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Systematic auditing is essential to debiasing
machine learning in biology
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Biases in data used to train machine learning (ML) models can inflate their prediction per-

formance and confound our understanding of how and what they learn. Although biases are

common in biological data, systematic auditing of ML models to identify and eliminate these

biases is not a common practice when applying ML in the life sciences. Here we devise a

systematic, principled, and general approach to audit ML models in the life sciences. We use

this auditing framework to examine biases in three ML applications of therapeutic interest

and identify unrecognized biases that hinder the ML process and result in substantially

reduced model performance on new datasets. Ultimately, we show that ML models tend to

learn primarily from data biases when there is insufficient signal in the data to learn from. We

provide detailed protocols, guidelines, and examples of code to enable tailoring of the

auditing framework to other biomedical applications.
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Life sciences datasets have grown increasingly large and
complicated. With the advent of single-cell studies and
biobanks, scientists are turning to machine learning (ML) to

derive meaningful interpretations of massive genomic, tran-
scriptomic, proteomic, phenotypic, and clinical datasets. One
major obstacle to the development of reliable and generalizable
ML models is that auditing for biases is not a common practice in
life sciences ML; in contrast, there is a large body of work in non-
biological ML that addresses the identification and removal of
algorithm biases1. Yet, biological datasets often suffer from
representational biases, i.e., an imbalance or inequality in how
different biological entities are represented in biological data due
to evolutionary redundancies, inherent over- or under-
representation of biological entities (e.g., housekeeping genes in
gene expression data and interaction hubs in protein–protein
interaction [PPI] data), and/or biases specific to or induced by
different experimental conditions. When these biases are not
identified and eliminated, the ML process can be misled such that
the model learns predominantly from the biases unique to the
training dataset and is not generalizable across different datasets.

When applying ML to biological datasets, it is crucial to sys-
tematically audit for biases inherent in the data. This will help us
to understand how and what the model is learning in order to
ensure that its predictions are based on true biological insights
from the data. Here, we devised a systematic auditing framework
for paired-input biological ML applications, a class of ML pre-
diction methods, which is widely harnessed in computational
biology2, where the goal is to predict the biological relationships
between two entities.

We used this framework to identify biases that have con-
founded the ML process in three applications of great interest to
the life sciences and biotechnology communities: PPIs, drug-
target bioactivity, and MHC-peptide binding3–5. Ultimately, we
show that ML models tend to learn primarily from data biases
when there is insufficient signal in the data for the models to learn
from. We provide detailed protocols, guidelines, and examples of
code to enable tailoring of the auditing framework to other bio-
medical applications (Supplementary Notes 1 and 2).

Results and discussion
Protein–protein interaction predictors. Mapping PPIs is critical
to understanding cellular processes, interpreting genetic data, and
predicting new targets for therapeutics development. This has led
to a great interest in developing PPI classifiers that learn from
previously characterized interactions to infer whether a given
protein pair is likely to interact based on their protein features
(summarizing information used to describe proteins to inform
the ML models about their characteristics from which the model
should learn, e.g., amino acid physicochemical properties). In
particular, the ultimate goal of PPI classifiers is the ability to
predict PPIs based on nothing but protein sequence, i.e., without
structural or evolutionary information. Accurate structure- and
evolutionary-based PPI predictors exist, but require PPI structure
characterization or evolutionary history, thereby excluding the
majority of novel, less well-characterized proteins that are the
targets of key interest for PPI predictors; we typically aim to
predict interactions for proteins that are not characterized rather
than proteins for which structural and evolutionary data already
exist. Furthermore, a structure-based approach would not be easy
to extrapolate to peptides that are structurally flexible. For the
past two decades, these limitations have driven the demand for
PPI predictors that rely on amino acid sequences alone.

PPI predictors do not generalize suggesting unknown biases. A
critical and unexplained observation regarding such sequence-

based PPI classifiers is that they achieve very high and, some-
times, near-perfect performances2,6–8. These models use simple
summarizing sequence-based features such as frequency of k-
mers (amino acid combinations of k residues), which, from a
biochemical and molecular biology perspective, should not be
sufficient to very accurately determine physical interactions
between proteins. The typically utilized feature designs, detailed
in Methods, do not take into consideration which protein resi-
dues contribute to interactions or the spatial relations among
residues. Therefore, a central question in the field is: what are PPI
classifiers learning from simple protein sequence features such
that they can predict PPIs with near perfect accuracy?

Park and Marcotte further observed that the high performance
of PPI predictors is limited to scenarios where the tested protein
pairs have examples of their other interactions in the training set
(examples of interacting and likely non-interacting protein pairs
used to train ML models to make predictions)2. For example, if
the training dataset contains PPI examples for proteins A and B
but neither C nor D, predicting for the pair (A,B) would be
accurate (we call this in-network prediction as both proteins
appear in the training PPI network), but the prediction may be
less accurate for the pairs (A,C), (A,D), (B,C), (B,D), and (C,D)
(out-of-network prediction). Based on this logic, one could intuit
that the prediction for (A,B) would be the most accurate because
the model was trained on how proteins A and B interact with
other proteins; on the other hand, the prediction for (C,D) would
be the least accurate because the model was not trained on either
protein. Following this reasoning, predictions for (A,C) or (A,D)
should be more accurate than that of (C,D). However, these types
of predictions have been observed to be of comparably low
accuracy2. In other words, models are unable to make accurate
out-of-network predictions even when trained on one of the two
proteins in a given interaction. This suggests that, rather than
simply being unable to generalize to proteins absent in the
training set, these models may not be learning biological
characteristics of the training set protein sequences that are
pertinent to informing PPI predictions.

An auditing framework to examine predictor biases. These
observations about the non-generalizability of PPI predictors led
us to hypothesize that unidentified biases in the training data may
be driving both the high performance of PPI predictors and the
association of high performance with in-network predictions. To
test this hypothesis, we devised an auditing framework specific to
paired-input ML applications, composed of four main modules:
benchmarking, bias interrogation, bias identification, and bias
elimination (Fig. 1, Table 1 and Methods).

Benchmarking seven PPI classifiers. In the first benchmarking
module, we benchmarked classifiers on different datasets to
establish a baseline performance for subsequent comparisons and
to identify performance patterns suggestive of data biases
(Fig. 1b). We selected seven prominent PPI classifiers, which we
refer to as F1–F7 in this work, representing a variety of ML
algorithms and diverse protein feature descriptors. F1–F5 corre-
spond to five representative methods used in the 2012 Park and
Marcotte study;2 F6 is a sequence-based domain profile method
that we introduced to increase the diversity of the examined
feature extraction methods; and F7 is a deep learning-based PPI
classifier. Details of these classifiers can be found in Methods.

The performances of F1–F7 were benchmarked on two curated
PPI datasets, D12 and D26, which are widely used to develop and
test PPI classifiers; and D39, a high-quality experimental dataset
(Methods). All three datasets involve human proteins and are
highly relevant for the development of therapeutics. Classifiers
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were trained on subsets of a specific dataset, e.g., protein pairs (A,
B) and (X,Y), and tested on non-overlapping in-network subsets
of the same dataset, e.g. (A,X), (B,X), (A,Y), and (B,Y).
Importantly, we did not include out-of-network prediction
testing because PPI classifiers are already demonstrated to not
generalize to out-of-network predictions2. Furthermore, our
ultimate concern is whether in-network performance is general-
izable across different datasets. As anticipated, the best bench-
marking performance across all classifiers was high with an
average area under the curve (AUC, a classification quality
measure where an AUC of 1 represents perfect prediction

performance and an AUC of 0.5 indicates random prediction) of
0.83, 0.99, and 0.92 for D1, D2, and D3, respectively (Methods
and Supplementary Data 1). The performances that we measured
are similar to the published performances of F1–F7, indicating
the correct implementation of the classifiers.

Robust biological ML models should generalize to independent
datasets. In the second module, we built a Generalizability
Auditor (an auditor is a system where a ML model of interest is
compared to another ML model that is tailored to examine a
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specific hypothesis) to assess the ability of each classifier to
generalize across independent datasets (Fig. 1c). Once again, we
focused on the generalization, not for new proteins (out-of-net-
work predictions), but for proteins with PPI examples in training
(in-network predictions) sampled from different datasets. If the
PPI predictor indeed learns how to accurately predict PPIs in
which both proteins of a given pair have examples in training, we
should observe the same high performance in the two testing
scenarios: benchmarking (module one) versus independent
dataset testing (Module 2). Different datasets can be context-
specific, which may degrade the performance observed for in-
network predictions sampled from a different dataset. However, a
considerable fraction of PPIs are shared across human cells and
PPIs are governed by universal principles that ML models are
supposed to learn. Thus, a considerable loss of prediction power
when testing in-network examples sampled from a different
dataset will indicate that the predictor is predominantly learning

from dataset-specific biases and is therefore not generalizable
across datasets. In such cases, the bias is not empowering pre-
dictions, but rather misleading the ML process so that it does not
discern the true principles that determine PPIs, even within a
given context or network.

Our Generalizability Auditor examines how F1–F7 perform on
a dataset independent from that used for training but only
contains in-network PPI examples: we used subsets of D1 and D2
for training and in-network subsets of D3 for independent testing
(Methods). In the absence of bias, the AUCs of the General-
izability Auditor and the benchmarking in the first module
should be comparable. In contrast, we observed a considerable
difference: AUCs of the Generalizability Auditor are noticeably
lower by an average of 0.14 and 0.33 for the classifiers trained on
D1 and D2, respectively (Supplementary Fig. 1), suggesting that
dataset-specific biases may be confounding the learning process
and inflating the performance of F1–F7.

Fig. 1 A systematic auditing framework for ML applications in biology. a Presentation of the four modules of the auditing framework. b In the
Benchmarking Module 1, the ML model is trained and tested on a split dataset (Dtr and Dts, respectively) to generate a ‘Test: original’ performance for a
given dataset and ML model. Performances are compared across different models and datasets to suggest bias sources that can be examined in
subsequent modules as detailed in Supplementary Note 1 (Systematic Auditing Protocol). c The Bias Interrogation Module 2 compares the original
performance of the model to its performance when tested on an independent dataset, Generalization dataset (Dg), to detect a bias. d The Bias
Identification Module 3 modifies the data or model used in training and compares the modified with the original performances to reject or confirm the
formulated bias hypotheses. The auditors here are examples of the bias identification process in paired-input problems. In the Feature Auditor in d1, the
model is trained on the original training dataset but with the features masked (Dtr_m), and tested on the original test set (Dts). The performance of Test:
masked is compared to the expected random performance, Test: random, e.g., when AUC is used, the Test: random AUC is 0.5. If Test: masked
significantly outperforms Test: random, there is likely a bias in the dataset, independent of the features, that drives the non-random performance. In the
Node-Degree Auditor in d2, each interacting object in the training dataset is represented by its node degree counts in the positive and negative training
datasets to constitute Dtr_d. A model is trained on Dtr_d and tested on the test set Dts_d where each object in the original Dts is represented by its node
degrees in the training datasets, Dtr. The performance of Test: degree, is compared to the original performance, Test: original. If there is no significant
difference, there is likely a bias related to node degree recurrence in the original dataset. The Recurrence Auditor in d3 is similar in structure to the Node-
degree auditor in d2, except that the ML model is replaced by a function to score the probability of an interaction between a pair in the test set (Dts) based
on the differential node degree of the pair in the positive and negative training sets (recurrence score). These are compared against the probabilities
generated by the original model, Test: original. If the performance of the recurrence-based scoring function is similar to that of the original model, the
model is likely learning from the node-degree bias. In the Debiasing Auditor in d4, the training dataset is debiased by removing the node degree bias (node
balancing is performed) and the features are masked to create Dtr_mb. The performance of Test: masked is compared to the expected random
performance, Test: random. If the model performance, Test: masked, balanced is equal to the expected random performance (Test: random; AUC of 0.5),
then the node-degree imbalance is confirmed as the major bias source in this particular data-model combination. If the bias persists, i.e., the Test: masked,
balanced performs better than random, there is likely another bias driving the learning process. e The Bias Elimination Module 4 tests the driving power of
the bias identified in Module 3 by debiasing the data (or model) and testing whether the performance will generalize to independent datasets, i.e., test if the
performance of the model on the testing subset after training the model on the debiased subset (Dtr_b), Test: debiased, is comparable to the performance
on the generalization subset (Dg), Test: debiased, generalization.

Table 1 Technical terms.

Term Explanation

Training sets Data examples we feed ML models to learn from.
Features Extracted information used to describe entities to inform the ML models about their characteristics from which the models

should learn.
ML generalization Ability of ML models to perform well on datasets independent from which their training examples were sampled.
ML auditor A system where a ML model of interest is compared to another ML model that is tailored to examine a specific hypothesis

about the initial model.
ML auditing Examining biases of ML frameworks by building ad-hoc ML auditors.
Representational bias Imbalance or inequality in how different entities are represented in the data due to inherent or experimental conditions.
Paired-input prediction A class of ML prediction methods where the goal is to predict the relationships between two entities. The ML models are

thus trained on pairs of entities to learn their relationships.
In-network prediction In paired-input prediction problems, the prediction for the pair (A,B) is in-network if the training data for the predictor

contains relationships in which A and B are separately involved.
Out-of-network prediction In paired-input prediction problems, the prediction for the pair (A,B) is out-of-network if the training data for the predictor

does not contain relationships for A, B, or both.
AUC Area Under an ROC (receiver operating characteristic) curve is a classification quality measure where an AUC of 1

represents perfect prediction performance and an AUC of 0.5 indicates random prediction.
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An auditing cycle testing various hypotheses about biases
pinpoints bias source(s). In our third module, we established and
followed a principled cycle of steps to iteratively formulate and
test hypotheses regarding potential biases via hypothesis-specific
auditors (Fig. 1d). Each auditor is an auxiliary ML model that is
designed to assess a specific hypothesis about an ML model of
interest, i.e., F1–F7 (Methods). We started by testing the
hypothesis that each PPI classifier is learning solely from protein
features, as it is designed to, by conceiving a Feature Auditor that
masks all protein features simultaneously by replacing protein
sequences with random amino acid sequences to prevent the ML
models from extracting knowledge from those features (Meth-
ods). When the protein features are masked, the auditor perfor-
mance should become random. Yet, we found that the
benchmarking performance of each PPI classifier was largely
retained regardless of the underlying ML classifier, hyperpara-
meter values, training dataset, or protein features: average dif-
ferences in AUC of −0.01, 0.00, and −0.01 were observed for D1,
D2, and D3, respectively (Fig. 2a, b and Supplementary Data 1),
suggesting that F1–F7 are learning from biases rather than from
protein features.

We next hypothesized that protein recurrence in the training
data was inflating the performance. This hypothesis was inspired
by a suggestion by Park and Marcotte that if protein x has more
positive training interaction examples, models will learn to
predict pairs involving x as interacting, which they note often
turn out to be experimentally true (see the Supplementary
Discussion of Park and Marcotte 2012)2,10. We sought to verify
this suggestion and understand the extent to which protein
differential recurrence in the positive versus negative training
dataset for each of the two proteins in a pair dictates predictions.
This is important because predictors should be learning how
protein sequence guides PPIs and not from the protein frequency
in the training dataset.

To test this hypothesis, we built a Node-degree Auditor
in which each protein is solely represented by its node
degrees in the positive and negative PPI training examples
(Methods). The performance using the Node-degree Auditor
was highly similar to the best benchmarking performance
across all classifiers for each dataset: differences in AUC of
0.03, 0.01, and 0.05 were observed for D1, D2, and D3,
respectively (Fig. 2a, b). These results confirmed that protein
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recurrence is largely informing and inflating the performance
of F1–F7.

Based on the observations from the Feature Auditor and Node-
degree Auditor—that F1–F7 are not learning from protein
features but rather from protein recurrence in the training
datasets—we built a Recurrence Auditor that uses the differential
node degrees of a given protein between the positive and negative
training examples as the sole information to estimate the
probability of PPIs (a mathematical function, not a ML classifier,
that maps the combined differential recurrence of a protein pair
to PPI probability). We found that the performance using the
Recurrence Auditor is similar to the best benchmarking
performance across all classifiers for each dataset: differences in
AUC of 0.00, 0.04, and 0.06 were observed for D1, D2, and D3,
respectively (Fig. 2a, b and Methods). This confirmed that the
performance of F1–F7 is primarily determined by the difference
in protein recurrence in the positive versus negative training
dataset (Supplementary Discussion).

Finally, we implemented a Debiasing Auditor that accounts for
protein node degree bias by removing differential recurrence
(implemented by forcing each protein to have an equal node
degree in the positive and negative training examples) while
protein features are masked. If differential recurrence is a strong
performance driver, this auditor should exhibit near-random
performance. As expected, the predictions were effectively
randomized across all combinations of classifiers, hyperparameter
values, training datasets, and protein features: AUC averages of
0.50, 0.53, and 0.49 were observed for D1, D2, and D3,
respectively (Fig. 2a, b and Supplementary Data 1), confirming
the hypothesis that differential recurrence is strongly driving PPI
classifier performance. In other words, F1–F7 are not learning
from protein features to predict PPIs, but from the bias inherent
in the training datasets to predict PPIs.

Assessing performance after bias removal. In the final module,
we removed the biases identified in the third module and used the
Generalizability Auditor (similar to the auditor in Module 2 but
with different inputs) to assess how the classifiers generalize to
independent datasets after debiasing (Fig. 1e). If training dataset
biases have been removed, the benchmarking performance (from
Module 1, Supplementary Data 1) and the performance of the
Generalizability Auditor should be similar. We applied the
Generalizability Auditor to F1–F7 with debiased training subsets
of D1 and D2, distinct in-network benchmarking subsets of D1
and D2, and in-network subsets of D3 for independent testing
(Methods). As predicted, this improved the PPI classifier gen-
eralizability: average differences in AUC between the bench-
marking and independent testing performances of 0.06 and 0.03
were observed for D1 and D2, respectively, compared to 0.14 and
0.33 in the first module (Supplementary Fig. 1). However, the
overall generalizability performance was low, indicating that the
PPI predictors still did not learn enough to accurately predict
PPIs even after the bias was removed.

Extending the framework to other paired-input applications.
To illustrate the broad applicability of our auditing framework in
general and the applicability of the developed auditors to other
paired-input applications, we adapted the auditing framework to
two additional applications of important therapeutic interest:
predictions of drug-target bioactivity and MHC-peptide binding.
For drug-target bioactivity prediction, we examined five predictors:
three classification and two regression frameworks, F8–F12, on
two datasets, D4 and D5 (Methods). Once again, the drug-target
predictors did not generalize as well as their benchmarking per-
formance (Supplementary Data 2 and Fig. 2c). Although these

predictors are not immune to node differential recurrence bias,
they are not impacted to the same extent as the examined PPI
predictors. Notably, the F8 predictor was less impacted when drug/
protein features were masked in D4 as compared to D5; F8 was
less generalizable when trained on D5 compared to D4. This
indicated that the dataset D4 has relatively more biological signal
and less bias compared to D5 for predictor F8 to learn from. The
extent to which a biological dataset is biased can be influenced by
numerous factors. For example, alongside the presence of “pro-
miscuous” proteins that bind to many drugs or peptides, the size of
the dataset and the experimental assay utilized to collect the
dataset can greatly influence bias.

For MHC-peptide predictions, we considered eight predictors,
F13–F20 (Methods). F17 and F20 are less generalizable compared
to their reported benchmarking performance while the other
predictors generalize considerably well (the generalized perfor-
mances of F13 and F19 even exceed their respective benchmarking
performances), even when the test examples are out-of-network
(Fig. 2d). F17 and F20 utilize an explicit paired-input setting
(similar to PPI predictors) in contrast to the remaining predictors
that built separate models for each MHC allele, i.e., a set of single-
input models for each predictor instead of a single paired-input
model (Methods). Overall, the majority of drug-target and MHC-
peptide predictors generalized in a non-random fashion, suggest-
ing that they learnt from their input features in a more biologically
meaningful way compared to the examined PPI predictors.

Conclusions
When there is insufficient signal in the training data repre-
sentation, ML models could learn primarily from representational
biases in the training data. This appears to predominantly
influence paired-input ML applications and can be misleading if
not illuminated through auditing. We have provided detailed
guidelines, tutorials, and use cases on how to tailor the auditing
framework to other biological ML applications (Supplementary
Notes 1 and 2), as well as code, resources, and data that can be
used to rerun or reposition the auditing framework described in
this article (Methods and GitHub repository: https://github.com/
Elzahraa/AuditingBiologicalML). We recommend that scientists
who are applying ML to biological applications help to build a
community-wide stance on the systematic auditing of ML models
for biases. Being cognizant of the biases that fuel the predictions
of each ML model will inform their application to new datasets
and clarify whether the model has truly learned from governing
biological principles.

Methods
Datasets. D1, a curated dataset, contains 24,718 positive protein–protein inter-
action (PPI) examples among 7033 human proteins that share at most 40%
sequence identity2. D1 follows the random negative sampling scheme, which is the
most commonly utilized for negative training in PPI classification frameworks:
negative PPI examples are generated by randomly pairing proteins not reported to
interact in the dataset. D2, another curated dataset, has a predefined pool of
negative examples generated by pairing proteins (from the positive example pool)
that do not colocalize in the same subcellular compartment. The negative and
positive PPI examples in D2 number 36,320 each, among 10,336 human proteins6.
D3, available at http://interactome.dfci.harvard.edu/H_sapiens/host.php, is a set of
15,473 PPIs among 4569 human proteins identified using a high-quality all-versus-
all Y2H system such that pairs not identified as positive PPIs can be considered
experimentally negative9. Here, each dataset is split into 10 rounds of training,
validation, and test sets. Positive and negative examples are of equal count
throughout the entire study to avoid class imbalance. The testing is limited to in-
network test sets throughout the study, i.e., proteins in the testing sets must
have examples of their other interactions in the corresponding training sets because
PPI predictors do not generalize to out-of-network predictions where one or the
two proteins of a test pair has no examples of their other interactions in the
training sets.

One well-appreciated challenge in the development of PPI predictors is the
absence of gold standard negative training examples. This is because biological
studies typically verify positive PPI examples, but do not determine the absence of
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interactions between given proteins. D1 sought to eschew this problem by calling
randomly paired proteins as negative PPIs because the majority of proteins are not
expected to interact with each other. This approach is the most widely used in PPI
prediction data preparation. D2 adopted a different approach by randomly calling
PPIs between proteins from different cellular locations as negative because proteins
in different locations are not expected to interact with each other generally. D3
considered PPIs not identified in their Y2H screen to be negative examples.
However, all three approaches suffer from their own unique caveats. Unlike
positive PPI examples, negative PPI examples require much more validation to
conclusively determine that a particular pair of proteins is non-interacting.

PPI classification frameworks. The utilized PPI prediction frameworks, F1–F7, all
use amino acid sequences as their sole source of protein features but vary in their
feature designs and machine learning (ML) models. They were selected based on
their reported high performance, popularity, and diversity covering common
approaches in PPI classification. F1–F5 correspond to five representative methods
used in the 2012 Park and Marcotte study2. In F111, a signature molecular
descriptor12–14 represents each protein by the frequencies of amino acids in 3-mer
combinations. F3 categorizes the 20 amino acids into seven groups according to
their physicochemical properties;7 each protein sequence is then represented by the
frequency of each possible 3-mer combination of these groups. F415 accounts for
the amino acid neighborhood context via an autocorrelation descriptor of seven
physicochemical properties of each amino acid. F216, F52, and F78 use the same
protein descriptors as in F1, F4, and F3, respectively. We introduced F6, a
sequence-based domain profile method, to increase the diversity of the examined
feature extraction methods. In F6, each protein is represented by its domain profile,
generated by scoring the alignment of the protein amino acid sequence to the
HMM profiles of 16,712 domains downloaded from Pfam in January 2018.

F1–F4 and F6 use support vector machines (SVMs) with different kernels. F6
uses the kernel in Equation [1] where (A,B) and (C,D) are two pairs of proteins. F5
utilizes a random forest classifier while F7 utilizes a stacked autoencoder (a deep
learning representational learning model). Further details of F1–F5 and F7 can be
found in their respective publications2,6–8,11,15,16. We implemented the seven
methods using MATLABR and paired it with LibSVM library17 for the SVM
methods (F1–F4 and F6).

K A; Bð Þ; C; Dð Þð Þ ¼ exp �γ min jjA� Cjj2:jjB� Djj2; jjA� Djj2:jjB� Cjj2� �� �� �

ð1Þ

Benchmarking. D1-D3 were used for benchmarking the performance of the seven
PPI classifiers, F1–F7. Model optimization was performed over 10–20 different
combinations of the ML model hyperparameter values. Overall, we have examined
100 different models. Each was trained and tested on the 10 splits of each dataset,
totaling 3000 experiments. We did not limit benchmarking to the models with
optimized hyperparameter values. The best performing models were noted for
further comparisons.

Auditors. In AI auditing, an auxiliary ML model is designed to systematically
examine bias hypotheses of an ML model of interest (main model) or its training
data using the latter model input and output; a performance measure comparing
the two models is defined to assess the hypotheses1.

Generalizability auditors. Two generalizability auditors, G1 and G2, were used to
assess the in-network performance generalization to independent datasets before
intervention (bias interrogation step) and after debiasing (bias elimination step),
respectively. The main models in both auditors are the seven models optimized for
D1 and D2. However, the training data for G1 is the one used for benchmarking
whereas the training data for G2 is debiased first as explained in the Debiasing
Auditor below. The test examples for the main models are subsets of D1 and D2
that satisfy the in-network performance criteria as in regular benchmarking. The
auxiliary models are the same as the main models. However, the test examples for
the auxiliary models in both auditors are sampled from D3 such that they satisfy
the in-network test criteria for each training round. The generalizability gap was
used to assess the difference in performance: the generalizability gap is the dif-
ference between the reported performance on the benchmarking test datasets
(main model) and the performance on independent datasets (auxiliary model).
When the gap is large, this implies that the main model does not generalize well.

Feature auditor (A1). The PPI classifier of interest is used as both the main model
and the auxiliary model with the same hyperparameter values. In the auxiliary
model, a random feature vector is constructed for each protein and used
throughout the auditing experiment: each protein sequence is replaced with a
random amino acid sequence before extracting the protein features. The difference
in AUC of the auxiliary model to a random classifier performance (AUC ~0.5) is
used to assess the randomization efficiency.

Node-degree (A2) and recurrence auditors (A3). The main model in both auditors is
the best performing model for each benchmarking dataset (a single model per
dataset). In A2, the auxiliary model is a simple (random forest) PPI classifier

trained on the node degree of each protein in the positive and negative training
networks (each PPI example is thus represented by a feature vector of length four).
In A3, the auxiliary model is not an ML model but a scoring function that com-
pares the summation of the node degrees of the protein pair in the positive and
negative training networks. For protein pair A-B, whose positive and negative node
degrees in the training data are (A+, B+) and (A-, B-), respectively, the score
(interaction probability of the pair) can be described as in Equation [2]. The
auxiliary models in both cases were evaluated on the 10 splits of each dataset and
the quality of replication was assessed by the AUC decrease relative to the AUC
obtained for the main model. In A2 and A3, there is one auditor for each dataset
such that performance is compared to the best performing PPI classifier for that
dataset.

Score A; Bð Þ ¼ Aþ þ Bþ

Aþ þ Bþ þ A� þ B� ð2Þ

Debiasing auditor. The main model is the same as in A1. For the auxiliary model,
the negative examples of each data split are restricted such that each protein in the
training contributes an equal number of positive and negative training examples
according to the balanced sampling technique described by Yu et al.18, which
presents an unbiased alternative for random sampling. However, there was
insufficient evidence to support the approach’s utility in removing bias2,10,18–21).
Other debiasing strategies for ML models or training data can be designed as
needed.

The features of each protein were replaced by random numbers as in A1. For
the asymmetric classifiers, i.e., F4, F5, and F7, which treat a pair [A,B] differently
from [B,A], we accounted for interaction symmetricity (non-directionality of
protein interactions) by utilizing the debiased sets prepared for the symmetric
learners and representing each interaction [A,B] in the training data with the pairs
[A,B] and [B,A].

Removing the representational bias was impractical for D2 as only 1294 out of
2181 proteins in the negative example pool are shared with the positive pool, which
has 9,449 proteins. As the original negative examples were created by pairing non-
co-localized proteins, we downloaded the GO localization annotation22 of the
proteins in D2 and split them into the following high-level co-localization groups:
cytoplasm, nucleus, mitochondria, and exocytic. We constructed the negative pool
by pairing all proteins that do not share a subcellular location (the same way that
negative sampling was originally performed for D2) and randomly selected a subset
that balances each positive training set.

Throughout the experiments, the positive and negative training example counts
remain equal and the test sets remain the same as in the benchmarking data splits.
The randomization efficiency is assessed as in A1.

Drug-target bioactivity prediction auditing. We considered five drug-target
bioactivity prediction frameworks that predict whether (classification mode) and
how strongly (regression mode) a drug can bind to a human protein target. All
regression predictors are set up to predict the bioactivity response pKd (-log10 of
the equilibrium dissociation constant Kd) while the classification models are set up
to predict the binary binding status with pKd = 6.3 (corresponds to 500 nMKd)
used as the standard threshold for classification23. AUC is used to assess classifier
performances while R2 is used for regression models. We utilized two widely used
datasets in drug-target bioactivity research: the Metz dataset24 and a subset of the
Drug Target Commons (DTC) dataset25, denoted here as D4 and D5, respectively.
D4 and D5 consist of 107,791 and 26,634 data points measured for the bioactivity
of 1497 drugs with 172 targets and 4210 drugs with 599 targets, respectively.

The first predictor is a classic drug-target bioactivity predictor26 that utilizes
random forest models, representing drugs with their daylight fingerprints and
targets with their CTD descriptor values (Composition-Transition-Distribution
standard descriptors). We reimplemented the predictor for the lack of code
availability and utilized it in two modes: classification mode as F8 and regression
mode as F9. The second drug-target bioactivity predictor, KronRLS27, was used in
classification mode as F10 and in regression mode as F11. KronRLS represents drug
and target features in a kernalized form: Smith–Waterman (SW) score for target
sequences; 2D and 3D Tanimoto coefficients for the structural fingerprints of the
drugs. KronRLS imputes the missing values in the drug-target all-versus-all matrix
and uses the imputed values for training (but not for testing) utilizing the
Kronecker RLS model28. We used the published code available for KronRLS and
modified it to avoid the class imbalance problem. We changed the classification
threshold and the evaluation criteria as described above. The last predictor is a
recent deep learning-based classifier: DeepConv-DTI29, a convolutional neural
network classification model that processes target amino acid sequences directly
and uses Morgan fingerprint as drug features.

The in-network performance for each framework, F8–F12, on D4 and D5 is
used as the benchmarking performance (module 1) while the out-of-network
performance (where both the drug and target in a test pair do not have examples of
their other measurements in the training dataset) is used as the generalization
performance (module 2). To remove the potential node-degree bias, we need to
apply the balanced sampling discussed in the PPI prediction auditing. However, it
was not feasible because the training datasets act as sparse bipartite graphs in the
classification mode and have continuous output values in the regression mode.
There are no distinct classes to balance the node degrees between them.
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MHC-peptide binding prediction auditing. We considered a set of eight well
known predictors of MHC class I and class II binding peptides, F13–F20, that are
recently benchmarked in the 2018 Merck study:30 SMM-align31, Comblib32,
MHCflurry32,33, SMMPMBEC 34, PickPocket35, TEPITOPE36,37, NN-align38, and
NetMHCpan-439. Testing MHC-peptide binding predictors is generally performed
in the out-of-network prediction mode, where the MHC allele in a test pair has
examples of its binding peptides in the training set but the peptide in that test pair
is novel. To assess whether these models are biased using the Generalizability
Auditor, we compared their reported performances in their respective publications
(module 1, benchmarking) with their performances on an independent dataset
from the Merck study. We examined the architecture of the predictors in their
respective publications and found that only PickPocket and NetMHCpan4 utilize
paired-input settings. The two predictors represent the MHC alleles in terms of the
amino acid sequence of their structurally identified pockets. The auditing process
was stopped after module 2 as no noticeable bias was evident for the two paired-
input models; the six other models bypass node-degree bias by design and
generalize well.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Five datasets (D1-D3, protein–protein interactions [PPI] [PMID: 23223166; 20698572;
25416956]; D4-D5, drug-target activity [PMID: 21336281; 29276046]) and twenty
classifiers (F1–F7, PPI classification [PMID: 15319262; 18269702; 17360525; 18390576;
23223166; 28545462]; F8–F12, drug-target bioactivity prediction [PMID: 23910962;
24723570; 31199797]; F13–F20, MHC-peptide binding prediction [PMID: 17608956;
15868141; 29960884; 19948066; 19297351; 10385319; 22383964; 19765293; 28978689])
used in this study are described and referenced in the Methods.

Code availability
Scripts used in this study, tutorials, and examples of the auditing application process are
described in the Methods and Supplementary Notes and are available from: https://
github.com/Elzahraa/AuditingBiologicalML.
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