Skip to main content
. 2021 Feb 10;11:3499. doi: 10.1038/s41598-021-82760-w

Table 2.

Number of radiomic features with excellent, moderate and poor robustness by feature class in multi-slice analysis.

Feature class Excellent robustness
ICC ≥ 0.9
Moderate robustness
0.5 ≤ ICC < 0.9
Poor robustness
ICC < 0.5
Multi-slice Analysis: Original, fixed bin width = 25, B-spline interpolation
First order (n = 18) 10 (55.6%) 6 (33.3%) 2 (11.1%)
GLCM (n = 24) 17 (70.8%) 7 (29.2%) 0 (0.0%)
GLDM (n = 14) 5 (35.7%) 7 (50.0%) 2 (14.3%)
GLRLM (n = 16) 11 (68.8%) 1 (6.3%) 4 (25.0%)
GLSZM (n = 16) 6 (37.5%) 8 (50.0%) 2 (12.5%)
NGTDM (n = 5) 3 (60.0%) 2 (40.0%) 0 (0.0%)
Total (n = 93) 52 (55.9%) 31 (33.3%) 10 (10.8%)
Multi-slice Analysis: Resegmentation, fixed bin width = 25, B-spline interpolation
First order (n = 18) 3 (16.7%) 13 (72.2%) 2 (11.1%)
GLCM (n = 24) 2 (8.3%) 22 (91.7%) 0 (0.0%)
GLDM (n = 14) 3 (21.4%) 11 (78.6%) 0 (0.0%)
GLRLM (n = 16) 3 (18.8%) 13 (81.3%) 0 (0.0%)
GLSZM (n = 16) 3 (18.8%) 13 (81.3%) 0 (0.0%)
NGTDM (n = 5) 0 (0.0%) 5 (100.0%) 0 (0.0%)
Total (n = 93) 14 (15.1%) 77 (82.8%) 2 (2.2%)

Definition of ICC used = 2-way mixed-effects model, absolute agreement, single rater intraclass correlation coefficient; n, number of radiomics features.