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Automatic deep learning-driven label-free
image-guided patch clamp system
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Patch clamp recording of neurons is a labor-intensive and time-consuming procedure. Here,
we demonstrate a tool that fully automatically performs electrophysiological recordings in
label-free tissue slices. The automation covers the detection of cells in label-free images,
calibration of the micropipette movement, approach to the cell with the pipette, formation of
the whole-cell configuration, and recording. The cell detection is based on deep learning. The
model is trained on a new image database of neurons in unlabeled brain tissue slices. The
pipette tip detection and approaching phase use image analysis techniques for precise
movements. High-quality measurements are performed on hundreds of human and rodent
neurons. We also demonstrate that further molecular and anatomical analysis can be per-
formed on the recorded cells. The software has a diary module that automatically logs patch
clamp events. Our tool can multiply the number of daily measurements to help brain
research.
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esearch of the past decade uncovered the unprecedented

cellular heterogeneity of the mammalian brain. It is well

accepted now, that the complexity of the rodent and human
cortex can be best resolved by classifying individual neurons into
subsets by their cellular phenotypes!=3. By characterizing mole-
cular, morphological, connectional, physiological, and functional
properties several neuronal subtypes have been defined*>.
Revealing cell-type heterogeneity is still incomplete and challen-
ging since classification based on quantitative features requires
large amounts of individual cell samples, often thousands or more,
encompassing a highly heterogeneous cell population. Recording
morphological, electrophysiological, and transcriptional properties
of neurons requires different techniques combined on the same
sample such as patch clamp electrophysiology, posthoc morpho-
logical reconstruction, or single-cell transcriptomics. The funda-
mental technique to achieve such trimodal characterization of
neurons is the patch clamp recording, which is highly laborious
and expertise intense. Therefore, there is a high demand to effi-
ciently automate this labor intense and challenging process.

Recently, the patch clamp technique has been automated and
improved to a more advanced level®’. Blind patch clamping was
first done in vitro and only later performed in vivo$-10. In
this case, the pipette is gradually moved forward and the brain
cells are detected automatically by a resistance increase at the
pipette tip. Automated systems soon incorporated image-
guidance by using multiphoton microscopy on genetically mod-
ified rodents!!-13. Further improvements include the integration
of tools for monitoring animal behavior!4, the design of an
obstacle avoidance algorithm before reaching the target cell'® or
the development of a pipette cleaning method which allows the
immediate reuse of the pipettes up to ten times'®17. Automated
multi-pipette systems were developed to study the synaptic
connections!®1?. Tt is also shown that cell morphology can be
examined using automated systems?. One crucial step for image-
guided automation is pipette tip localization. Different label-free
pipette detection algorithms were compared previously?!. Some
automated patch clamp systems already contain pipette detection
algorithms, e.g., intensity clustering!! or thresholding-based?? for
fluorescence imaging, or Hough transform-based*? for DIC
optics. The other crucial step is the automatic detection of the
cells which has only been performed in two-photon images so far.
It is currently not possible to efficiently fluorescently stain human
brain tissues. Alternatively, detection of cells in label-free images
would open up new application possibilities in vitro?3, e.g.,
experiments on surgically removed human tissues. Most recently,
deep learning?* has been emerging to a level that in the case of
well-defined tasks, outperforms humans, and often reaches
human performance on ill-defined problems like detecting
astrocyte cells?>.

In this paper, we describe a system we developed in order to
overcome time-consuming and expertise-intense neuron char-
acterization and collection. This fully automated differential
interference contrast microscopy (DIC, or label-free in general)
image-guided patch clamping system (DIGAP) combines 3D
infrared video microscopy, cell detection using deep convolu-
tional neural networks and a glass microelectrode guiding system
to approach, attach, break-in, and record biophysical properties
of the target cell.

The steps of the visual patch clamp recording process are
illustrated in Fig. 1. Before the first use of the system, the pipette
has to be calibrated, so that it can be moved relative to the field of
view of the camera (1). Thereafter, a position update is made after
every pipette replacement (2) using the built-in pipette detection
algorithms (3) to overcome the problem caused by pipette length
differences. At this point, the system is ready to perform patch
clamp recordings. We have acquired and annotated a single cell
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Fig. 1 Steps of DIGAP procedures. 1: Pipette calibration by the user, 2:
pipette replacement after recording, 3: image-based automatic pipette tip
detection, 4: automatic cell detection, 5: pipette navigation to the target
cell, 6: 3D cell tracking, 7: pressure regulation, 8: gigaseal formation, 9:
break-in, 10: electrophysiological recording, 11: nucleus and cytoplasm
harvesting, 12: anatomical reconstruction of the recorded cell.

image database on label-free neocortical brain tissues, to our
knowledge the largest 3D set of this kind. A deep convolutional
neural network has been trained for cell detection. The system
can automatically select a detected cell for recording (4). When a
cell is selected, multiple subsystems are started simultaneously
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that perform the patch clamping: (i) A subsystem controls the
movement of the micropipette next to the cell. If any obstacle is
found in the way, an avoidance algorithm tries to bypass it (5). (ii)
A cell tracking system follows the possible shift of the cell in
3D (6). (iii) During the whole process, a pressure regulator
system assures that the requested pressure on the pipette tip is
available (7).

Once the pipette touches the cell (cell-attached configuration)
the system performs gigaseal formation (8), then breaks in the cell
membrane (9) and automatically starts the electrophysiological
measurements (10). When the recording is completed, the
operator can decide either to start over the process on a new
target cell or continue with one or both of the following manual
steps. The nucleus or the cytoplasm of the patched cell can be
harvested (11), or the recorded cells can be anatomically recon-
structed in the tissue (12).

At the end of the measurements, the implemented pipette
cleaning method can be performed or the next patch clamp
recording can be started after pipette replacement and from the
pipette tip position update step (3). An event logging system
collects information during the patch clamp process, including
the target locations and the outcome success, and report files can
be generated at the end. The report files are compatible with the
Allen Cell Types Database?°.

Our system was tested on rodent and human samples in vitro.
The quality of the electrophysiological measurements strongly
correlates to that made by a trained experimenter. We have used
the system for harvesting cytoplasm and nucleus from the
recorded cells and performed anatomical reconstruction on the
samples. Our system can operate on unstained tissues using deep
learning, that reaches the cell detection accuracy of human
experts, and that enables the multiplication of the number of
recordings while preserving high-quality measurements.

Results
Here, we introduce an automated seek-and-patch system that
performs electrophysiological recordings and sample harvesting

— Image information

for molecular biological analysis from single cells on unlabeled
neocortical brain slices. Using deep learning, trained on a pre-
viously built database of single neurons acquired in 3D, our
system can detect most of the healthy neuronal somata in a Z-
stack recorded by DIC microscopy from a living neocortical slice.
The pipette approaches the target cell, touches it, acquires elec-
trophysiological data, and the cell’s nucleus can be isolated for
further molecular analysis. Components of the system are a
typical electrophysiological setup: IR video microscopy imaging
system, motorized microelectrode manipulators, XY shifting
table, electrical amplifier, and a custom-designed pressure con-
troller. All these elements were controlled by a custom-developed
software (available at https://bitbucket.org/biomag/autopatcher/).
The system was successfully applied to perform patch clamp
recordings on a large set of rodent and human cells (100 and 74,
respectively). The automatically collected cells well represent the
wide-range phenotypic heterogeneity of the brain cortex. Sub-
sequent transcriptome profiling and whole-cell anatomical
reconstruction confirmed the usefulness and applicability of the
proposed system.

Hardware development and control. The hardware setup of the
proposed system is shown in Fig. 2. The software system we
developed controls each hardware using their drivers on appli-
cation programming interface (API) level, which makes the sys-
tem modular and different types of hardware components (e.g.,
manipulators, biological amplifier, and XZ shifting table) can be
attached. The classes which control hardware elements are
inherited from abstract classes. Thus, if the software is to be used
with a different hardware element then only a few methods
should be implemented in a child class that sends commands to
that specific device (e.g., to get or set the pipette position or
initiate a protocol in the amplifier’s software).

The electrophysiological signal from the current monitor output
of the amplifier is transferred to the DIGAP software via the analog
input channel of the USB digitizer board (National Instruments,
USB-6009), which enables real-time resistance measurement.
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Fig. 2 Hardware setup of the DIGAP system. a Microscope with a motorized stage. b Micromanipulator. ¢ Controller electronics for manipulators. d Patch
clamp amplifier. e Pressure controller module. f Computer with the controller software.
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To send commands to the amplifier, we used the “batch file
control” protocol of HEKA PatchMaster 2x90.3 software (HEKA
Elektronik, Germany). To apply different air pressure on the
pipette in distinct phases of the patching procedure we built a
custom pressure controller detailed in Supplementary Information:
Pressure Regulator. Analog pressure sensors are used for
monitoring the actual air pressure on the pipette and voltage
signals of the sensors were connected in the input channels of
the USB digitizer board. The solenoid valves of the regulator are
controlled with TTL signals of the digital output channels of
the digitizer.

Pipette calibration and automatic detection. Pipette calibration
is a one-time process which determines the coordinate system
transformation between the pipette and the stage axes. The cali-
bration consists of moving the pipette along its axes with known
distances, finding it with the stage and detecting the exact pipette
tip position in the camera image. Calibration allows the pipette to
be moved at any position of the microscope stage space. Note that
no assumptions are made on the orientation or the tilt angles of
the pipette.

The glass pipettes usually differ in length, thus the tip position
should be updated after a pipette change. To automate this step
we have developed algorithms for pipette detection in DIC
images. First, we use a fast initialization heuristic and then refine
the detection. The refinement step is the extension of our
previous differential geometry-based method to three dimen-
sions?!. The pipette is modeled as two cylinders that have a
common reference point and an orientation. The model is
updated by the gradient descent method such that it covers dark
regions introduced by the pipette in the image. Figure 3a shows
the starting and final state of the algorithm from different
projections in gradient images for visualization purposes. The
detailed description of the algorithms and the equation deriva-
tions can be found in Supplementary Information: Pipette
Detection System. The algorithm has an accuracy of 0.99
0.55 um compared to manually selected tip positions, that makes
it possible to reliably reach cells of 10 um diameter (on average)
with the pipette when oriented towards their centroids.

Cell detection. We applied a deep learning algorithm in order to
detect cells in DIC images and propose them for automatic patch
clamp recording. Various software solutions were developed to
detect?>27 or segment?2% neurons (and cells in general) in cell
cultures or tissues, however, they do not provide satisfactory
results on images of contrast-enhancing techniques such as DIC
or oblique. To obtain a reliable object detection in brain tissue, we
designed a cell detection algorithm, which involved three steps:
data annotation, training of the model, and inference.

For acquiring an appropriate set of labeled objects, we created
and included a labeling tool into the software (see Supplementary
Information: Software Usage) that offers a platform to generate
an annotated dataset. Field experts labeled 6344 cells on 265 stacks
(184 rat, 81 human). The annotation procedure consisted of
putting bounding boxes around the recognized cells over multiple
slices in the stack. The stacks consisted of 60-100 slices
depending on the image quality in the actual sample. The
dimension of the individual slices is 1392 x 1040 pixels (FoV
160.08x119.6 um). The living cells were labeled on the slices such
that a 2D bounding box was put in the 3D center of each object.
We also copied the same boxes to the next two slices above and
below. This resulted in a bounding box that has five-slices depth.
The collected labeled data was converted into the required input
format of the deep learning framework we used.

We have tested four different object detection deep learning
architectures, including DetectNet3%-3!, Faster Region-based
Convolutional Neural Network (FRCNN)32:33  Darknet-
ResNeXt343>, and Darknet-YOLOv3-SPP36, A detailed descrip-
tion and performance comparison is given in (Supplementary
Information: Cell Detection System). DetectNet and FRCNN
have been implemented into DIGAP software. The former has
lower performance but very high efficiency in inference speed,
while the latter is the opposite. Users can choose based on
requirements and available resources. For this work we used
DetectNet.

DetectNet3%:31 architecture was trained using NVIDIA’s Deep
Learning GPU Training System (DIGITS3’), which is an
extension of Caffe3, and allows even the non-advanced deep
learning users to perform training. The solver used for the
training process was adaptive moment estimation’® (ADAM).
The pre-trained weights of the ImageNet dataset were used for
the initialization of GoogLeNet to speed up the training process.
The number of epochs was 2500 which took 6 days and 15 h.

FRCNN with ResNet50 backbone was also pretrained on
ImageNet. The Stochastic Gradient Descent with Momentum
(SGDM)*0 was used as the optimizer with cross-entropy loss
function. The number of epochs was 6. The initial learning rate
was le—3, which was dropped every 2 epochs by a factor of 0.2.
The training method was set to “end-to-end”, that simultaneously
trains the region proposal and region classification subnetworks.
MATLAB R2019b was used for training, which took 2 days and
11 h. The prediction time of a single image using DetectNet was
0.1 s, while FRCNN required approx. an order of magnitude more
time, 0.96 s per image.

By using these tools, the training processes generated models
that recognize neurons in their original environment in DIC
images (Fig. 3b). We also implemented a procedure that extends
the 2D detection by uniting overlapping bounding boxes along
the Z-axis in the image stacks to complete the object detection in
3D space (Fig. 3c). Bounding boxes of different Z slices are
compared and if their intersection is at least 60% of the smaller
box then they are united. The following detections are compared
iteratively with the intersection region. To compensate for the
detection errors when cells are not detected, bounding boxes that
are three slices away from each other can still be united even if the
two slices in between do not contain detections.

To evaluate the performance of the proposed frameworks we
measured precision, recall, and F1 score on a validation dataset
(Fig. 3d). This dataset consisted of three image stacks (305 images
in total) annotated by the same annotator and was not used in the
training process. The detected objects were matched with ground
truth data automatically if their centroid were at most 5 pm in the
lateral plane and 3 pum in the Z axis from each other. If a detection
could not be matched, it was treated as a false positive (FP).
Ground truth objects not paired with a detection were treated as
false negatives (FN). Based on these aspects the detection
accuracy was calculated as precision P =TP/(TP + FP), recall
R =TP/(TP + FN), and F1 score = 2 * P * R/(P + R). DetectNet
achieved 56.88% F1-score (precision = 53.04%, recall = 61.33%).
FRCNN architecture provided better results with a 65.83% F1-
score (precision = 60.73%, recall = 71.88%). Furthermore, the
authors of the DeNeRD model?” showed that simpler neural
networks can be used to achieve good accuracy in object detection
tasks. Therefore, we have compared the ResNet50 backbone to
MobileNetV24! combined with FRCNN (Supplementary Infor-
mation: Cell Detection System). This showed that MobileNetV2
can be a good compromise if hardware limitations or inference
speed is an issue.

To test the performance of the annotators we have determined
intraexpert and interexpert accuracies. These were measured by
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Fig. 3 The developed algorithms for the DIGAP system. a Result of the Pipette Hunter detection model shown in three different projections of the image
stack. Initial state (blue contour) and the result (green contour) of our pipette localization algorithm are shown. b Training dataset generation: 265 image
stacks (60-100 images per stack with Tpm frame distance along the Z-axis) captured from human and rodent neocortical slices with DIC videomicroscopy
(left). 31,720 objects as healthy cells (green boxes) labeled on every slice of the image stack by four experts. ¢ After the training session, the DIGAP

system detects cells in unstained living neocortical tissues. d Accuracy of the automated cell detection pipeline. e Lateral tracking of the cell movement
(n=174). DIC images of the targeted (in blue box) and patched cell (in green box). The cell drifted from its initial location (arrows in the right panel)
during the pipette maneuver. f, g Z-tracking of the cell movement (n =174). The template image was captured at the optimal focal depth (in red boxes)
before starting the tracking. During the pipette movement, image stacks were captured from the targeted cell (upper panels) such that the middle slice was
taken of the most recent focus position. The bottom row shows the differences between the template and the image of the corresponding Z position. The
lowest standard deviation value of the difference images (plots) shows the direction of the cell drift in the Z-axis. Source Data is available as a Source

0,06 0,06

Data file.

showing the same image stack (102 images) of the validation
dataset to two annotators twice within 3 months time shift. The
annotators reached 77.12% (precision = 71.91%, recall = 83.12%)
and 77.78% Fl-score (precision = 70%, recall 87.5%),
respectively. To compare the experts, the interexpert accuracy
was measured which resulted in 72.73% F1-score (precision =
75%, recall = 70.59%) (Fig. 3d).

When the user initiates cell detection in the software, a stack is
created and the detected cells are highlighted with bounding
boxes (Fig. 3c). The detections are ordered by the confidence
value, thus healthier cells are offered earlier. The target cell can
also be selected manually based on arbitrary criteria required for
the experiment.

Tracking the cell in 3D. Due to the elasticity of the tissue, the
movement of the pipette can significantly deform it and change
the location of the cell of interest. In order to precisely re-define
the pipette trajectory, the location of the target cell needs to be
tracked. We have developed an online system that performs
tracking in the lateral and Z directions (Fig. 3e-g). Both direc-
tions require a template image of the target cell which is acquired

before starting the patch clamp process when the cell is in
the focal plane of the microscope. The lateral tracking is per-
formed in the image of the most recent focal level. It uses the
Kanade-Lucas-Tomasi (KLT) feature tracker algorithm*243. The
Z tracking is based on a focus detection algorithm that operates
on a small image stack encompassing the target cell body. The
standard deviation of the images of the target cell body is com-
puted and compared to initial images. As a result, the displace-
ment direction of the target cell along the Z axis is determined.
The whole process was done with stopped pipette to ensure that
the cell is not pushed away meanwhile. The detailed explanation
of the algorithms with examples can be found in Supplementary
Information: Cell Tracking System.

Automated patch clamping steps. After pipette calibration and
cell detection the patch clamping procedure can be started. First,
the DIGAP software calculates the trajectory of the pipette
movement along which the manipulator moves the pipette tip
(stepwise, 2 um) close to the cell while applying medium air
pressure (50-70 mbar). The initial trajectory is a straight line
along the manipulator’s X axis. Note that this is tilted (in our case
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Fig. 4 A representative example of a visual patch clamping procedure. a Trajectory of the pipette tip (red line) with obstacle avoidance (numbered) in
the tissue and the spatial location of the detected cells (green boxes). The steps of the avoidance algorithm are the following. 1: The pipette is moved
forward in the initial trajectory until an obstacle is hit. 2: The pipette is pulled back. 3: The pipette is moved laterally in a spiral pattern until the resistance is
back to normal. 4: The obstacle is passed. 5: The pipette is readjusted to the trajectory. 6: The approaching is continued. b Plots of the depth of the pipette
tip in the tissue, the applied air pressure, and the measured pipette tip resistance during the approach. ¢ Image of a cell before and after performing patch

clamp recording on it. Source Data is available as a Source Data file.

approximately —33 degrees from the horizontal plane) so the
movement vector of the pipette is parallel to the longitudinal axis
of the pipette. We found that approaching is more reliable if the
pipette is first moved a few micrometers above the cell and then
finally descending on it. The impedance of the pipette tip is
monitored continuously during the movement.

During the movement of the pipette, air pressure is dynamically
changed with predefined air pressure values. Air pressures were
empirically set for the different phases: hunting, sealing, and
breaking. Pipette tip impedance was continuously checked in
order to detect phases and apply the task-specific pressure.

Early resistance increase denotes the presence of an obstacle in
front of the pipette, e.g., a blood vessel or another cell. If an
obstacle is hit, the pipette is pulled back, slightly moved laterally
and when the obstacle is passed the pipette is oriented back to the
initial trajectory towards the target!®>. Meanwhile, the described
3D tracking algorithm compensates for the movement trajectory
due to the possible displacement of the target cell. When the
pipette tip reaches the target position above the cell, the pressure
is decreased to a low positive value (10-30 mbar). Then the
pipette is moved in the Z direction and the resistance of the tip is
monitored by 5ms long —5 mV voltage steps. If the impedance
increases more than a predefined value (0.7-1.2 MQ) the sealing
phase is initiated. The cell-attached configuration is set up by the
immediate cease of pressure. To achieve tight sealing of the cell
membrane into the glass we apply small negative pressure (from
—30 to —10 mbar) and the holding potential is set to —60 mV
stepwise. If the sealing process is slow and does not reach 1 GQ
(“gigaseal”) in 30s, different protocols are applied. First, the
initial vacuum is amplified by 1.5 and 2 times, each for 20 more
sec. Then the pipette is moved +/—2 pm in each axis for 2s.
Finally, the pressure is released for 10s and reapplied for 20s.
If the gigaseal state is reached then suction pulses (—140 to
—100 mbar) of increasing length (0.5 + 0.2*attempt sec) are
applied for up to 3 min to break-in the membrane. Information
about the process, including pipette distance from the target,

actual air pressure, and electrical resistance values are continu-
ously monitored and shown in the GUI windows. Description of
the steps and the parameter values are described in detail
in Supplementary Information: Software Usage. A representative
procedure is demonstrated in Fig. 4, and further trajectory,
pressure, and resistance data is visualized in Supplementary
Information: Representative examples.

Software. The control software is written in MATLAB and the
source code is made publicly available at https://bitbucket.org/
biomag/autopatcher/. The visual patch clamping process can be
started from a user-friendly GUI (Fig. 5) which allows every
parameter to be set and the process to be monitored in real-time
by the operator. Throughout the session, the Patch Clamp Diary
module collects and visualizes information about patch clamping
attempts, including their location and outcome status. The user
can additionally mark positions in the biological sample that help
orientation during the experiment (i.e., boundaries of the brain
slice or the parallel strands that keep the tissue secure).

Many utility features are present to help everyday experiment-
ing. Single images or image stacks can be acquired, saved, or
loaded from the menu bar. The acquired images can be processed
by performing background illumination correction or DIC image
reconstruction, which can help in identifying cells and their
features. The graphical processing unit (GPU) extension of our
reconstruction algorithm## can be used for reconstruction, which
results in about 1000x speed increase. The software contains a
built-in labeling tool that allows image database generation to
train deep learning cell recognition. Furthermore, most recent
practices from other automation systems have also been
implemented for the in vivo usage, including pipette cleaning!®17
or hit reproducibility check®®. The XML configuration file makes
the adaptation easy between different setups and the software can
also operate as a general microscope controller. A logging system
is used for maintainability purposes.
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Fig. 5 GUI of the software. a Main window with an image stack loaded and the built-in labeling tool started. b Monitoring window to check the pressure
and resistance values. Pressure values can be set here when operating manually, or the measurement can be restarted from different subphases here.

¢ Main window when browsing the detected cells, initiated with the Find and Patch button. The measurement can be started by selecting a cell. d The Patch
Clamp Diary module showing a plot with annotations of a sample and measurements in it.

Application in brain slices. To test the performance and effec-
tiveness of our system we obtained a series of recordings (Sup-
plementary Information: Electrophysiology stimuli for DIGAP)
on slice preparation of rat somatosensory and visual cortices (n =
23 animals) and human temporal and association cortices (n = 16
patients). Successful automatic whole-cell patch clamp trials
without experimenter assistance were achieved in a total number
of n=100 and n = 74 (rodent visual and somatosensory cortices
and human cortex, respectively) out of n=157 and n=198
attempts. The data analysis was carried out using Fitmaster 2x73
(HEKA Elektronik, Germany), OriginPro 7.5 (OriginLab, USA),
Excel 2016 (Microsoft, USA), and MATLAB R2017a (Mathworks,
USA). The quality of recordings was supervised by measuring
series resistance (R;) (Fig. 6). We found a wide range of R values
within successful attempts in both species: 34.52 + 18.99 MQ in
rat and 31.39 +16.67 MQ in human recordings. Trials with R
value exceeding 100 MQ were noted as unsuccessful attempts.
Access resistance in 48.28% of our recordings was under 30 MQ
which we denoted as high quality and used for further analysis.
Once the whole cell configuration was formed cells were usually
held at most for 15 min to protect neuron viability for further
procedures. To test the stability of whole cell configurations, we
executed a separate set of experiments and found that half of the

trials (n = 5 out of 9) could be kept up to 1 h. The average time of
experiments during the recording configuration could be main-
tained was 2729.9+1104.2s (n=9, min: 928 s, max: 3825s).
During our measurements we were able to detect spontaneous
postsynaptic events in the entire length of the recordings. We
applied standard stimulation protocol and recorded membrane
potential responses to injected currents. Based on the extracted
common physiological features and firing patterns we grouped
neurons into electrophysiological types (e-types#) based on cri-
teria established by the Petilla convention?”. There were eight e-
types in automatic patched rat samples: pyramidal cell (pyr),
burst adapting (bAD), continuous non-accommodating (cNAC),
continuous stuttering (cSTUT), burst stuttering (bSTUT), delayed
stuttering (dSTUT), continuous adapting (cAD), and delayed
non-accommodating (ANAC). From the human samples, seven e-
types were identified. In our automatically-collected dataset,
dNAC type was not represented (Fig. 6).

Electrophysiological recordings were acquired using a
biocytin-containing intracellular solution. We performed
further anatomical investigation on n =44 experiments with
<30 MQ access resistance and we achieved n =18 (n = 16 and
n =2 from human and rat, respectively) fulland n =11 (n =3
and n =8 from human and rat, respectively) partial recovery
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(Fig. 7a, Supplementary Information: Anatomical reconstruc-
tion examples).

We next tested if single-cell RNA analysis is achievable from
the collected cytoplasm of autopatched neurons. After whole-cell
recording of the neurons in the brain slices the intracellular
content of the patched cells was aspirated into the recording
pipette with gentle suction applied by the pressure regulator unit

(—40 mBar for 1 min, then —60 mBar for 2-3 min, and finally
—40 mBar for 1min). The tight seal was maintained and the
pipette was carefully withdrawn from the cell to form an outside-
out configuration. Subsequently, the content of the pipette was
expelled into a low-adsorption test tube (Axygen) containing
0.5ul SingleCellProtectTM (Avidin Ltd. Szeged, Hungary)
solution in order to prevent nucleic acid degradation and to be
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Fig. 6 Electrophysiological properties of the cells patched by DIGAP. a Main electrophysiological parameters from the successful automatic patch clamp
recordings. The box plots show the series resistance (R, left panel), the membrane resistance (R, middle panel), and the resting membrane potential
(right panel) of all successful measurements (n = 47 for rat and n = 41 for human samples). The boxes show the median, 25 and 75 percentiles, and min/
max values, and the whiskers are 1.5 interquartile ranges. b Different cell types are identified according to firing features: pyr pyramidal cell, bAD burst
adapting, cNAC continuous non-accommodating, cSTUT continuous stuttering, bSTUT burst stuttering, dSTUT delayed stuttering, cAD continuous
adapting, dNAC delayed non-accomodating. ¢ Individual neurons’ action potential half-widths are presented as a function of the same neuron’s R.,. Note
the segregation of excitatory and inhibitory neuronal classes. Dataset is recorded from rodent samples (Panel ¢ and d colors correspond to panel b). d The
proportion of recorded cell types. e-g Same plots as b-d, representing the dataset recorded in human neocortical slices. Source Data is available as a

Source Data file.
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Fig. 7 Anatomical and molecular biological investigation of neurons patched by DIGAP. a Two anatomically reconstructed human autopatched neurons.
The darker colors represent somata and dendrites of the pyramidal (green) and the interneuron (red) cells. The brighter color shows the axonal
arborization. The firing patterns of the cells are the same color as their reconstructions. b mRNA copy numbers of a housekeeping (RPS18, black bars) and
the aquaporin 1 (AQP1, red bars) gene from four representative human pyramidal cells. Source Data is available as a Source Data file.

compatible with direct reverse transcription reaction. Then the
samples were used for digital polymerase chain reaction (dPCR)
analysis to determine the copy number of selected genes. From
four single pyramidal cell cytoplasm samples which were
extracted from the human temporal cortex, we determined the
copy number of a ribosomal housekeeping RPS18 and aquaporin
1 (AQP1) genes (Fig. 7b). The results of the dPCR experiments
are in agreement with our previous observations*8:49,

Discussion

The developed DIGAP system is able to fully automatically perform
whole-cell patch clamp recordings on single neurons in rodent and
human neocortical slices (Supplementary Movie 1, 2, 3). This is a
step forward towards characterizing and understanding the phe-
notypic heterogeneity and cellular diversity of the brain. The pre-
sented system has a cell detection module in label-free imaging,
which is achieved by deep learning. The system we developed is
fully controlled by a single software, including all hardware com-
ponents, data handling, and visualization. The control software has
its highly comprehensive internal logging system, that allows
tracking the parameters of each patch clamp recording attempt in
addition with the option to store details of the cytoplasm harvesting
process. In addition, it can connect to and save database entry
records that are compatible with the Allen Brain Atlas single
neuron database. In this work, we demonstrated the power of our
system that is capable of measuring a large set of rodent and
human neurons in the brain cortex. The results show strong cor-
relation to the earlier results in literature in terms of quality and

phenotypic composition of cell heterogeneity. Records of measured
cells were inserted to the database of the Allen Institute for Brain
Science and a subset of the cells was isolated from their tissue
environment and single-cell mRNA copy numbers of two selected
genes were determined. Furthermore, we successfully demonstrated
that autopatched neurons can be anatomically reconstructed.

The main advantage of the proposed system is that it can easily
be integrated into any existing setups and although we do not
believe that it will fully substitute human experts, it is a great
choice for complex specific tasks, allows parallelization and
speeds up discovery. It is important to emphasize the need for a
standardized and fully documented patch clamping procedure,
which is guaranteed by using DIGAP. The choice of advanced
image analysis and deep learning techniques made it possible to
work with the least harmful imaging modalities at a human
expert level of single-cell detection that was impossible so far.
Further possibilities are more widespread and potentially
enabling or accelerating discoveries. Combining with intelligent
single-cell selection strategies of the detected cells, the proposed
system can be the ultimate tool to reveal and describe cellular
heterogeneity. In multiple patch clamp setup it can be used to
describe the connectome at cellular level. We presented DIGAP’s
application to brain research, but other fields, such as cardio-
vascular or organoid research will benefit from the system. Based
on its nearly complete automation, it can help in education.

Future work includes adding multipipette support to study
connections between pairs, triplets, or a higher number of cells at
a time. Furthermore, the cell detection can be improved by
increasing the size of the training dataset, the diversity of images
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(by collecting them from various setups), and improving the
annotation process, or even extending it to 3D instance seg-
mentation instead of object detection.

Methods

Hardware setup. A customized Olympus BX61 (Olympus, Japan) microscope with
a 40x water immersion objective (0.8 NA; FoV 0.6625 mm; Olympus, Japan) with
motorized Z axis (Femtonics, Hungary) which is controlled by API calls to the
software was used for imaging. For moving the pipette and the microscope stage we
used Luigs & Neumann Mini manipulators with SM-5 controllers (Luigs & Neu-
mann, Germany). The electrophysiological signals were measured by a HEKA
EPC-10 amplifier (HEKA Elektronik, Germany). The signals were digitized at
100 kHz and Bessel filtered at 10 kHz.

In vitro preparation of human and rat brain slices. All procedures were per-
formed according to the Declaration of Helsinki with the approval of the University
of Szeged Ethics Committee. Human slices were derived from materials that had to
be removed to gain access for the surgical treatment of deep-brain tumors, epilepsy,
or hydrocephalus from the association cortical areas with written informed consent
of female (n =9, aged 48.2 +26.6 years) and male (n =7, aged 48.3 + 9.9 years)
patients prior to surgery. Anesthesia was induced with intravenous midazolam and
fentanyl (0.03 mg/kg, 1-2 ug/kg, respectively). A bolus dose of propofol (1-2 mg/kg)
was administered intravenously. To facilitate endotracheal intubation, the patient
received 0.5 mg/kg rocuronium. After 120's, the trachea was intubated and the
patient was ventilated with a mixture of O, and N,O at a ratio of 1:2. Anesthesia
was maintained with sevoflurane at monitored anesthesia care (MAC) volume of
1.2-1.5. After surgical removing blocks of tissue were immediately immersed in ice-
cold solution containing (in mM) 130 NaCl, 3.5 KCI, 1 NaH,PO,, 24 NaHCO;,

1 CaCl,, 3 MgSO,, 10 d(+)-glucose, saturated with 95% O, and 5% CO,. Slices were
cut perpendicular to cortical layers at a thickness of 350 um with a vibrating blade
microtome (Microm HM 650 V, Thermo Fisher Scientific, Germany) and were
incubated at room temperature for 1h in the same solution. The artificial cere-
brospinal fluid (aCSF) used during recordings was similar to the slicing solution, but
it contained 3 mM CaCl and 1.5 mM MgSO,.

Coronal slices (350 um) were prepared from the somatosensory cortex of male
Wistar rats (P18-25, n =23, RRID: RGD_2312511)0. All procedures were
performed with the approval of the University of Szeged and in accordance with
the Guide for the Care and Use of Laboratory Animals (2011). Recordings were
performed at 36 °C temperature. Micropipettes (3.5-5 MQ) were filled with low
[Cl] intracellular solution for whole-cell patch clamp recording: (in mM) 126 K-
gluconate, 4 KCI, 4 ATP-Mg, 0.3 GTP-Na,, 10 HEPES, 10 phosphocreatine, and
8 biocytin (pH 7.20; 300 mOsm).

Molecular biological analysis. After harvesting the cytoplasm of the recorded cells
the samples were frozen in dry ice and stored at —80 °C until used for reverse
transcription. The reverse transcription (RT) of the harvested cytoplasm was car-
ried out in two steps. The first step took 5 min at 65 °C in a total reaction volume of
5 pl containing 2 pl intracellular solution and SingleCellProtectTM mix with the
cytoplasmic contents of the neuron, 0.3 pl TagMan Assays, 0.3 ul 10 mM dNTPs,
1yl 5x first-strand buffer, 0.3 ul 0.1 mol/l DTT, 0.3 ul RNase inhibitor (Life
Technologies, Thermo Fisher Scientific, Germany) and 100 U of reverse tran-
scriptase (Superscript III, Invitrogen, Thermo Fisher Scientific, Germany). The
second step of the reaction was carried out at 55 °C for 1h and then the reaction
was stopped by heating at 75 °C for 15 min. The reverse transcription reaction mix
was stored at —20 °C until PCR amplification. For digital PCR analysis the reverse
transcription reaction mixture (5 pl), 2 pul TagMan Assays (Life Technologies,
Thermo Fisher Scientific, Germany), 10 ul OpenArray Digital PCR Master Mix
(Life Technologies, Thermo Fisher Scientific, Germany) and nuclease-free water
(5.5 pl) were mixed in a total volume of 20 pl. The mixture was evenly distributed
on an OpenArray plate. RT mixes were loaded into four wells of a 384-well plate
from which the OpenArray autoloader transferred the cDNA master mix by
capillary action into 256 nanocapillary holes (four subarrays) on an OpenArray
plate. Processing of the OpenArray slide, cycling in the OpenArray NT cycler and
data analysis was done as previously described?. For our dPCR protocol ampli-
fication, reactions with CT confidence values below 100 as well as reactions having
CT values less than 23 or greater than 33 were considered primer dimers or
background signals, respectively, and were excluded from the data set.

Anatomical processing and reconstruction of recorded cells. Following elec-
trophysiological recordings, slices were transferred into a fixative solution con-
taining 4% paraformaldehyde, 15% (v/v) saturated picric acid, and 1.25%
glutaraldehyde in 0.1 M phosphate buffer (PB; pH = 7.4) at 4 °C for at least 12 h.
After several washes with 0.1 M PB, slices were frozen in liquid nitrogen then
thawed in 0.1 M PB, embedded in 10% gelatin, and further sectioned into 60-um
slices. Sections were incubated in a solution of conjugated avidin-biotin horseradish
peroxidase (ABC; 1:100; Vector Labs) in Tris-buffered saline (TBS, pH = 7.4) at
4°C overnight. The enzyme reaction was revealed by 3’ 3-diaminobenzidine tetra-
hydrochloride (0.05%) as chromogen and 0.01% H,O, as oxidant. Sections were

postfixed with 1% OsO, in 0.1 M PB. After several washes in distilled water, sections
were stained in 1% uranyl acetate and dehydrated in an ascending series of ethanol.
Sections were infiltrated with epoxy resin (Durcupan) overnight and embedded on
glass slides. Three-dimensional light-microscopic reconstructions were carried out
using a Neurolucida system (MicroBrightField, USA) with a 100x objective.

Pipette cleaner. We implemented a pipette cleaning method!® into our system.
The cleaning procedure requires two cleaning agents: Alconox, a commercially
available cleaning detergent, and artificial cerebrospinal fluid (aCSF). We 3D printed
a holder for two PCR tubes containing the liquids that can be attached to the
microscope objective and are reachable by the pipette tip. The cleaning is performed
by pneumatically taking up and then removing the agents into and from the pipette.
The vacuum strength used for the intake of the liquids is —300 mBar and the
pressure used for the expulsion is +1000 mBar. The method consists of three steps.
First, the pipette is moved to the cleaning agent bath and vacuum is applied for 4s.
Then, to physically agitate glass-adhered tissue, pressure and vacuum are alternated,
each for 1s and repeated for five times total. Finally, pressure is applied for 10s to
make sure all detergent is removed. In the second step, the pipette is moved to the
aCSF bath and any remaining detergent is expelled by applying pressure for 10's. In
the third step, the pipette is moved back to the position near to the biological sample
where the cleaning process was initiated. In the original paper, it is shown that these
pressure values and the duration of the different steps are more than enough to cycle
the volume of agents necessary to clean the pipette tip. We provide a graphical
window in our software to calibrate the pipette positions of the tubes containing the
cleaning agent and the aCSF and to start the cleaning process.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available in the manuscript, Source
Data file, supplementary information and available from the authors upon reasonable
request. The annotated image data used for deep learning are available from the
corresponding author upon request. Source data are provided with this paper.

Code availability

Source code is available from Bitbucket at https://bitbucket.org/biomag/autopatcher/.
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