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Abstract Manual classification is still a common method to
evaluate event detection algorithms. The procedure is often as
follows: Two or three human coders and the algorithm classify
a significant quantity of data. In the gold standard approach,
deviations from the human classifications are considered to be
due to mistakes of the algorithm. However, little is known
about human classification in eye tracking. To what extent
do the classifications from a larger group of human coders
agree? Twelve experienced but untrained human coders clas-
sified fixations in 6 min of adult and infant eye-tracking data.
When using the sample-based Cohen’s kappa, the classifica-
tions of the humans agreed near perfectly. However, we found
substantial differences between the classifications when we ex-
amined fixation duration and number of fixations. We hypoth-
esized that the human coders applied different (implicit) thresh-
olds and selection rules. Indeed, when spatially close fixations
were merged, most of the classification differences disappeared.
On the basis of the nature of these intercoder differences, we
concluded that fixation classification by experienced un-
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trained human coders is not a gold standard. To bridge the
gap between agreement measures (e.g., Cohen’s kappa) and
eye movement parameters (fixation duration, number of fixa-
tions), we suggest the use of the event-based F1 score and two
new measures: the relative timing offset (RTO) and the rela-
tive timing deviation (RTD).

Keywords Fixation classification - Eye tracking - Human
coder

Most raw data from observation tools (MRI scanners, video
cameras, microphones, motion trackers, eye trackers) only
become useful if parts of the data are classified into meaning-
ful units. One may think of signs in sign language extracted
from video (Kita, van Gijn, & van der Hulst, 1998), automatic
word recognition from a voice recording (Cooke, Green,
Josifovski, & Vizinho, 2001) and saccade and fixation cate-
gorization in eye-tracker data (Nystrdom & Holmgqvist, 2010).
In research fields in which large amounts of data have to be
processed much effort is put in automated classification.
Recently we published an article about a noise-robust fixation
detection algorithm designed to deal with eye-tracking data
from infants (Hessels, Niehorster, Kemner, & Hooge,
2016b). During the review process one of the reviewers asked
us to evaluate our algorithm against “the golden standard of
manual classification.” To many this may seem a reasonable
request, but at the time we did not see the added value of
manual classification because we developed our noise-robust
fixation detection algorithm specifically to avoid human
coding. Our reasoning was that manual classification of eye-
tracking data is expensive, slow (as compared to a computer)
and prone to subjective biases and should therefore be
avoided. In other words, we did not acknowledge human
classification as a gold standard for fixation detection in the
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eye-tracking signal. To be clear what we mean by gold stan-
dard,"' we use the definition of Versi (1992): “The gold standard
is not the perfect test but merely the best available test” (p. 187).
This means that after a new technical development one gold
standard may be replaced by another one. The gold standard in
mobile eye tracking for mapping point of regard to the world
with static stimuli may soon change to a new one. Previously
such analysis was done by hand, but recent developments,
however, made automated 3-D mapping of gaze to the world
in simple controlled static environments available (Pfeiffer,
Renner, & Pfeiffer-LeBmann, 2016). In many research fields
manual classification is still the gold standard. In the literature
we can find many different applications of and rationales for the
standing of human manual classification.

Why would one want to do manual classification of scien-
tific data instead of using an algorithm? There are various
reasons to use manual classification. Manual classification
can be used in three ways:

1. Manual classification to process data Some classifica-
tion tasks have to be done by hand because automated
protocols simply do not exist (yet). These tasks include
the classification of stimuli, behavior and responses and
are used in many fields (e.g., political science, computer
science, linguistics, psychology, and biology). Some ex-
amples of tasks that require(d) human classification are
because an automated protocol is/was not available: video
observation of human behavior (Ozonoff et al., 2010),
microsaccade detection in an eye-tracking signal from
an analogous eye tracker (Steinman, Cunitz, Timberlake,
& Herman, 1967) or gaze mapping of eye-tracking data
from a head-mounted mobile eye tracker (Foerster,
Carbone, Koesling, & Schneider, 2011; Gidlof, Wallin,
Dewhurst, & Holmqvist, 2013; Hayhoe, Shrivastava,
Mruczek, & Pelz, 2003; Land, Mennie, & Rusted, 1999).

2. Manual classification to validate algorithms Manual
classification is a common method to test algorithms in re-
search fields in which automated classification is possible.
Andersson, Larsson, Holmqyvist, Stridh, and Nystréom (2017)
wrote: “A Human—Algorithm comparison, however, often
assumes that humans behave perfectly rationally and that,
consequently, any deviation from perfect agreement is due to
the mistakes of the algorithm” (p. 619). The procedure is
often as follows; two or three human coders and the algo-
rithm classify a significant quantity of data. Then algorithm
classifications are compared to human classifications using
measures such as Cohen’s kappa (Cohen, 1960). If there is
enough agreement between the human classification and the
algorithm classification, the algorithm is considered good
enough. We will refer to this whole procedure as the strict

! We use the term gold standard because, according to Claassen (2005), gold-
en standard is not the appropriate term.

gold standard approach. An example of this is found in
Munn, Stefano, and Pelz (2008) who developed an algo-
rithm to classify fixations produced during the viewing of
a dynamic scene. They state the following about their algo-
rithm: “In comparing the performance of this algorithm to
results obtained by three experienced coders, the algorithm
performed remarkably well.” In Zemblys, Niehorster,
Kolmogortsev, and Holmqyvist (2017) we found an interest-
ing quote concerning human classification: “We did not
have multiple coders to analyze interrater reliability, as this
would open another research question of how the coder’s
background and experience affect the events produced.” By
using only one coder Zemblys et al. can still apply the strict
gold standard approach. However, it is interesting that they
expect coders to produce different results.

3. Manual classification to teach artificial intelligence and
to develop algorithms Manual classifications may yield a
lot of information that may be useful to include in algo-
rithms. This can be done implicitly or explicitly. In a sign
language study, Kita, van Gijn, and van der Hulst (1998)
tested a new coding scheme containing criteria. They had
two human coders analyze signs and co-speech gestures
that are produced in natural discourse. Based on the good
agreement between the classifications they conclude:
“These criteria can be used for the technology of automatic
recognition of signs and co-speech gestures in order to
segment continuous production and identify the potentially
meaning-bearing phase” (p. 23). This was an example of
the use of explicit knowledge. Machine learning is a meth-
od to use implicit knowledge contained by the manual
classifications. Tigges, Kathmann, and Engel (1997) used
an artificial neural network (ANN) to detect saccades dur-
ing smooth pursuit in an EOG signal. The results were
tested against three human coders and they conclude: “A
total of 1,354 possible saccadic events were identified and
classified by three experts on the basis of a consensus rating
to have a gold standard for the training and testing of the
ANN? (p. 177). This is interesting because the authors also
write: “There are no definite rules that could be used for a
knowledge based identification algorithm for an automated
analysis” (p. 176). They use an opaque detector (the ANN),
which does not allow insight into the logic of the internal
algorithm (i.e., one does not really know what implicit
“rules” it has developed) and test it against three human
coders for whose internal algorithms are equally unknown.

Is human classification good enough to be a gold
standard?

Many applications of human classifications are done under the
strict gold standard approach. However, there is debate
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whether this approach is valid; perhaps the current gold stan-
dard (of manual classification) may not to be the best tool
available. Mikhaylov, Laver, and Benoit (2012) investigated
coder reliability and misclassification in manual classification
of party election programs. They wrote: “Our findings indicate
that misclassification is a serious and systemic problem with
the current CMP? data set and coding process, suggesting the
CMP scheme should be significantly simplified to address re-
liability issues” (p. 78). Larsson, Nystrom, Andersson, and
Stridh (2015) wrote: “The fact that the two experts sometimes
differ makes it even harder to decide which one to trust or use
as the ‘gold standard’” (p. 151). Others question whether hu-
man coders have the cognitive potential to act as a gold stan-
dard for some coding tasks. Salvucci and Anderson (2001)
claimed that human coding of eye movement protocols is im-
possible because humans cannot interpret the data (which may
consist of hundreds of protocols) consistently, accurately, and
in a reasonable amount of time. The coding interface may have
an influence on the classification process. The nature of these
interfaces may range from the replay of raw signals to dedicat-
ed software to visualize the different aspects of the raw signals.
In real-world eye-tracking studies (e.g., Foerster et al., 2011;
Hayhoe et al., 2003; Land et al., 1999), the human rater often
codes the events on the basis of a scene video with
superimposed gaze position for which the interrater reliability
might differ from other interfaces. Moreover, the coding of
saccades and fixations on the basis of a video of the eye might
lead to even bigger differences in interrater reliability. In our
own study (Hessels, Nichorster, et al., 2016b), we wrote: “It
should be noted, however, that the expert coders did not pro-
duce identical outcome measures, such that the question be-
comes how informative one expert coder actually is. Future
research should examine whether expert coders serve as a good
gold standard for event-detection algorithms” (p. xxx). Even
Andersson et al. (2017), who applied the gold standard ap-
proach, wrote: “Human coders are not perfect and there are
indeed difficult classification cases, but the general sentiment
is that, in the simple case, what is a fixation and what is a
saccade is something we can agree on” (p. 634).

The present study

Although Andersson et al. (2017) suggest that we can agree in
simple cases, we do not know if this is the case. Researchers
investigating microsaccades probably have a different
(implicit) definition of a saccade than do eye movement re-
searchers investigating gaze behavior to faces. One can expect
that the latter are less interested in small saccades but rather in
saccades that bring gaze from the left eye to the mouth. The
problem of vague or implicit definitions is not unique for eye

2 CMP refers to the Comparative Manifesto Project.
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movement research, in medical diagnosis it is known that
individual coders may classify differently. Wing, Cooper,
and Sartorius (1974) write in their instruction manual for clas-
sification of psychiatric symptoms: “This manual is a partic-
ular method of standardizing the elements of the diagnostic
process with a view to achieving comparability between cli-
nicians. The most important part of this book is therefore the
glossary of definitions of symptoms” (p. xxx). Our question
is, Do the classifications of a group of experienced but un-
trained human coders agree? And if so, how? Or if not, what
are the differences between the classifications? Related ques-
tions are whether human coders are prone to floating criteria;
do they apply similar criteria after coding for thirty min? Do
researchers of the same lab who work with the same algo-
rithms classify in the same way? From here on when we write
human coders, we refer to experienced untrained human
coders. We invited 13 eye movement researchers and had
them manually classify about 6 min of eye-tracking data with
a mouse and a simple coding interface. The eye-tracking data
was collected with a Tobii TX300 (300 Hz) and derived from
infants and adults. To our knowledge a systematic study with
more than three human coders has not been done yet in the
field of eye tracking. We compared event parameters like fix-
ation duration, number of fixations and intercoder sample-by-
sample reliability with Cohen’s kappa (Cohen, 1960). On the
basis of our results, we developed a new agreement measure.
We also characterized the human coders by modeling their
putative criteria for fixation onset, fixation offset, and mini-
mum saccade amplitude. One may ask why we think that a
saccade amplitude criterion may play a role in a fixation clas-
sification task. Firstly, the eyes are never still when subjects
are instructed to fixate, small eye movements may occur
(Martinez-Conde, Macknik, & Hubel, 2004; Steinman et al.,
1967). Secondly, in many definitions of a fixation, small sac-
cades are accepted as part of the fixation, meaning that they
are not classified as saccades cutting a fixation in two parts.
For example, Hooge and Erkelens (1999) allowed saccades up
to 2.1° to be part of a fixation. It may depend on the (implicit)
criteria of the human coder whether variations in the position
signal are acknowledged as saccades or as part of the fixation.

In this article we will answer the question whether classifi-
cation by untrained but experienced human coders is the gold
standard of fixation detection. It should further be noted that
currently in the eye-movement field, human classification by
experienced untrained observers is believed to be the gold stan-
dard for event classification, as evidenced in the introduction. In
this article, we simply investigated whether human classifica-
tion following this standard practice approach indeed is the gold
standard. To do so we will use measures extracted from the raw
classifications (agreement measures, eye movement measures
and estimated putative thresholds). Furthermore, irrespective of
the answer to the previous question, we will discuss the stand-
ing of human classification in modern eye tracking.
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Method
Coders

We engaged 13 eye-tracking researchers in the fixation label-
ing task. We removed one human coder from the analysis
because we found out he had never looked at raw data before.
In addition, the percentage of samples he coded as fixations
was 53.2%, which is 2.9 standard deviations below the group
average of 69.7% (SD = 5.6%). The average percentage after
removal was 71.1% (SD = 2.7%). The remaining 12 coders
are members from different research groups; details about
them may be found in Table 1. Written informed consent
was provided by the coders, and the experiment was conduct-
ed in accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki).

Stimulus

The eye-tracking stimulus set consists of 70 trials of eye-
tracking data measured with a Tobii TX300 at 300 Hz. We
used eye-tracking data measured from the left eye. Ten of the
70 trials contained 150.1 s of eye-tracking data of two adults
looking at Roy Hessels’s holiday pictures taken in the arctic
area around Tromse, Norway. The other 60 trials contained
202.1 s of eye-tracking data of infants performing a search
task (Hessels, Hooge, & Kemner, 2016¢). Description of the
stimulus data can be found in Table 2. Precision was comput-
ed with a moving-window method applied to the entire signal.
We computed the RMS deviation per window (31 samples,
103.33 ms), took the median RMS deviation per trial and
averaged this over all trials.

Trials of both the adult and the infant eye-tracking datasets
were presented in random order on a 24-in. TFT screen (1,920 x
1,200 pixels) with a program written in MATLAB using the
Psychophysics Toolbox (Brainard, 1997). The coding graph-
ical user interface consisted of three panels (Fig. 1). The top
panel showed horizontal gaze position in pixels versus time,
the center panel showed vertical gaze position in pixels versus
time, and the bottom panel showed velocity in pixels per sec-
ond. Velocities in both the horizontal and vertical components
were obtained by fitting a parabola through seven consecutive
data points of the position signal (same method as in Hooge &
Camps, 2013). The derivative of this parabola was used to
estimate the value of the velocity of the fourth (center) data
point. We computed the velocity signal by taking the vector
sum of the horizontal and vertical velocity signals. The verti-
cal axis of the position signals was fixed (respectively, 0—
1,920 and 0-1,080 pixels, since measurements were done on
the HD screen of the TX300). The vertical velocity axis of the
velocity panel was scaled to the maximal velocity in the win-
dow. Each screen showed 1 s of data and contained the last

Details about the 12 experts who classified fixations

Table 1

Eye Tracker

Exp (yr) Affiliation Subject Group Event Algorithm

Age (yr)

Name

NH2010, SH2003, 2MC  EL1000(+), SMI RED-m, Tobii 2150

SP, fix, sacc

all

Healthy adults, Asians
Healthy adults

Humlab Lund

10
24

29

D.N. Diederick Niehorster

LH.
R.H.
JV.
J.B.

Coils, EL2, EyeTech TM3, Tobii's, Pupil Labs

Tobii TX300, SMI RED60/120

LC, Tobii TX300

HC2013
12MC

sacc, fix, verg  SH2003

fix

Exp Psy Utrecht
Dev Psy Utrecht

50
26
37

Ignace Hooge

Infants, healthy adults

Roy Hessels

Dyslexics, healthy adults

Dev Psy Utrecht
Healthy adults

10

Jacco van Elst

EL2, Tobii Eye trackers, Pupil Labs

SH2003, HC2013

Exp Psy Utrecht
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SGL Frankfurt
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Engbert and Kliegl (2003).

Hooge and Camps (2013); EK2003 =

Hessels, Niehorster, et al. (2016); HC2013

EL1000 refers to the SR Research EyeLink1000; EL2 refers to SR Research EyeLink 2. LC refers to the LC technologies EyeGaze. SGL Frankfurt refers to Scene Grammar Lab, Goethe University

Smeets and Hooge (2003), 2MC =

Nystrom and Holmgvist (2010); SH2003 =

Frankfurt. SP refers to smooth pursuit, fix refers to fixations, sacc refers to saccades, verg refers to vergence.

NH2010
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Table 2 Properties of the stimulus data sets

Stimulus Adult Infant
Number of Samples 45,018 60,623
Duration (s) 150.1 202.1
Prop. data loss 0.02 0.23
RMSx (deg) 0.16 0.21
RMSy (deg) 0.24 0.27
RMS (deg) 0.32 0.36
Min RMS (deg) 0.23 0.18
Max RMS (deg) 041 1.28

The RMSx of the Tobii TX300 is remarkably lower than RMSy

250 ms of the previous display (to provide context) and
750 ms new data at a time.

Task

The experts were asked to label fixations. As context, we said
that fixation locations and fixation durations were going to be
used for assessing the temporal and spatial aspects of looking
behavior. They could use the “a” and “d” keys to navigate
back and forth through the data with steps of 1 s. With a mouse
click they could indicate the start and end of a fixation and
after labeling a fixation it colored light gray. The coders could
delete their settings by double-clicking them. They could
move their settings back and forth in time by clicking follow-
ed by dragging.

Results
Characteristics of the coding process

Besides the judgments, we also logged time stamps of the
classifications. Figure 2a shows the numbers of judgments
during the whole session. The lowest number of judgments
was 1,436 (M.S.), and the highest was 1,703 (P.Z.). The me-
dian interjudgment interval (time between two judgments)
ranged from 1.00 s (R.H.) to 3.37 s (R.H.) (Fig. 2b). One
might expect that more careful inspection may lead to more
and more detailed events being classified. This is not the case;
the number of judgments is not significantly correlated with
the median interjudgment interval (» = .1891, p = .5561).

Agreement measures

To determine whether human classification is a gold standard
in fixation detection, we investigated to what degree the clas-
sifications agree. We computed Cohen’s kappa (Cohen, 1960)
for all human coder pairs because many recent comparison
studies use this measure (Andersson et al., 2017; Larsson,
Nystrom, Andersson, & Stridh, 2015; Larsson, Nystrom, &
Stridh, 2013; Zemblys et al., 2017). Cohen’s kappa is a
sample-based measure to quantify the agreement between
two coders. Cohen’s kappa takes into account and compen-
sates for agreement based on chance. Cohen’s kappa ranges
from —1 to 1. Cohen’s kappa = 0 equals chance, and Cohen’s
kappa = 1 equals perfect agreement. According to Table 3,
81.9% of the values for Cohen’s kappa are higher than .8,

280ms 780ms .
old data new data
4 B PRI
Horizontal Gaze Pos ; /“AW Bt o f\k
Fixed 0-1920 pixels 7 : Lo A

Vertical Gaze Pos
Fixed 0-1080 pixels

| N ——

Combined Abs Vel ’
Auto scale pixels/s?

N |
AN ;

Time (ms)
Range 1000 ms

Previous episode Next episode

P »

A D

Fig. 1 Coding interface with example data. The graphical user interface
consists of three panels (horizontal gaze position, vertical gaze position,
and absolute velocity). The y-axis of velocity is autoscaled to the largest
velocity in the display, and the other two vertical axes are fixed. The
display contains 1,000 ms of data (250 ms of data from the previous
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display, 750 ms of new data). Navigation back and forth in time is done
with the “a” and “d” keys, and fixation start and end are indicated by the
mouse. Already classified fixations are colored light gray in the real
interface. Earlier settings can be modified and removed with the mouse
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Fig. 2 (a) Numbers of judgments. (b) Median interjudgment intervals. We report the median because the distribution of interjudgment intervals is
skewed. Error bars denote the 95% confidence intervals derived from a bootstrapping procedure with 10,000 repetitions

indicating “almost perfect agreement” according to Landis
and Koch (1977). The other values (18.1%) are higher than
735, and that is still substantial agreement (Landis & Koch,
1977). 9.7% of the values are higher than .9. Especially the
settings of R.H., LH., and D.N. are in good agreement with
each other. The highest mean (k = .879) is found for coder
M.N., and the lowest (k = .792) is found for coder P.Z.

Eye movement parameters

Next we report measures that are meaningful for eye move-
ment researchers. On the basis of the human classifications,
we can calculate the proportion of samples classified as fixa-
tions, numbers of fixations, and mean fixation durations.
Figure 3a contains the proportions of samples classified as
fixations, ranging from .66 to .76. This number may vary
between the coders, because they may have used different
criteria for the start and the end of the fixation, minimal fixa-
tion duration, minimum saccade amplitude and the periods
without data that are accepted as fixation. The number of
fixations ranged from 718 (M.S.) to 849 (P.Z.), and the mean

fixation duration ranged from 273 ms (P.Z.) to 351 ms (M.S.).
Because the proportions of samples classified did not vary a
lot between the human coders, it is not surprising that the
coder with the highest number of fixations had the shortest
fixation duration (Fig. 3d), or that the coder with the lowest
number of fixations had the longest duration. Fixation dura-
tion and number of fixations have a high negative correlation
(r=-905, p <.001).

Modeled parameters: Velocity threshold

Another way to characterize the human coders is to model
their thresholds. Many fixation and saccade classifiers
(Engbert, & Kliegl, 2003; Hooge & Camps, 2013; Nystrom
& Holmgqvist, 2010; Smeets & Hooge, 2003; Van der Steen &
Bruno, 1995) use the velocity threshold method. The idea is
that a sample belongs to a fixation if the velocity at that sample
is lower than a certain value. If we treat the human classifica-
tions as being produced by a velocity threshold model, we can
determine the alleged thresholds by looking back at the veloc-
ity signal of the stimulus eye-tracking data at the fixation start

Table 3  Sample-based Cohen’s kappa values for the 12 human coders
DN H B JF v KH MN MS PZ RA RH TC Mean

DN 91 .88 .85 .88 .87 .89 .89 77 .86 .92 .83 .868
IH 91 .84 .81 .83 .83 .85 .84 74 .82 .90 .81 .833
JB .88 .84 .88 .89 .88 .90 .89 .79 .86 .89 .84 .867
JF .85 .81 .88 .89 .87 .89 .88 .81 .85 .84 .83 .854
v .88 .83 .89 .89 .89 91 .90 .81 .87 .87 .84 .873
KH .87 .83 .88 .87 .89 .90 .88 .81 .86 .87 .86 .866
MN .89 .85 .90 .89 91 .90 .90 .80 .88 .90 .84 .879
MS .89 .84 .89 .88 .90 .88 .90 .80 .87 .88 .84 871
PZ 7 74 79 .81 81 .81 .80 .80 78 77 .83 792
RA .86 .82 .86 .85 .87 .86 .88 .87 .78 .85 .83 .849
RH 92 .90 .89 .84 .87 .87 .90 .88 77 .85 .83 .867
TC .83 .81 .84 .83 .84 .86 .84 .84 .83 .83 .83 .835

The most rightward column contains the mean Cohen’s kappa for each coder.
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Fig.3 (a) Proportions of samples classified as fixations. (b) Numbers of fixations. (¢) Fixation durations. Error bars denote standard errors of the means.
(d) Fixation durations versus number of fixations (r = —.905, p <.001). Each point represents the data of one coder

and by the end. Figure 4 shows that (1) fixation onset velocity
thresholds are generally higher (8 out of 12) than fixation
offset velocity thresholds, and (2) except for D.N., L.LH.,
R.H., and T.C., the thresholds are lower than 20°/s and very
similar for the remaining coders. There are clear differences
between the human coders here.

Modeled parameters: Minimum saccade amplitude

In analogy to the velocity threshold approach, we can model
other thresholds. The minimal saccade threshold is another
putative threshold that can be revealed from the manual clas-
sifications. We asked the coders to mark fixations and not
saccades, however between the majority of the fixations, sac-
cade candidates are located. To find these saccade candidates
we took periods of data between fixations with durations

shorter than 100 ms and no data loss. This duration criterion
is a liberal one; large 30° saccades last about 100 ms
(Collewijn, Erkelens, & Steinman, 1988). From here on, we
will refer to these intervals as saccade instead of saccade
candidate. Figure 5 shows the characteristics of the saccades.
The mean amplitude ranges from 5.7° (P.Z.) to 6.6° (M.S.),
and the number of saccades ranges from 632 (M.S.) to 722
(P.Z.). Unsurprisingly, P.Z., who classified the highest number
of fixations (Fig. 3b), also classified the highest number of
saccades. At the same time, P.Z. has the lowest mean saccade
amplitude. Coder M.S. is the opposite. M.S. has the lowest
number of saccades and the largest saccade amplitude. It
seems that the fixation coding of P.Z. can be characterized
by a lower saccade amplitude threshold than the other coders.
We estimated the saccade size threshold by taking the mean of
the five smallest saccades (Fig. 4c). The minimal saccade
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Fig.4 (a) Velocity threshold for fixation onset. (b) Velocity threshold for
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Each point represents the data of one coder. The velocity thresholds for
D.N., T.C., R.H., and I.H. are much higher than those for the other coders
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amplitude of P.Z. is much lower that the minimal saccade
amplitudes of the other coders. P.Z. also has the largest num-
ber of saccades below 0.5° (Fig. 4d).

Dealing with data loss

The eye-tracker signal may contain empty samples (also referred
to as data loss). The nature of data loss is explained as follows by
Hessels, Andersson, Hooge, Nystrom, and Kemner (2015a):
“This might be because a participant is looking outside the track-
ing area (e.g., away from the screen) or because a participant’s
eyelids are closed due to a blink. Data loss can, however, also
occur when the participant is directed toward the screen and the
participant’s eyes are open. This might be for a number of rea-
sons: It could be that the eye tracker is unable to detect the eyes,
the pupil, or the corneal reflection” (p. 605). Some automated
fixation and saccade classifiers do not tolerate data loss in fixa-
tions. An example of such an algorithm is the original implemen-
tation of NH2010 (Nystrom & Holmgqvist, 2010). However,
many of the algorithms deal with data loss in a rather implicit
and indirect way. The I2MC fixation classifier (Hessels,
Niehorster, et al., 2016b) merges subsequent fixations that are
spatially closer than this distance. Between these fixation small
saccades or short periods of data loss may be located. The result
of the merging rule is that periods of data loss may become part
of periods that are classified as fixation. The I2MC algorithm
also has an explicit way of dealing with data loss; periods of lost
data up to 30 samples (100 ms) are interpolated if they are
flanked by at least by two valid samples at each side.

How do the human coders deal with data loss? Do human
coders classify fixations containing data loss? Figure 6 shows

the proportions of fixations without data loss; this proportion
ranges from .91 (LH.) to .96 (T.C.). All coders classify fixa-
tions with data loss, and the mean number of lost samples per
fixation containing data loss ranges from 21.5 (P.Z.) to 33.1
(M.S.). Unsurprisingly, P.Z. has the lowest number of lost
samples per fixation that contained data loss; he classified
the highest number of fixations with the shortest fixation du-
rations (Fig. 3). M.S. has the lowest number of fixations and
the longest fixation durations, as well as the highest number of
lost samples per fixation that contained data loss (Fig. 6b).

Applying a rule to the manual classifications

As can be seen in Fig. 3, the question of whether the classifi-
cations of a dozen coders agree can be answered with a simple
“no.” The intercoder fixation duration differences are larger
than most fixation duration differences that may occur be-
tween very different experimental conditions (Kowler, 2011;
Rayner, 1998). In addition, Figs. 4 and 5 show that the differ-
ent coders seem to use different (implicit) thresholds.
However, if the difference in the outcome measures (fixation
duration, number of fixations, etc.) is caused by the different
thresholds applied, offline filtering of the classification data
should be enough to eliminate these differences. To investi-
gate this question, we removed all ends and starts of consec-
utive fixations enclosing saccades smaller than 1 deg. This
resulted in merging fixations separated by these small
saccades. Figure 7 shows the eye movement parameters
(fixation duration and saccade amplitude) before and after
removal of the small saccades. Fixation durations increase,
the number of fixations decreases, and the outcome measures
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of the different coders are much closer to each other. After
removal of the small saccades, the range of fixation durations
of the different coders decreases from 100 to 50 ms.

Are coders systematic over trials?
Do human coders change their criteria during manual classifi-

cation? We cannot simply compare the putative velocity
thresholds (as in Fig. 4) from the beginning and the end of
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Fig. 7 Eye movement parameters before and after removal of saccades
smaller than 1°. After removal of a small saccade, the preceding and
succeeding fixations were merged. Each data point represents the mean
data of one coder. (a) Fixation duration versus number of fixations for all
saccades. (b) Fixation duration versus number of fixations for saccades >1°.
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the session, because the stimuli contained varying noise levels
(Table 2) and were presented in random order. Instead of the
absolute velocity threshold, we use A (Engbert & Kliegl,
2003). In the present study, A is calculated by dividing a
coders’ individual velocity threshold by the noise level of the
velocity signal of the preceding fixation. In saccade detection
algorithms, A usually has a value between 2 (van der Steen &
Bruno, 1995) and 6 (Engbert & Kliegl, 2003). Figure 8 shows
A for the first 25% as compared to the last 25% of the fixations
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(¢) Saccade amplitude versus number of saccades. (d) Saccade amplitude
versus number of saccades for saccades >1°. From panels B and D, it is
clear that manual classifications are more alike when small saccades are
removed from the data
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classified. As is visible in the figure, A varies a lot for the
different coders, with the highest value being found for I.H.
(A =12.7) and the lowest value for M.S. (A = 1.5). The different
coders behave differently over time. For some coders A in-
creases, but for others it decreases or stays constant.

Alternative agreement measures

Cohen’s kappa captures the differences between the classifica-
tions of two coders in one number. Classifications of two
coders may differ for different reasons. If we focus on the
classification process, we can distinguish at least two stages.
In the first stage a fixation is recognized, in the second stage the
start and end of the fixation are carefully set. Based on this idea
we may distinguish two different situations that may lead to a

Table 4 Event-based F1 scores for the 12 human coders

similar sample-based Cohen’s kappa for a specific pair of
coders. In the first situation Cohen’s kappa is smaller than 1.0
because two coders classify similar fixations but they set the
end and start points differently. In the second situation Cohen’s
kappa is smaller than 1.0 because the two coders classify a
different number of fixations, but the ends and starts of fixa-
tions that they both indicate, are set similar. To be able to
distinguish between classifying different events and setting
start and endpoint of a fixation differently, we want to have
two types of measures. The first type of measure is an event-
based version of the F1 score (Powers, 2015; van Rijsbergen,
1979) instead of sample-based Cohen’s kappa. We expect the
F1 score to produce higher values than sample-based Cohens
kappa because we removed the timing differences by going
from a sample-based to an event-based measure. Table 4 con-
tains the F1 scores for all combinations of the 12 coders; the F1
scores range from .88 to .97. The mean F1 scores for one coder
range from .902 (P.Z.) to .951 (D.N. and M.N.). The values for
the F1 score are higher than those for Cohen’s kappa but show
a similar pattern. Cohen’s kappa and the F1 score are correlated
(r=.733, p <.0001).

he second type of measure captures whether one coder sets
the start and the end of a fixation earlier or later in time than
another coder. We also want to know the variability of these
specific differences. We will refer to these measures as the
relative timing offset (RTO), which captures the systematic
relative difference between settings of two coders and the
relative timing deviation (RTD), which captures the variance
in the RTO. The RTO is calculated by taking the mean of all
the relative time differences of the settings of two coders. RTD
is calculated by taking the standard deviation of all the relative
time differences of the settings of two coders. RTO and RTD
are only calculated from starts and ends of fixations that have
been coded by both coders of a pair.

DN IH 1B JF v KH MN MS PZ RA RH TC Mean
DN .96 .96 94 .96 .95 97 .95 .90 .96 97 94 951
IH .96 .94 94 .94 .94 95 .93 .90 .95 .95 .93 939
JB .96 .94 94 95 .94 .96 93 .90 .95 .97 .94 944
JF 94 94 .94 93 93 .94 91 91 93 .94 .94 933
v .96 .94 .95 .93 94 .96 .94 91 .95 .95 .93 941
KH 95 94 .94 93 .94 .95 92 91 94 .95 .94 937
MN 97 95 .96 94 .96 95 95 .90 .96 97 .94 951
MS 95 93 .93 91 .94 .92 .95 .88 93 .94 91 926
PZ .90 .90 .90 91 91 91 .90 .88 .90 .90 91 .902
RA .96 .95 .95 93 .95 94 .96 .93 .90 .96 .94 943
RH 97 .95 97 94 95 .95 97 94 .90 .96 .94 950
TC 94 93 .94 94 93 94 94 91 91 .94 94 932

The most rightward column contains the mean event-based F1 score for each coder.
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for fixation onset (a, ¢) and fixation offset (b, d). The means were taken
over all coder combinations. A lower mean RTO indicates that this coder

Figure 9 shows the mean RTO and mean RTD for fixation
onset and offset. RTO and RTD were averaged over all coder
combinations for a specific coder. Panels A and B show that
the mean RTO of fixation onset ranges from —12.3 ms (I.H.) to
8.0 ms (P.Z.), and that the RTO for fixation offset ranges from —
5.7 ms (P.Z.) to 8.8 ms (I.H.). This means that [.H. sets fixation
start early and fixation end late relative to the other coders, the
opposite is true for P.Z. Panels C and D show that RTD ranges
from 16 to 37.8 ms. The human classifications, the eye-
tracking data and the MATLAB algorithm implementations
for the event-based F1 score and RTO and RTD measures are
available here: https://doi.org/10.5281/zenodo.838313

Discussion
Summary of results

To investigate human classification of eye-tracking events we
analyzed classifications from 12 human coders. They coded
fixations in 6 min of eye-tracking data obtained from adults
and infants, collected with a Tobii TX300. The time required
to code the data varied enormously between coders. Some
coders used up to four times the amount of time per classifi-
cation as other coders (Fig. 2). Coding time and number of
events classified did not correlate. We used several methods to
compare the classifications between coders. We started with a
sample-based version of Cohen’s kappa. The advantage of this
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marked a fixation event earlier than a coder with a higher RTO. A
negative mean RTO indicates that this coder marked earlier than the
average coder

measure is that it provides us with one number for agreement.
The disadvantage is that Cohen’s kappa does not give any
insight in the nature of the disagreement if there is any. We
found almost perfect agreement (according to the standard of
Landis & Koch, 1977) between classifications of most human
coders (Table 3).

Then, we looked at measures computed from the classifi-
cations, such as fixation duration and number of fixations
calculated on the basis of the classifications (Fig. 3).
Contrary to the perfect agreements according to Cohen’s kap-
pa, we found large intercoder differences for mean fixation
durations (up to 75 ms) and for the number of fixations
(718-849). We found a high negative correlation (r = —905,
p < .001) between fixation duration and the number of fixa-
tions, meaning that the coders followed different coding strat-
egies. Coders with longer fixations, have a smaller number of
fixations, and vice versa. In the third approach to compare the
manual classifications, we modeled the coder’s putative
thresholds; most velocity thresholds were below 20°/s (Fig.
4c¢), but four coders had much larger thresholds. We also esti-
mated the minimal saccade amplitude thresholds, and this
threshold also varied between coders (Fig. 5). As expected,
coders with lower saccade amplitude thresholds produced
higher numbers of fixations and shorter fixation durations.

To test whether the main difference between the classifica-
tions could have been caused by different minimal saccade
amplitude thresholds, we removed the small saccades from
the classifications and merged fixations around saccades
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smaller than 1.0. After this operation fixation durations and
number of fixations were much more in agreement.

To get more insight into the differences between the clas-
sifications we introduced the event-based F1 score and devel-
oped two new measures. These are: relative timing offset
(RTO) and relative timing deviation (RTD). The event-based
F1 score showed that the coders agreed on the events classi-
fied and RTD and RTD showed that their detailed settings in
the beginning and at end of a fixation differ.

Other analyses showed that human coders allow data loss
during fixations and show that not all coders were systematic
over time.

Agenda for investigating human coding

Andersson et al. (2017) discusses several factors that may
influence the performance and reliability of a human coder.
These are:

1. The coding interface and resolution of the data presented.

2. Expertise.

3. Lab membership. Coders from the same lab may have
similar idea’s about saccades and fixations because they
use the same methods and discuss data analysis during lab
meetings.

4. Labels. The present oculomotor events are ill-defined hu-
man-defined labels.

5. Different instructions may lead to different classifications

6. Noise in the data. It is unknown how human coders react
to data sets with different noise levels. Andersson et al.
(2017) expects human coders to be able to deal with noise
better than an algorithm.

7. Differences in instrumentation (eye tracker, chinrest, etc.).

We discuss our results in the context of Andersson et al.’s
list. Although we did not investigate these factors systemati-
cally and our group of 12 coders is too small to allow for
comparisons within the group, we obtained enough interesting
observations that may add to this discussion.

The role of the interface in classification differences

The coding interface may play an important role in the classi-
fication of eye movement events. In the present study we
opted for a simple high-resolution interface with two position
panels and one velocity panel. We may expect that besides the
aspects of the layout and options such as zooming in and auto-
scale, the choice of units on the axes, an eye image, pupil size
information, x—y display and data filtering, may play a role.
Our interface contained a few of the above options and we
were not primarily interested in investigating these, however,
we want to discuss some aspects of our interface in relation to
the classifications.

The velocity filter We choose the position signal presented to
be the unprocessed position signal export of the Tobii TX300.
The velocity signal was constructed from the position signal
by a velocity filter having a window size of 23.3 ms (seven
samples, three left and right of the center). Such a filter
smoothens and spreads out the velocity signal, making it pos-
sible for the human coder to detect an onset earlier in time in
the velocity signal than in the position signal and detect offset
later in time in the velocity signal than in the position signal.
This is interesting, because I.H., D.N., and R.H. indicated that
they did not use the velocity signal to set the start and end of
fixations. Their putative velocity thresholds are much higher
than those of the other coders (Fig. 4c). Coders who use only
the position signal usually see the onset of signal changes in
the position signal later in in time and the offset of changes
earlier in time. This effect is also clearly visible in Fig. 9; L.H.,
D.N., and R.H. classify fixation onset earlier (up to three sam-
ples) and fixation offset later in time (up to 10 ms, three sam-
ples). The window size of three samples to the right and three
samples to the left was not an intended and motivated choice
during the design of the experiment. We would choose a
smaller window if we could repeat the experiment.

Pixels/s or degrees/s? The velocity signal was presented in
pixels per second and autoscaled so that the highest peak in
the episode used the whole vertical range of the y-axis of the
panel. Moreover, we did not inform the coders about the view-
ing distance, meaning that the coders only could have guessed
about the saccade size in degrees and the velocity in degrees
per second. However, if we look at the putative velocity thresh-
olds, most coders that used the velocity signal (D.N., L.LH., and
R.H. did not) had thresholds lower than 20°/s (only T.C. has
higher thresholds). A value of 20°/s is a common threshold in
velocity-based algorithms (15°/s in van der Steen & Bruno,
1995; 30°/s according to SR Research, 2007). This shows that
easily interpretable units are not the necessary prerequisites for
humans to do fixation classification.

Quick interface or detailed interface? Manual coding is a
time-consuming activity. It is worth mentioning that we did not
find a speed—accuracy tradeoff (Fig. 2). We were interested in
whether coders who spend more time coding also classify in a
more detailed manner. This is not the case; the number of
classified events did not correlate with the inter-setting interval
(Fig. 2). We also did not find any evidence that the quick
coders (D.N., LH., and R.H.) produced qualitatively different
classifications from the slower ones (P.Z., R.A., and T.C.). On
the basis of the absence of a speed—accuracy tradeoff, we ad-
vise future human coders to classify eye-tracking data quickly.
We assume that the recognition of patterns in the eye-tracking
signal has more in common with the automated and fast pro-
cess of visual perception than with the slower process of rea-
soning. The interface may play a role in the pace of coding, a
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quick coding interface should make use of both hands. In our
interface, navigating back and forth in the data was done with
the left hand (the “a” and the “d” key) and setting the fixation
start and end was done with a mouse click of the right hand.

Background of the human coders

The group of coders is too small to perform statistics on the
background of the coders in relation to their classifications.
However, we can describe some observations qualitatively. The
years of experience in eye tracking ranged from 2 to 24 years
(Table 1). According to the data, this does not seem an important
factor; maybe the type of experience is more important. All the
coders have experience with more than one eye tracker and all of
them designed or implemented event classifiers for data analysis
or for experiments with gaze contingent displays. It is also im-
portant to know that they all have experience with low frequency
and higher frequency eye trackers and they processed data of low
and higher quality (in terms of RMS deviation and data loss).

The coders were mainly recruited from the Lund University
Humanities Lab (M.N., R.A., K.H., and D.N.) and from two
groups from Experimental Psychology in Utrecht (the
Attention Lab: J.F., P.Z., and M.S. and the Vision group:
LH., R.H,, and J.B.). The two remaining coders (T.C. and
J.V.) used to be members of the vision group. These groups
do not work in isolation, the two groups from Utrecht attend
scientific meetings together and members of the Vision group
collaborate closely with members of the Lund University
Humanities Lab.

Can we recognize the classifications based on membership
of the different groups? Not really, five coders whose classi-
fications stand out from the other seven coders are I.H. and
R.H. from the vision group, D.N. from Lund, T.C. from
Frankfurt, and P.Z. from the Attention Lab. P.Z. stands out
because he is more meticulous than the other coders.
Moreover, P.Z. is several times contrasted with M.S., as they
are found to be at opposite ends of the data, which is intriguing
because they work in the same room. The other four coders
have negative relative timing offsets at fixation start and pos-
itive relative timing errors at fixation end. We can speculate
about the origin of the offset, and it seems that they paid more
attention to the position signals than to the velocity signal
when they determined fixation start and end. One explanation
may be that these four coders have more knowledge of the
Tobii TX300 signal than the others. They all are authors on
recent eye-tracker comparison studies that involved the
TX300 (Hessels, Cornelissen, Kemner, & Hooge, 2015b;
Niehorster, Cornelissen, Holmqvist, Hooge, & Hessels,
2017). Moreover, I.H. and R.H. reported that they mainly used
the horizontal position signal to determine fixation end and
start. They both know that the RMS deviation during fixation
is remarkably lower for the horizontal than for the vertical
signal of Tobii TX300 (Table 2).
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To systematically investigate the background of the coder in
relation to the classification results, a larger group of coders is
required. When investigating this, it should be interesting to
have human coders from a wide variety of backgrounds in eye
movement research (e.g., reading, attention, saccade dynamics,
electro-physiology and more applied topics). The suggested
study could also shine a light on the problem of labels for
eye movement events.

Labels and the role of instructions and event selection
rules

In the field of eye tracking there are many definitions for fix-
ations, which may differ from “pauses over informative re-
gions of interest” (Salvucci & Goldberg, 2000) to “Miniature
eye movements that relatively stabilize the retina for a
prolonged posture of the eyes over an object” (Gegenfurtner,
Lehtinen, & Silj6, 2011). There is not one simple definition for
a fixation; some definitions are formulated as a combination of
properties (duration, frequency, amount of small movements),
some are functional (e.g., to help perception) or are formulated
as a recipe to detect fixations. It is to be expected that human
coders have different internal representations, ideas about or
definitions of fixations. However, whether this affects their
classifications is an open question.

According to the F1 scores, the human coders agreed on the
events (Table 4), but the relative timing offsets (RTOs) clearly
showed differences in the beginnings and ends of the fixations
(Fig. 9). For example, I.H. is on average 10 ms (three samples)
carlier at fixation onset and 10 ms later at fixation offset than
the average. In addition, if we take into account the estimated
putative velocity thresholds (Fig. 4c), we can conclude that
our manual coders used different (implicit) models or defini-
tions of a fixation. However, the linear relation between the
fixation duration and the number of fixations showed that the
difference between classifications is not a complicated one.
Coder P.Z. was mentioned frequently in the Results section
because he did not allow small saccades during a fixation (Fig.
5d) and classified many short fixations (Fig. 3d); coder M.S.
did the opposite (Fig. 3d).

Automated event classification usually consists of two
stages: detection of event candidates and selection of the de-
tected candidates (Hessels, Niehorster, et al., 2016b). Most
algorithms consist of a sensitive detector combined with se-
lection rules to remove details up to a level that the classifica-
tions are useful for the intended statistical analysis such as
counting monocular and binocular events in microsaccade
research (Gautier, Bedell, Siderov, & Waugh, 2016) or com-
paring dwell time of the mouth and eye regions in face per-
ception research (Hessels, Kemner, van den Boomen, &
Hooge, 2016a). We expected the human coders to have similar
sensitivities and hypothesized that the event selection rules
they adopt were responsible for the intercoder differences.
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To investigate whether the main difference between the clas-
sifications may have been caused by an (explicit or implicit)
minimal saccade amplitude rule, we removed saccade candi-
dates smaller than 1.0° from the analysis and merged fixations
spatially close. Removing saccades and merging fixations
made the numbers of classified fixations and fixation dura-
tions remarkably similar between coders (Fig. 7), suggesting
that the main difference between the coders was the maximum
size of the saccade that they tolerated during the fixation. The
application of the minimal saccade amplitude rule suggests
that instruction in human coding may be important if one
wants to reach higher intercoder agreement. With an offline
event selection rule, details can be removed (e.g., small sac-
cades and short fixations) from the human classifications, but
instruction may also work in the other direction namely to
include smaller fixations and shorter saccades in the classifi-
cation process. If the level of classification is detailed enough
but different between coders, offline selection rules can be
used to achieve agreement at the cost of loss of resolution.
This will only be effective if the human coders use a high
enough resolution (meaning leaving enough fine-grained ele-
ments in the classification) and do not apply coarse selection
rules by themselves. In this way instruction combined with an
offline selection rule may be the method to achieve better
agreement between coders. Another common way of achiev-
ing better agreement between human coders is explicit instruc-
tion of a selection rule. The latter approach can be found in the
instruction manual for classification of psychiatric symptoms
of Wing et al. (1974), whose glossary of the definitions of
symptoms is the most important part of the book.

We could have taken a completely different approach. To
further test the level of agreement in settings human coders are
capable of reaching, we could have set out to develop consen-
sus guidelines, by having coders iteratively rate and review
each other’s settings until a consensus coding scheme is
reached. It is well established that training can improve the
interrater reliability of human judgment (Buijze, Guitton, van
Dijk, Ring, & the Science of Variation Group, 2012; Iwarsson
& Reinholt Petersen, 2012; Lundh, Kowalski, Sundberg, &
Landén, 2012; Rosen et al., 2008; Sattler, McKnight, Naney,
& Mathis, 2015). Therefore, in all likelihood, such training
would have enhanced the reliability of the human ratings,
perhaps markedly. This would have allowed us to address
the question: Is human classification, after the development
of, and training on, consensus guidelines, a gold standard in
fixation detection? Assuming that the consensus guidelines
would be published, this would also have the additional ben-
efit of improving the reliability of such ratings for the research
community generally. Since we did not do this, we can only
evaluate the scoring of experienced, but untrained raters. We
were not interested in this alternative question. Although it
makes sense to develop consensus guidelines for coding prob-
lems in which no automated solutions exist, in our setting

automated solutions do exist and then developing such a
consensus coding instruction set is not so different from
programming the selection rules for a classification algo-
rithm. Every protocol that can be specified so detailed that a
computer can use it to solve the problem, should be applied
by a computer instead of a human, simply because the com-
puter outperforms the human in processing speed, capacity
and consistency.

Is human classification a gold standard in fixation
detection?

We used the definition of Versi (1992): “The gold standard is
not the perfect test but merely the best available test” (p. 187).
Our logic is the following; if we find tests that outperform
human classification, human classification is not the gold stan-
dard. The problem is defining performance because its defini-
tion may depend on the context. We will discuss manual clas-
sification in the light of three applications: (1) to process eye-
tracking data, (2) to validate algorithms, and (3) to teach arti-
ficial intelligence and develop algorithms. We will start by
arguing why human classification is not the gold standard of
fixation detection in data processing. Then we will argue that
human classification still is a gold standard test for specific
eye-tracking problems and therefore a useful methodology for
eye-tracking research.

a. Manual classification to process data In processing eye-
tracking data, manual classification is not the gold standard
anymore because in this field many better automated event
classifiers are available; they can be found in the software
sold with eye trackers, they are freely available on the web
and their principles are described in the literature. Although
Komogortsev, Gobert, Jayarathna, Koh, and Gowda (2010)
have previously written about manual classification that
“this type of classification technique is susceptible to hu-
man error and can be open for biased interpretation with
limited generalizability,” we have now provided evidence
for this statement. Moreover, as Komogortsev et al. stated,
“it becomes extremely tedious and time consuming to an-
alyze large quantities of data” (p. 9).

In fields were human classification until recently dominat-
ed, automated algorithms take over quickly. New classification
techniques such as identification by topological characteristics
(Hein & Zangemeister, 2017) and machine learning (Zemblys
et al., 2017) are promising. Other new algorithms (based on
classic techniques) can deal with smooth pursuit episodes
(Larsson et al., 2015) or a large variety of noise levels
(Hessels, Nichorster, et al., 2016b). Mobile eye tracking is a
field that is currently in transition from human classification to
automated coding (e.g., Munn et al., 2008; Pfeiffer et al., 2016;
SensoMotoric Instruments, 2014; Tobii Pro, 2016). However,
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some classification problems still require manual coding, be-
cause good automated classifiers are not available.
Postsaccadic oscillation (PSO) classification is such a difficult
classification problem (Hooge, Nystrom, Cornelissen, &
Holmgqvist, 2015). However, Nystrom and Holmqvist (2010),
Larsson et al. (2015) and Larsson et al. (2013) proposed algo-
rithms for PSO classification.

2. Manual classification to validate algorithms Manual
classification plays a prominent role in algorithm valida-
tion. We introduced the term strict gold standard approach
to emphasize that in this approach human classification is
assumed to be perfect. In the present study we showed that
without a good definition of a fixation and a proper set of
instructions, human classifications are not perfect, they
may vary over time and differ over coders. Many factors
that may influence the classifications such as interface and
instruction are not investigated systematically and may
probably influence the classifications. However, we think
of at least two important roles for human classifiers in
algorithm validation. With new technical developments
in eye trackers such as higher measurement frequencies
and lower noise levels, researchers can see the artifacts in
eye-tracking data much better than before. Examples of
artifacts are PSOs. PSOs in the eye tracker signal may
reflect real eyeball rotations. However, PSOs may be
caused by pupil motion relative to the iris (Nystrom,
Hooge, & Holmgqvist, 2013) or may be unrealistically en-
larged due to the pupil minus CR technique (Hooge,
Holmgqvist, & Nystrom, 2016). In the latter cases we refer
to PSO’s as artifacts of a pupil based video eye tracker).
What lacks is a good description of a PSO and human
classifications can help to develop one. We can now scru-
tinize the old fixation and saccade terms more closely and
realize that many issues remain to be decided on before a
straight-forward automated extraction can happen. In the
latter process the human eye and mind are indispensable as
research tools. The second reason that human classification
is still important is for finding errors produced by new
algorithms. The designers of these algorithms probably
perform human classification all the time during testing.
In the introduction of the present study we wrote that we
did not see the added value of human classification in
algorithm testing. In our study (Hessels, Niehorster, et al.,
2016b) we already had a ground truth because we added
noise to a known signal up to a level that even the human
visual system cannot detect the fixations anymore. We do
see the added value now. First, we acted as human coders
during testing; Second, adding examples of data with man-
ual classification can be helpful in showing the perfor-
mance of a new algorithm. In this way manual coding
can be useful in algorithm design without being the gold
standard of fixation detection.

@ Springer

3. Manual classification to teach artificial intelligence (AI)
and to develop algorithms Zemblys et al. (2017) wrote:
“Any already manually or algorithmically detected events
can be used to train a classifier to produce similar classi-
fication of other data without the need for a user to set
parameters”. It would be interesting if machine learning is
used to produce automated Al classifiers that have the
ability to classify eye-tracking data for which no classical
algorithm exists. How can we train such an Al classifier?
Data of good quality can be classified by automated algo-
rithms and human coders should only be used to code the
fuzzy, problematic parts because they are good in open-
ended problems. Here human coding is still the gold stan-
dard. However, this approach and the machine-learning
approach in general still involve a number of problems:
(A) how to deal with a training set containing human
classifications that do not agree, (B) how to deal with a
training set containing inconsistent human classifications
of one human coder, (C) how to test whether the training
set is of good quality, (D) how to formulate the problem
that is solved by the Al classifier, and (E) how to trans-
form trained machine learning instances back to human-
understandable models (given that we want understanding
and not just descriptive/predictive power)? In the
microsaccade field, researchers probably prefer another
classifier than in the reading field. This list is not com-
plete, but the present study provides methods to test and
compare classifications among and within (human and
automated) classifiers in a more detailed way than before.

Toward improved algorithm validation: RTO and RTD

According to sample-based Cohen’s kappa human classifica-
tions are in almost perfect agreement. In contrast, measures
such as fixation time and number of fixations differ greatly. If
one wants more than finding out which classifier is more similar
to another classifier, the sample-based Cohen’s kappa is not the
ideal measure. To gain more understanding of the classification
process we have split the resulting classification comparison in
two parts. To compare the events classified we introduced an
event-based version of the F1 score that can handle fixation
classifications. To compare detailed timing settings, we devel-
oped the relative timing offset (RTO) and the relative timing
deviation (RTD) measures. The advantage of the latter mea-
sures is they show that two classifiers may produce similar
events, but differ in the detailed timing settings. Another possi-
bility is that the settings are comparable but that one classifier
misses events. With RTO and RTD it is possible to compare
classifications in a way that is more in line with the eye-tracker
measures as reported in the literature, something that eye move-
ment researchers understand more easily.
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Conclusions

On the basis of our measurements and analysis of the literature
we conclude that human classification is not the gold standard
in fixation detection. Temporal offsets produced by experi-
enced but untrained human coders do not agree and are not
always systematic over time. However, human classification
is still important in algorithm validation. We also see a role for
human classification in the field of machine learning. Human
classification can be useful in detecting features of the eye-
tracker signal that are ill-defined.

To replace sample-based Cohen’s kappa we suggest the
use of the event-based F1 score, the relative timing offset
and the relative timing deviation measures. RTO and RTD
are the missing links between agreement measures such as
the F1 score and the eye movement parameters. In the
present study RTO and RTD are used to investigate hu-
man classification, but they can also be used for algorithm
comparisons or comparisons between automated and hu-
man classification.
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Appendix: Relative time offset and relative timing
deviation

Here we describe how we match fixations to enable compu-
tation of the event-based F1 score, RTO and RTD. The prob-
lem at hand is drawn schematically in Fig. 10, which shows
fixations of a test and a reference. To match the fixations of a
reference (R1,R2,R3, .. )andatest(T1, T2, T3,...), we start
with reference fixation R1 (Fig. 10).

Find test fixations that overlap with the reference fixation.
T1 and T2 overlap with RI.

The overlapping test fixation occurring earliest in time
is the matching fixation for the reference fixation. The
two matched fixations are labeled as hits. R/ is
matched with T1 (Fig. 10), and this match is labeled
as a hit.

Repeat the previous for all reference fixations. R2 is
matched with T3 and R4 is matched with T4, and they
are labeled as hits.

Reference fixations that are not matched with test fixa-
tions are labeled as misses. For R3 there is no match
because the overlapping fixation T3 is already matched
with R2. Unmatched fixation R3 is labeled as a miss.
Test fixations that are not matched with reference fixa-
tions are labeled as false alarms (FA). 72 is not matched
with a reference fixation, therefore it is labeled as a false
alarm.

To compute the F1 score (Powers, 2011), we first count
the numbers of false alarms, misses, and hits. The F1
score is calculated by the formula:

F1 = (2 * #Hits)/(2 * #Hits + #Misses + #False Alarms).

To calculate the relative timing measures (RTD and RTO)
for fixation onset, we start by calculating the timing onset (A7)
only for the matched fixations. For the pair of matched fixa-
tions R1 and T2 we compute At by subtracting sR1 from sT1.
The outcome (AtR1T1) has a positive value because T1 starts
later than R1. For example, AtR2T3 has a negative value
because T3 starts earlier than R2.

The RTD is calculated by computing the standard devi-
ation of Az; the RTO is calculated by computing the mean
At. The recipe for computing RTO and RTD for the end of
the fixation is similar to the above, except that the
matching of fixations is done in the opposite order (we start
at the end of the last fixation and move back in time). The
RTO and RTD for fixation end are computed similarly to
those for fixation start.

AtR1T1 AtR2T3 AtR4T4
! : [, ! ]
Reference R1 : R2 R3
sR1 eR1 : sR2 eR2| | sR3 eR3
! sT1 sT3 1
Label Hit FA Hit Miss Hit

Fig. 10 Explanation of the event-based F1 score, RTD, and RTO. Time elapses from left to right
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