artifact reduction. The 

DuDoNet achieves better RMSE and SSIM performance when compared with cGANMAR, 

as it integrates sinogram enhancement to reduce artifacts before conducting the image 

refinement procedure. Compared with DuDoNet, our method further reduces RMSE with 

6.85 HU and achieves slightly better SSIM values. Overall, our framework attains the best 

performance among different methods in terms of RMSE and SSIM, showing the 

effectiveness of our method for metal artifact reduction.

2) Qualitative analysis: Fig. 3 and Fig. 4 shows the visual comparisons of our method 

and other methods on DeepLesion simulation data. We show the refer metal-free CT images, 

simulated metal artifact images (Metal Image), and metal artifact reduction results of 

different methods. The simulated metal masks are colored in red for better visualization. It is 

observed that severe streaking artifacts are in the original metal images and a severe dark 

strip exists between two metal implants (see Fig. 3(B1)). Generally, the deep-learning-based 

methods CNNMAR, cGANMAR and DuDoNet can reduce more artifacts than conventional 

LI and NMAR approaches. When the metal implants are small (Fig. 3), the DuDoNet and 

cGANMAR can achieve better visual results than CNNMAR, while there are still some mild 

artifacts in the DuDoNet and cGANMAR results; see the dashed blue ovals in Fig. 

3(F3&G3). Compared with these methods, our method effectively reduces most artifacts and 

retains the fine details of the structures. Fig. 4 shows the results when the metal implants are 

large. It is observed that the conventional interpolation methods LI and NMAR, and image 

domain method cGANMAR and DuDoNet cannot preserve the details of the original 
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structures and there are some new secondary-artifacts in the cGANMAR results; see the 

green arrows in Fig. 4(F1&F2). Compared to CNNMAR, our method preserves better 

structure details, showing the effectiveness of the deep signogram completion mechanism. 

We also calculate the ROI RMSE and ROI SSIM for the red box patches in Fig. 5 to 

quantitatively compare different methods. As shown in Fig. 5 (A2-H2&A4-H4), our method 

achieves the lowest RMSE and highest SSIM values among different methods.

D. Generalization to Different Site Data

The selected CT images from the DeepLesion dataset are samples of abdomen and thorax. 

To show the feasibility of our method applied to different site data, we directly evaluate the 

model trained with DeepLesion data on the head CT images collected from the online 

website with simulated metal artifacts. Fig. 5 shows the visual metal artifact reduction 

results of our method on the head CT images with simulated dental fillings. We also show 

the conventional LI and NMAR results and the deep-learning-based CNNMAR and 

DuDoNet results. It is observed that the LI and NMAR introduce several secondary-artifacts 

and could change the anatomical structures of the tooth; see blue arrows in Fig. 5(d). The 

DuDoNet can further reduce the artifacts, while there are still several shading artifacts in the 

output images; see green arrows in Fig. 5(f). Although without training with head CT 

images, our method effectively reduces artifacts, indicating that the proposed method has the 

potential to handle different site data. Notably, the MAR result of our method is even 

comparable with CNNMAR, which is also trained with head CT images.

E. Experiments on CT Images with Real Metal Artifacts

1) Results on CT images with real metal artifacts: Since the original sinogram 

data with metal artifacts in the real clinical scenario are difficult to access, we follow the 

previous work [35] to evaluate our method on clinical CT images with metal artifacts. 

Specifically, we collected some clinical CT images with metal artifacts and segmented the 

metal mask from the clinical CT images with a simple thresholding method (i.e., 2000 HU 

in our experiments). The forward projection of the metal masks was conducted to generate 

the metal projection and the pixels with the projection value greater than zero were regarded 

as the metal trace region Tr. We also performed the forward projection on the clinical CT 

image with the same imaging geometry as the above simulation procedure to acquire the 

metal-corrupted sinogram Sma. The LI corrected sinogram SLI was then generated from Sma 

and Tr with linear interpolation. Finally, we fed Sma, SLI and Tr into our framework to get 

the meta artifact reduction images. Fig. 6 presents the visual results of different methods. 

Our method effectively reduces metal artifacts compared with the original metal image. 

From the yellow zoomed patches, it is observed that the other methods change some tiny 

anatomical structures of the original image, while our method can preserve the fine-grained 

anatomical structures.

2) The influence of metal mask segmentation: An accurate metal trace mask (or 

metal mask equally) is vital for the good performance of metal artifacts reduction in our 

framework. In practice, we can manually segment the metals or use some automatic metal 

segmentation methods (e.g., thresholding method) to segment the metals. To investigate the 

influence of metal mask segmentation on the final MAR results, we take different metal 
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masks to acquire the metal traces and then adopt our method to conduct MAR with taking 

these different metal traces as input. Fig. 7 shows the MAR results of our method by taking 

the original thresholding-based metal mask (a), the dilation metal masks (b & c), and erosion 

metal masks (e & f) as input. In general, our method can achieve reasonable MAR results 

under slightly metal segmentation errors. The over-segmented metal masks would lead to a 

relatively large metal trace and our method needs to complete more projection values. As the 

network has been trained to completed different metal traces, it can estimate the missing 

projection values without leading to strong new artifacts in the reconstructed CT images, 

although there are additional shading artifacts in the CT images. As for the under-segmented 

case, the corresponding metal trace is narrower than the original metal trace. The sinogram 

completion network would only complete some projection values of the original metal trace 

region and reuse some unreliable projection data. Therefore, our method can only reduce 

some metal artifacts and there still remains some residual streaking artifacts in the 

reconstructed CT image.

F. Analytical Studies

1) Effectiveness of prior image generation: In our framework, we train the 

PriorNet to generate a good prior image to ease sinogram completion. To show the 

effectiveness of this procedure, we directly train a neural network to complete the sinogram 

without taking the prior sinogram as input. The quantitative results of this method on 

DeepLesion simulated dataset are shown in Table II. It is observed that this method (Deep 

sinogram completion) achieves much higher RMSE and lower SSIM values than our 

method, verifying the effectiveness of prior image generation procedure. In Fig. 8, we show 

some generated prior images and final metal artifact reduction images on DeepLesion and 

head CT data. We can see that the prior images (Fig. 8(b)) have less artifacts than original 

metal image (Fig. 8(a)) and our final results (Fig. 8(c)) further reduce artifacts compared 

with the prior images. We also train our framework by taking only original metal image as 

PriorNet input. As shown in Table II, this method (Only metal image) generates slightly 

worse results than our method on the simulated dataset, indicating that incorporating LI 

corrected image as input can facilitate the prior image generation.

2) Effectiveness of residual sinogram learning: We show the qualitative MAR 

results of our method with and without residual sinogram learning strategy in Fig. 9. The 

first row is the results on the simulated metal artifact image and the second row shows the 

results on the real clinical CT image with metal artifacts. In the experiment without residual 

sinogram learning, the SinoNet directly takes the prior sinogram and metal trace mask as 

input and outputs the refined projections within the metal trace region. From the visual 

comparison in Fig. 9, we can observe that our framework further reduces metal artifacts on 

both simulated and real samples by adopting the residual sinogram learning strategy. We 

also present the quantitative results of w/o residual sinogram learning in Table II. It is 

observed that we achieve higher RMSE and lower SSIM values with residual sinogram 

learning.

3) Compared with tissue processing: The tissue processing step is often used to 

acquire the prior image in previous MAR methods. We conduct another experiment to 
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investigate the effect of this strategy, where we employ the tissue processing and metal trace 

replacement steps [17], [23] to process the generated prior image Xprior of our method and 

then acquire the final metal-free image with FBP reconstruction. The quantitative result of 

this method (With tissue processing) is shown in Table II. It is observed that With tissue 
processing achieves satisfying results on the simulated DeepLesion dataset, while its 

performance is still inferior to our end-to-end deep sinogram completion strategy, indicating 

that the deep sinogram network could automatically learn how to reduce the mild artifacts in 

the prior image.

IV. DISCUSSION

MAR is a long-standing problem in CT imaging. In this work, we aim to design a data-

driven framework to address this problem by utilizing a large amount of training data. The 

previous deep-learning-based methods usually formulate the MAR as an image restoration 

problem. Whereas we borrow the spirit of conventional MAR approaches and formulate the 

MAR as a deep sinogram completion problem, aiming to improve the generalization and 

robustness of the framework. Since directly regressing the accurate missing projection data 

is difficult, we propose to incorporate the deep prior image generation procedure and adopt a 

residual sinogram completion strategy. This manner can improve the continuity of the 

projection values at the boundary of metal traces and alleviate the new artifacts, which are 

the common drawbacks of sinogram completion based MAR methods. In such way, our 

framework could better utilize the advantages of deep learning techniques while alleviating 

the risk of overfitting to certain training data.

We solve MAR in both sinogram and image domains, which share the same strategy with 

DuDoNet [35] and DuDoNet++ [36]. However, our framework differs from them in a few 

important aspects. The DuDoNet and DuDoNet++ directly adopt the image-domain-

refinement output as the final MAR image, whereas the final MAR image of our method is 

directly FBP-reconstructed from the completed sinogram. As there is no geometry (physical) 

constraints to regularize the neural networks, there would be some tiny anatomical structure 

changes in the CNN-output images. Our FBP-reconstructed image could preserve the 

anatomical structure of the original image and avoid the resolution loss, as we only modify 

the metal trace region values in the sinogram; see comparisons in Figs. 3&4. More 

importantly, we design a novel residual learning strategy for the sinogram enhancement 

network to refine the residual projections within the metal trace region, and both quantitative 

and qualitative results show the effectiveness of such residual learning strategy.

It is clinically impractical to acquire metal-free and metal-inserted CT data for network 

training, We thus simulate metal artifacts from clinical metal-free CT images to acquire 

synthesized training pairs. In this case, the quality of simulated data would largely influence 

network performance. Currently, we simulate the metal artifacts without carefully designing 

the simulated metal masks. In the future, we will investigate how to create a good simulated 

dataset to further improve the network performance on real clinical CT images.

The previous prior-image-based MAR methods would utilize tissue processing to post-

process the generated prior image. Whereas in our method, we directly employ the CNN 
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output as the prior image to guide the sinogram completion network. In this case, we can 

jointly train the PriorNet and SinoNet, and the prior image generation and sinogram 

completion procedures can benefit from each other. Although some mild artifacts would 

remain in the generated prior image, the sinogram completion network would automatically 

learn how to complete the sinogram from the prior sinogram, so that our final output can 

remove these mild artifacts.

We have trained and evaluated our method on simulated datasets, but as shown in the 

experiments, our framework has strong potential to be applied in CT images with real metal 

artifacts. Since there is no public real projection data and we need to cooperate with CT 

device venders to acquire such real projection data, in the current study, we use forward 

projection to simulate the projection data. This is a limitation of our current work and we 

will evaluate the effectiveness of our method on real project data in the future. When 

applying the framework into real clinical data, one important practice issue is how to acquire 

the accurate metal trace and metal masks. Although our framework is relatively robust to the 

metal mask segmentation, an accurate metal segmentation would further ensure the stability 

of the MAR results. Deep learning has achieved promising results in various medical image 

segmentation problems [24], [25], [44]. Incorporating deep learning-based metal 

segmentation or advanced metal identification algorithm [3] into our framework would 

further improve the robustness of our method. Recently, some works studied how to locate 

the shape and location of metal objects directly from the metal-corrupted sinogram [3], [45]. 

These binary reconstruction works can also be integrated into our framework for better metal 

artifact reduction. Moreover, it is more interesting to investigate how to simultaneously 

conduct metal mask identification and metal artifact reduction in a collaborative manner.

V. Conclusion

We present a generalizable image and sinogram domain joint learning framework for metal 

artifact reduction in CT imaging, which integrates the merits of deep learning and 

conventional MAR methods. Our framework follows the prior-image-based sinogram 

completion strategy and we employ two networks to conduct prior image generalization and 

sinogram completion. The whole framework is trained in an end-to-end manner so that the 

two networks can benefit from each other in network learning. Our framework is trained 

with the simulated metal artifacts data, while the experimental results show the strong 

potential of our method to handle CT images with real artifacts. The future works include 

investigating how to simultaneously conduct metal mask identification and metal artifact 

reduction, as well as how to perform the procedure in an unsupervised manner.
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Fig. 1: 
The qualitative comparison of sinogram completion. An ROI is enlarged and shown with a 

narrower window to better visualize the difference. The linear interpolation (LI) [2] 

produces a poor estimation of the missing projections (d), while the deep network can 

generate a relatively good corrected sinogram (e). With the guidance of prior image, our 

method predicts more accurate projections (f), which are very close to the metal-free one.
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Fig. 2: 
Schematic diagram of our proposed image and sinogram domain joint learning framework 

for metal artifact reduction. Given the metal-affected sinogram Sma and metal trace mask Tr, 
we use linear interpolation to acquire LI corrected sinogram SLI. We jointly train a prior 

image generation network, i.e., PriorNet, to generate a good prior image Xprior and a 

sinogram completion network, i.e., SinoNet, to restore the metal-affected sinogram with the 

guidance of the prior sinogram Sprior, which is the forward projection of the prior image 

Xprior. The Sres is the residual sinogram map between SLI and Sprior.

The final metal-free image is reconstructed from the corrected sinogram Scorr with the FBP 

algorithm.
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Fig. 3: 
Visual comparison with different methods on DeepLesion dataset. The simulated metal 

masks are colored in red for better visualization. The (A1-A4) are refer images. We show the 

MAR results of LI [2] (C1-C4), NMAR [15] (D1-D4), CNNMAR [11] (E1-E4), cGANMAR 

[38] (F1-F4), DuDoNet [35] (G1-G4), and our method (H1-H4). The display window of the 

first and second samples are [−480 560] and [−175, 275] HU, respectively. We also use ROI 

RMSE and ROI SSIM to show quantitative results for a better comparison.
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Fig. 4: 
Visual comparison with different methods on DeepLesion dataset. The simulated metal 

masks are colored in red for better visualization. The (A1-A2) are refer images. We show the 

MAR results of LI [2] (C1-C2), NMAR [15] (D1-D2), CNNMAR [11] (E1-E2), cGANMAR 

[38] (F1-F2), DuDoNet [35] (G1-G2), and our method (H1-H2). The display window is 

[−175 275] HU.
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Fig. 5: 
Visual results on head CT images with different numbers of simulated dental fillings. The 

simulated dental fillings are colored in red for better visualization. The display window is 

[−1000 1600] HU.

Yu et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6: 
Visual comparison on CT images with real metal artifacts. The segmented metals are colored 

in red for better visualization. Our method effectively reduces metal artifacts and preserves 

the fine-grained anatomical structures. The display window of whole image is [−480 560] 

HU and the display window of cropped patches is [−400 300] HU.
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Fig. 7: 
The results of our method with different segmented metal masks as input. We show the 

MAR results with thresholding-based metal segmentation (a); we also dilate the metal mask 

to get over-segmented masks (b & c) and erode the metal mask to get under-segmented 

masks (e & f). The display window is [−480 560] HU.
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Fig. 8: 
Illustration of the generated prior image. The display window of first row and seconed row 

are [−480 560] HU and [−1000 1600] HU, respectively.
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Fig. 9: 
The results of our method with (b) and without (c) residual sinogram learning strategy. The 

first row is simulated metal image and the second image is real clinical CT image. The 

display window is [−480 560] HU.
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TABLE I:

Quantitative comparison of different methods on DeepLesion dataset.

Method RMSE (HU) SSIM

LI [2] 50.31±19.41 0.9455±0.0315

NMAR [15] 47.03±20.67 0.9594±0.0299

CNNMAR [11] 43.27±14.44 0.9706±0.0159

cGANMAR [38] 39.01±12.66 0.9754±0.0055

DuDoNet [35] 38.00±13.31 0.9766±0.0072

Ours 31.15±5.81 0.9784±0.0048
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TABLE II:

Quantitative analysis of our methods on simulated DeepLesion dataset.

Method RMSE (HU) SSIM

Deep sinogram completion 43.65±17.61 0.9720±0.0082

With tissue processing 35.64±7.91 0.9768±0.0047

w/o residual sinogram learning 31.86±4.69 0.9781±0.0048

Only metal image 31.60±4.95 0.9778±0.0048

Ours 31.15±5.81 0.9784±0.0048
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